17 Chemically Resistant Asymmetric Membranes Made from PVA for the Separation of Organic Solvents and Phenols from Aqueous Solutions
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on June 2, 2015 | http://pubs.acs.org Publication Date: May 27, 1981 | doi: 10.1021/bk-1981-0154.ch017
S. P E T E R and R . S T E F A N Lehrstuhl für Technische Chemie, Universität Erlangen-Nürnberg, Egerlandstrasse 3, D-8520 Erlangen, West Germany
The i n c r e a s i n g q u a n t i t i e s o f industrial wastes r e q u i r i n g treatment are becoming an important problem. R e l a t i v e l y h i g h demands on t h e quality must be fulfilled, if the water has t o be discharged o r r e c y c l e d . The effluents r e q u i r i n g purification f r e q u e n t l y c o n t a i n a wide variety o f compounds w i t h differing p r o p e r t i e s . G e n e r a l l y t h e c o n c e n t r a t i o n s o f these organic and i n o r g a n i c p o l l u t a n t s may range between 0 , 5 and 5% by weight, o f t e n making an expensive treatment o f industrial wastes necessary. Reverse osmosis could p o s s i b l y become an attractive a l t e r n a t i v e t o the classical s e p a r a t i o n processes such as distillation, e x t r a c t i o n , evaporation e t c . , which are c u r r e n t l y in use. Reverse osmosis may be used t o increase t h e concentration of t h e compounds present in the wastes so t h a t t h e i r r e e x t r a c t i o n w i t h the aid o f classical s e p a r a t i o n methods becomes economical. A l s o it can be used as a step in the treatment o f wastes before d r a i n off. The differing p r o p e r t i e s o f t h e compounds present in industrial e f f l u e n t s r e q u i r e membranes that are s t a b l e a g a i n s t the s o l v e n t s in q u e s t i o n . Futhermore, the membranes have t o be sufficiently permeable. Thermal stability and durability over a wide pH range (1-14) are a l s o r e q u i r e d a s well as a sufficiently high selectivity w i t h regard t o the compounds t o be separated. The demand o f general stability against solvents is met by c r o s s - l i n k e d membranes. M a t e r i a l used For t h e i n v e s t i g a t i o n s reported here p o l y v i n y l a l c o h o l (PVA) and i t s d e r i v a t i v e s such as p o l y v i n y l a c e t a t e , p o l y v i n y l ether e t c . were used a s the b a s i c polymeric m a t e r i a l s . These compounds can e a s i l y be converted i n t o polymeric analogues [ l ] . I t was shown i n an e a r l i e r work [ 2 ] t h a t PVA-membranes w i t h an asymmetrical s t r u c t u r e can be obtained by phase-inverted p r e c i p i t a t i o n s i m i l a r t o the method o.f Loeb and S o u r i r a j a n [ 3 ] . These membranes can a l s o be rendered i n s o l u b l e i n water by 0097-6156/81/0154-0281$05.00/ 0 © 1981 American Chemical Society
In Synthetic Membranes: Volume II; Turbak, A.; ACS Symposium Series; American Chemical Society: Washington, DC, 1981.
282
SYNTHETIC
MEMBRANES:
HF
AND
UF
USES
c r o s s - l i n k i n g [4]*. The f o l l o w i n g substances were mainly used: PVA w i t h a h y d r o l y s i s grade o f 98% and a m o l e c u l a r weight o f 9.0 000, P o l y v i n y l a c e t a t e w i t h a molecular weight o f 110 000, p o l y v i n y l b u t y r a t e w i t h a molecular o f 7000 and 12-16% o f f r e e OH-groups.
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on June 2, 2015 | http://pubs.acs.org Publication Date: May 27, 1981 | doi: 10.1021/bk-1981-0154.ch017
Method o f producing the membranes F i l m s were c a s t from the polymer s o l u t i o n and a f t e r t h a t immersed i n a p r e c i p i t a t i o n bath. The asymmetric membranes obtained are s o l u b l e i n water and have t o be made i n s o l u b l e by c r o s s ^ - l i n k i n g . During the c r o s s - l i n k i n g r e a c t i o n s the asymmetric s t r u c t u r e produced by the phase-inverted p r e c i p i t a t i o n must remain unchanged. T h i s can be performed by t r e a t i n g the asymmetric membrane i n a f i x i n g bath o f an a c i d i c s a l t s o l u t i o n . A f t e r t h i s treatment, c r o s s - l i n k i n g i s p o s s i b l e by organic and i n o r g a n i c reagents without r e d u c t i o n o f the asymmetry. C r o s s - l i n k i n g renders the membranes i n s o l u b l e i n water; a d d i t i o n a l l y , the r e t e n t i o n of the organic compounds i s improved. The best r e s u l t s were obtained f o r the c r o s s - l i n k i n g e i t h e r by using both organic and i n o r g a n i c reagents together i n one step or by a p p l y i n g them one a f t e r another. C r o s s - l i n k i n g by means of metal s a l t s can e q u a l l y w e l l precede o r f o l l o w the t r e a t ment w i t h an organic reagent. P r o p e r t i e s o f the membranes The i n f l u e n c e o f d i f f e r e n t c r o s s - l i n k i n g reagents on the p r o p e r t i e s o f the membranes was i n v e s t i g a t e d by reverse osmosis experiments. A procedure f o r preparing the membranes was devised t h a t y i e l d e d membranes o f medium r e t e n t i o n o f phenol a g a i n s t an aqueous phenol s o l u t i o n o f 2 g / l i t r e a t pH 13. The membranes were always prepared i n e x a c t l y the same way. Thus the i n f l u e n c e o f the d i f f e r e n t c r o s s - l i n k i n g agents could be compared b e t t e r than under optimum c o n d i t i o n s o f p r e p a r a t i o n . A f t e r c r o s s - l i n k i n g by means o f organic compounds, some o f the membranes were a d d i t i o n a l l y t r e a t e d w i t h a s o l u t i o n c o n t a i n i n g Cr(III)-salts [5]. The osmotic p r o p e r t i e s of the membranes were t e s t e d a t room temperature and a pressure d i f f e r e n c e o f 50 bar. Phenol r e t e n t i o n and product f l u x were measured. The s t a b i l i t y o f the membranes obtained a g a i n s t v a r i o u s s o l v e n t s was i n v e s t i g a t e d by immersing the membranes i n the s o l v e n t concerned a t 40°C f o r about three weeks. A f t e r t h a t t h e i r mechanical and osmotic p r o p e r t i e s were t e s t e d again and compared w i t h t h e i r p r o p e r t i e s before t h e treatment. The r e s u l t s of the experiments are shown i n t a b l e I . The s t a b i l i t y o f the membranes subjected t o c r o s s - l i n k i n g by an organic reagent i s very s a t i s f a c t o r y . A d d i t i o n a l treatment w i t h C r ( I I I ) s o l u t i o n s
In Synthetic Membranes: Volume II; Turbak, A.; ACS Symposium Series; American Chemical Society: Washington, DC, 1981.
17.
PETER AND STEFAN
Chemically Resistant Asymmetric Membranes
283
Table I : Chemical s t a b i l i t y o f PVA-membranes i n o r g a n i c and i n o r g a n i c solutions- a t 40°C Membrane;
lompo-
Membrane
type
jsition-f
type
s o l v e n t mixtures I CH OH-C H OH-H 0 25:25 :50 DMSO- C H OH-H O 60:30 :10 50:50 DMSO- C H O H DMSO- DMF 75:25 60:30:10 DMSO-C H OH-FA 60:30:10 DMSO-CH OH-FA
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on June 2, 2015 | http://pubs.acs.org Publication Date: May 27, 1981 | doi: 10.1021/bk-1981-0154.ch017
3
2
5
2
5
2
5
2
2
isopropyl alcohol-H o 2
dioxane- E^O
DMSO - H 0 2
H0 2
50:50 25:75 75:25 100:1 S0:b6 25:75 75:25 100:1
98-100
HCOOH l
CH COOH 3
20 4
50
NH OH
25
H S0 2
4
HNO
3
benzene toluene
12 100 100 100
xylene
3,5
c r e s o l (o,m,p)
7
pyridine
6
50:50 25:75 75:25 100:1
formaldehyde
50:50 25:75 75:25 100:1
formamide - H 0
50:50 25:75 75:25 100:1
CH OH-H 0
50:50 25:75 75:25 100:1
2
100
phenole
50:50 25:75 75:25 100:1
2
NaOH
50:50 25:75 75:25 100:1
eyelohecanone - H 0 2
In
weight%
5
5
3
X
2
C H OH-H 0
DMF
II
2
3
2
I reactant
35
isobuty-methy1-ketone
100
1 = s t a b l e , no change i n membrane p r o p e r t i e s 2 = not s t a b l e 3 = d e s t r u c t i o n o f membrane Type o f membrane I = PVA, c r o s s - l i n k e d by o r g a n i c compounds Type o f membrane I I = PVA, c r o s s - l i n k e d by o r g a n i c compounds and t r e a t e d w i t h Cr(III) + Concentrations r e f e r t o aqueous s o l u t i o n s .
In Synthetic Membranes: Volume II; Turbak, A.; ACS Symposium Series; American Chemical Society: Washington, DC, 1981.
284
SYNTHETIC MEMBRANES:
HF
AND
USES
increases the s t a b i l i t y as w e l l as the phenol r e t e n t i o n as i s shown l a t e r . In F i g . 1 the phenol r e t e n t i o n of membranes c r o s s - l i n k e d i n s a t u r a t e d s o l u t i o n s of d i c a r b o x y l i c a c i d s i s represented as a f u n c t i o n of the number of carbon atoms of the d i c a r b o x y l i c acid. The s o l u b i l i t y of the d i c a r b o x y l i c a c i d s i n water i s a l s o represented. As can be seen the a l t e r n a t i n g behavior of homologous s e r i e s w i t h the number of carbon atoms i s r e f l e c t e d i n the phenol r e t e n t i o n of the c r o s s - l i n k e d membranes. The r e s u l t s of the i n v e s t i g a t i o n are s p e c i f i e d i n t a b l e I I . Besides the r e t e n t i o n of phenol, the r e t e n t i o n of Na S was, s i m i l a r l y measured. The t a b u l a t e d v a l u e s are mean v a l u e s f o r the membranes obtained from about 3 separate t r i a l s . The r e p r o d u c i b i l i t y of the^ measurements amounts to about 2% f o r the r e t e n t i o n and 0,003 m /(m d) f o r the product f l u x . The a d d i t i o n a l treatment of the membranes i n C r ( I I I ) s a l t s o l u t i o n s caused a notable improvement i n phenol r e t e n t i o n while the f l u x remained p r a c t i c a l l y unaltered. The behavior of membranes c r o s s ^ l i n k e d by v a r i o u s ketones was i n v e s t i g a t e d i n the same way. These membranes possess e x c e p t i o n a l l y good mechanical p r o p e r t i e s . Moderate values f o r f l u x and phenol r e t e n t i o n were found (see t a b l e I I I ) . Since the o b j e c t o n l y was to compare d i f f e r e n t c r o s s - l i n k i n g reagents, no f u r t h e r attempt was made t o improve the f l u x and the r e t e n tion. Table IV g i v e s the r e t e n t i o n and product f l u x f o r membranes c r o s s - l i n k e d by d i c a r b o n y l compounds i n presence of v a r i o u s aqueous s o l u t i o n s of phenol, sodium s u l f i d e , p y r i d i n e and ammonia. The strong c o n c e n t r a t i o n dependence of the r e t e n t i o n i n the presence of phenol and the dependence of the f l u x on the s o l u t e i s i n t e r e s t i n g . Membranes w i t h 95% r e t e n t i o n f o r phenol a t f l u x e s of about 0.100 m /(m d) can be e a s i l y obtained. In biotechnology, the products concerned are removed from aqueous s o l u t i o n by e x t r a c t i o n w i t h methylacetate, b u t y l a c e t a t e , i s o b u t y l methyl ketone e t c . The remaining aqueous substrate i s s a t u r a t e d w i t h the e x t r a c t i o n s o l v e n t s . Sometimes t h i s causes problems w i t h regard t o environmental r e g u l a t i o n s . Table V shows t h a t the s o l v e n t s can be remored almost e n t i r e l y by reverse osmosis. The concentrate c o n s i s t s of two phases, namely, the s o l v e n t saturated w i t h water and the water s a t u r a t e d w i t h s o l v e n t . These can be separated by means of a s e t t l e r . The water phase i s r e c i r c u l a t e d to the reverse osmosis. The s a t u r a t e d s o l u b i l i t y i n Water a t room temperature i s 19 000 m g / l i t r e f o r i s o b u t y l methyl ketone, 3300 m g / l i t r e f o r b u t y l acetate and 9 500 m g / l i t r e f o r methyl acetate. As the r e s u l t s i n t a b l e V show, the r e t e n t i o n f o r isobutyl-methyl ketone increases w i t h i n c r e a s i n g c o n c e n t r a t i o n . T h i s r e s u l t i s remarkable, as g e n e r a l l y a decrease i n r e t e n t i o n i s observed with increasing concentration. f
2
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on June 2, 2015 | http://pubs.acs.org Publication Date: May 27, 1981 | doi: 10.1021/bk-1981-0154.ch017
UF
2
3
2
In Synthetic Membranes: Volume II; Turbak, A.; ACS Symposium Series; American Chemical Society: Washington, DC, 1981.
STEFAN
Chemically Resistant Asymmetric Membranes
285
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on June 2, 2015 | http://pubs.acs.org Publication Date: May 27, 1981 | doi: 10.1021/bk-1981-0154.ch017
PETER AND
Figure 1. Concentration of carboxylic acid and retention of the PVA membrane: ( ) concentration of acid in the cross-linking solution; ( ) retention on 0.2 wt %, phenol, pH =13.
In Synthetic Membranes: Volume II; Turbak, A.; ACS Symposium Series; American Chemical Society: Washington, DC, 1981.
In Synthetic Membranes: Volume II; Turbak, A.; ACS Symposium Series; American Chemical Society: Washington, DC, 1981.
Malonic A c i d
Succinic Acid
Glutaric Acid
Adipic Acid
Pimelic Acid
Suberic
Azelaic Acid
Sebacic A c i d
3
4
5
6
7
8
9
10
Ap = 50 bar T
Acid
Oxalic Acid
2
A c i d
25°C
207,25
188,22
174,19
160,17
146,14
132,11
118,OO
104.06
90.04
MW
+
-
+
-
+
-
+
-
+
-
+
-
+
-
+
-
+
58 65 25 38 66 74 45 69 58 65 58 66 63 69 40 46 64 70
2000 [5H]
Cr (III) phenole
Retention phenole
IO
25
20
10
0.070 0.066 0.120 0.250 0.078 0.060 0.105 0.075 0.090 0.080 0.105 0.080 0.100 0.075 0.130 0.105 0.080 0.075
r 3
1
0. 300
0. 220
0. 200
0. 119
2400
m .m d_ ammonia
Product F l u x
2400 [5H; 2000
ammonia
[%]
PVA-Membranes C r o s s - l i n k e d by D i c a r b o x y l i c Acids and C r ( I I I ) s o l u t i o n
Number o f C-atoms i n molecule
Table I I :
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on June 2, 2015 | http://pubs.acs.org Publication Date: May 27, 1981 | doi: 10.1021/bk-1981-0154.ch017
to
in W
oo ON
In Synthetic Membranes: Volume II; Turbak, A.; ACS Symposium Series; American Chemical Society: Washington, DC, 1981.
9 9
acetophenone
propiophenone
benzylmethylketone
6 8 4
iso-butylmethylketone
eyelohexanone
dimethylcyclohexanone
diacetyl
10
benzoylacetone
Ap = 50 bar T = 25°C
5
acetylacetone
14
6
ethylmethylketone
benzil
3 4
acetone
10
8
K E T O N E
butyrophenone
C-atoms in molecule
162.18
100.11
210.22
86.09
126.20
98.14
lOO.16
72.10
58.08
148.20
134.17
134.17
120.14
MW
0.102
0.166
0.079
0.193
0.132
0.169
0.166
0.230
0.286
0.112
0.124
0.124
0.138
mole f r a c t i o n o f ketone i n the cross-linking solution
Table I I I : PVA membranes c r o s s - l i n k e d by ketones
R
L
56
61
63
69
66
59
63
68
60
73
46
69
59
J
L
2j m d
268
62
32
74
420
96
80
26
100
100
185
100
m
PR
1 pH 13
[%]
20CO
phenole content o f feec
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on June 2, 2015 | http://pubs.acs.org Publication Date: May 27, 1981 | doi: 10.1021/bk-1981-0154.ch017
In Synthetic Membranes: Volume II; Turbak, A.; ACS Symposium Series; American Chemical Society: Washington, DC, 1981.
u
2
aldehyde
2
H
3
3
5
3
2
3
2
3
2
CH OH,H 0
2° DMSO,H 0
2
DMSO,H 0
99
Ap = 50 bar T = 25°C
PVA
CH OH,H 0 99 PVB C H OH,DMI PVAC CH OH, CH COCH
dialdehyde
adipic-
PVA
2
H0
2
57
cone, [^-j
80
65
63
99 55 33
97
95
63
50
38
81
93
96
78
f
62
3
CH OH H 0
400
96
66
30000
70
66
2000
2
Na S
[%]
DMS0,H Q
glutar-
97
485
phenole a pH 13
R E T E N T I O N
PVA
2
o ft
H0
w
o
i—i
CD >
o m
glyoxal
Dicarbonyl compound i n the crossl i n k i n g solution
35
32
36
50
56
53
24
30
26
10
30
30
28
14
8
17
3
P y r i - NH dine 13000 2400
Table IV: membranes c r o s s - l i n k e d by d i c a r b o n y l
485
90
60
80
55
60 70 140 300
85
70 150
80
60
70
2000
82
75
30000
phenole a t pH 13
P R O D U C T
compounds
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on June 2, 2015 | http://pubs.acs.org Publication Date: May 27, 1981 | doi: 10.1021/bk-1981-0154.ch017
65
70
80
97
82
80
95
90
400
2
Na S
3
125
140
100
90
65
70
100
120
85
320
110
90
80
90
140
40
P y r i - NH dine 130CO 2400
F L U X [-y-]
to oo 00
17.
PETER
AND
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on June 2, 2015 | http://pubs.acs.org Publication Date: May 27, 1981 | doi: 10.1021/bk-1981-0154.ch017
Table V
Chemically Resistant Asymmetric Membranes
STEFAN
289
Separating performance bf PVA c r o s s - l i n k e d membranes for certain solvents
ISOBUTYL METHYL KETONE
N-BUTYL- METHYLACETATE ACETATE
19 OOO SSL
9 OOO SSL
3 300 53. 9 500 *5. 6 4oo
R PR
R PR
R PR
R PR
R PR
R PR
35 120
75 80
35 IOO
45 105
60 200
70
90
DMSO
sa 40 OOO ^ \
•
..J Ap = 50 bar
t = 25°C
R [%]
PR [ — ^ — 1 md
Table VI g i v e s the r e t e n t i o n and product f l u x of a PVA crossl i n k e d membrane f o r the organic and i n o r g a n i c compounds i n e f f l u e n t from a coking p l a n t . Several membranes w i t h good v a l u e s f o r the r e t e n t i o n o f organic and i n o r g a n i c compounds were i n v e s t i g a t e d by reverse osmosis experiments w i t h the e f f l u e n t s from the manufacture of organic intermediate products. The composition o f the e f f l u e n t s were complex w i t h a n a l y s i s a s f o l l o w s : Type B
pH = 9
i o n concentration Type C pH = 8
ion
concentration
TOC COR BOD^ D
TOC COR BOD,,
14 40 1 51 14 40 6 67
OOO 800 900 000 600 400 OOO 725
[mg/1]
The t e s t s were c a r r i e d out under the f o l l o w i n g c o n d i t i o n s : a) a t room temperature and 50 bar and 85 bar r e s p e c t i v e l y b) a t 42°C and 50 bar. Each t e s t l a s t e d a week. I n a l l cases no change i n the r e t e n t i o n or f l u x was observed during the experiment. The f o l l o w i n g r e t e n t i o n values were obtained a t a product f l u x o f about 20 l i t r e / ( m d ) and were found t o be independent o f the pH value o f waste: 2
phenolic TOC SO " 2
compounds
60-90% 60-70% 76-82%
In Synthetic Membranes: Volume II; Turbak, A.; ACS Symposium Series; American Chemical Society: Washington, DC, 1981.
In Synthetic Membranes: Volume II; Turbak, A.; ACS Symposium Series; American Chemical Society: Washington, DC, 1981.
57
18
IV
V
10
17
14
14
12000 [SSL]
sulphide
62
56
62
54
5000
15
26
21
24
ammonia i n ammonia salts 65000 [SSL]
w a t er
[SSL]
ammonia free
[%]
w a s t e
Ap = 50 bar T = 25°C
+ p h e n o l i c OH-groups i n phenol e q u i v a l e n t s
66
58
II
III
67
I
isooo
membrane
+
[SSL]
phenolic OH-groups
Type o f
i
c o k e r y
RET E N T I 0N
F e e d
0.961
0.080
0.450
0.043
0.048
[ ™ ]
FLUX 3
PRODUCT
m
m
35
59
69
72
77
4500 [3&]
6.262
0.432
0.860
0.415
0.292
+
PR [ 2 ] md
p h e n o l i c OH-groups
R
of c r o s s - l i n k e d PVA-membranes i n waste water from a coke p l a n t
Table V I : Retention and product f l u x w i t h regard t o organic and i n o r g a n i c compounds
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on June 2, 2015 | http://pubs.acs.org Publication Date: May 27, 1981 | doi: 10.1021/bk-1981-0154.ch017
to
O
17.
P E T E R AND
STEFAN
Chemically Resistant Asymmetric Membranes
291
A f t e r the i n v e s t i g a t i o n i n t o the h a n d l i n g and the a c t i o n of the most important reagents has been completed, f u r t h e r r e s e a r c h can be done t o improve those methods t h a t are most promising. I n i t i a l t r i a l s have r e s u l t e d i n membranes g i v i n g a f l u x o f 1 m /(m d) and a phenol r e t e n t i o n o f 70% f o r a phenol c o n c e n t r a t i o n o f 2 g / l i t r e a t pH = 1 3 . Membranes c r o s s l i n k e d by d i c a r b o n y l compounds have been found t o possess h i g h thermal s t a b i l i t y ; r e t e n t i o n and product f l u x remained u n a l t e r e d a f t e r one week o f t e s t i n g i n an phenol s o l u t i o n o f 2 g / l i t r e a t 50°C. I t i s worth remarking w i t h regard t o the treatment of e f f l u e n t s discharged a t h i g h temperature, t h a t the thermal s t a b i l i t y o f these membranes makes heat r e c y c l i n g by means o f reverse osmosis a p o s s i b i l i t y . T h i s work was supported by the M i n i s t e r i u m f u e r Forschung und Technologie (BMFT) o f the German F e d e r a l Government.
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on June 2, 2015 | http://pubs.acs.org Publication Date: May 27, 1981 | doi: 10.1021/bk-1981-0154.ch017
3
-linking
Abstract: Asymmetrical membranes were initially produced from p o l y v i n y l a l c o h o l s o f suitable m o l e c u l a r weight u s i n g phase -inverted precipitation. They were then t r e a t e d w i t h a c i d s o l u t i o n s o f sodium formate and sodium a c e t a t e . The asymmetrical s t r u c t u r e was stabilised as a result o f the slight cross of the polymers produced. A cross-linked membrane so prepared can then be made i n s o l u b l e in water and permanent in the presence o f s o l v e n t s by f u r t h e r c r o s s - l i n k i n g . T h i s was e f f e c t e d by treatment w i t h v a r i o u s compounds c o n t a i n i n g one or two aldehyde groups o r w i t h one or more c a r b o x y l groups (saturated and unsaturated d i c a r b o x y l i c and tricarboxylic a c i d s ) ; in this wayiswas p o s s i b l e t o m a i n t a i n the primary asymmetry completely. The chemical activity, c h a i n l e n g t h and c h a i n s t r u c t u r e o f the individual compounds used r e s u l t e d in different degrees of c r o s s - l i n k i n g o f the polyvinyl a l c o h o l s in the membran. The c r o s s - l i n k e d membranes produced have good chemical, mechanical and thermal durability in an pH - range of 1 - 1 4 . The membranes have been t e s t e d in reverse-osmosis experiments in aqueons s o l u t i o n s o f phenols, methyl i s o b u t y l ketone, a c e t i c a c i d e s t e r s e t c . The r e t e n t i o n and p e r m e a b i l i l y p r o p e r t i e s in the presence o f the above-mentioned s o l v e n t s are r e p o r t e d . Literature Cited 1) F. K a i n e r , P o l y v i n y l a l k o h o l e , Ferdinand Enke V e r l a g Stuttgart
(1949)
2)
S.Peter, N. 1 6 1 - 1 6 7 ; S. Fresh Water 3) S. Loeb, S.
Hese, R. S t e f a n , D e s a l i n a t i o n , 1 9 (1976) P e t e r , R. S t e f a n , Proc. 6 th I n t . Symp. from the Sea, V o l . 3 (1978) 2 3 9 - 2 4 6 ; S o u r i r a j a n , Advanced Chem. S e r i e s 38 (1962) 1 1 7 .
4)
DOS 2441 311
5)
N. Hese, T h e s i s (1976)
RECEIVED
( 1 9 7 4 ) ; DOS 27 30 528
(1977)
Erlangen
December 4, 1980.
In Synthetic Membranes: Volume II; Turbak, A.; ACS Symposium Series; American Chemical Society: Washington, DC, 1981.