Subscriber access provided by FORDHAM UNIVERSITY
Article
Targeted Synthesis of A 3D Crystalline Porous Aromatic Framework with Luminescence Quenching Ability for Hazardous and Explosive Molecules Ye Yuan, Hao Ren, Fuxing Sun, Xiaofei Jing, Kun Cai, Xiaojun Zhao, Yue Wang, Yen Wei, and Guangshan Zhu J. Phys. Chem. C, Just Accepted Manuscript • DOI: 10.1021/jp309068x • Publication Date (Web): 29 Nov 2012 Downloaded from http://pubs.acs.org on November 30, 2012
Just Accepted “Just Accepted” manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides “Just Accepted” as a free service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. “Just Accepted” manuscripts appear in full in PDF format accompanied by an HTML abstract. “Just Accepted” manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are accessible to all readers and citable by the Digital Object Identifier (DOI®). “Just Accepted” is an optional service offered to authors. Therefore, the “Just Accepted” Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the “Just Accepted” Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these “Just Accepted” manuscripts.
The Journal of Physical Chemistry C is published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036 Published by American Chemical Society. Copyright © American Chemical Society. However, no copyright claim is made to original U.S. Government works, or works produced by employees of any Commonwealth realm Crown government in the course of their duties.
Page 1 of 13
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
The Journal of Physical Chemistry
Targeted Synthesis of A 3D Crystalline Porous Aromatic
Framework
with
Luminescence
Quenching Ability for Hazardous and Explosive Molecules Ye Yuan,a Hao Ren,a Fuxing Sun,a Xiaofei Jing,a Kun Cai,a Xiaojun Zhao,a Yue Wang,b Yen Weic and Guangshan Zhu*a a
State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry,
Jilin University, Changchun, China (130012), Fax: 86 0431 85168331; Tel: 86 0431 85168887; E-mail:
[email protected]. b
State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin
University, Changchun, China (130012) c
Department of Chemistry, Tsinghua University, Beijing, China (100084)
Abstract A three-dimensional (3D) crystalline porous aromatic framework (PAF-15) with high fluorescence quantum yield was synthesized through assembling luminescent building blocks of tetra(4-dihydroxyborylphenyl)germanium (TBPGe) and 2,3,6,7,10,11-hexahydroxytriphenylene
ACS Paragon Plus Environment
1
The Journal of Physical Chemistry
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Page 2 of 13
(HHTP). Powder X-ray diffraction (PXRD) analysis displays the high crystallinity of PAF-15. The topology known from the PXRD of the experimental and simulated patterns is ctn type. The Ar sorption measurement on activated PAF-15 results the high surface area (BET model: 747 m2 g-1). Significantly, PAF-15 exhibits high luminescence quenching ability by hazardous and explosive molecules, such as nitrobenzene, 2,4-dinitrotoluene (2,4-DNT) and 2,4,6trinitrotoluene (TNT) and may serve as new sensing materials. It should be caused by the introduction of germanium into crystalline PAFs skeletons which may bring up a low reduction potential and low-lying LUMO and provide the amplification of electron delocalization. Keywords: High fluorescence quantum yield, Crystalline porous framework, Luminescence quenching ability, Sensing hazardous and explosive molecules Introduction Because there are so many considerable applications in gas molecules storage, separation and catalysis,1 porous materials including inorganic porous materials,2 metal-organic frameworks,3 and porous organic frameworks (POFs)4,5 are of technological and scientific interests recently. Particularly, POFs have attracted considerable attention due to their adjustable pore sizes and high stabilities. A large number of classical POFs have been successfully designed and synthesized, such as covalent organic frameworks (COFs),6-15 conjugated microporous polymers (CMPs),16-21 polymers of intrinsic microporosity (PIMs),22-25 element organic frameworks (EOFs),26,27 triazine-based organic frameworks (CTFs),28-31 benzimidazole-linked polymers (BILP)32, porous polymer networks (PPN)33, covalent organic polymers (COP)34 and porous aromatic frameworks (PAFs)35-40 as novel functional materials. One far-reaching possibility is the detection of hazardous and explosive molecules, which is very important in national security and environmental protection.41-44
ACS Paragon Plus Environment
2
Page 3 of 13
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
The Journal of Physical Chemistry
It’s been documented that introduction of germanium into PAFs skeletons may bring about a low reduction potential and low-lying LUMO, due to σ*-π* conjugation arising from the interaction between σ* orbital of germanium and π* orbital of the phenyl rings.45,46 Electron delocalization in the crystalline polymeric backbones provides one means of amplification, because interactions of an analyte molecule at any position might quench an excited state or exciton delocalized along the frameworks.47 In this paper we chose the luminescent monomer of,48
tetra(4-dihydroxyborylphenyl)germanium
(TBPGe)
and
2,3,6,7,10,11-
hexahydroxytriphenylene (HHTP) as the building blocks (Figure 1a, b) and used the codehydration of boronic acid (Figure 1c) to construct the crystalline PAF-15. PAF-15 has been identified as a porous material experimentally with a surface area of 1022 m2 g-1 in Langmuir model and 747 m2 g-1 in BET model. As expected, PAF-15 exhibits high luminescence quenching ability by hazardous explosives such as nitrobenzene, 2,4-dinitrotoluene (2,4-DNT) and 2,4,6-trinitrotoluene (TNT) and, therefore, may serve as new sensing materials.
Figure 1. The building blocks (a. tetrahedral TBPGe; b. triangular HHTP), synthetic route of PAF-15 (c) and model structures based on ctn (d) and bor (e) topologies. Carbon, boron, and oxygen atoms are represented as gray, pink, and red spheres, respectively.
ACS Paragon Plus Environment
3
The Journal of Physical Chemistry
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Page 4 of 13
Results and discussion The simulated structures of PAF-15 generated via co-condensation of TBPGe with HHTP were set up by Materials Studio simulation environment employing MS Visualizer. Figure 1d and e show the expanded structures based on ctn and bor nets by fitting both tetrahedral and triangular building units. The models of PAF-15 are constructed by the use of the Materials Studio (MS) simulation environment employing MS Visualizer. The parameters of unit cell and the positions of vertices are obtained from the Reticular Chemistry Structure Resource (http://rcsr.anu.edu.au/home). Energy minimization and geometry optimization are performed utilizing force-field calculations to obtain reasonable bond lengths and angles. Fourier Transform Infrared Spectroscopy (FTIR) and cross polarization magic angle spinning nuclear magnetic resonance (CP MAS NMR) were employed to confirm the bonding and structural features in polymeric materials. The condensation reaction for PAF-15 can be evaluated by FTIR spectra. The appearance of the expected C2O2B boronate ester rings [B-O (1386 cm-1), B-O (1347 cm-1), C-O (1249 cm-1), and B-C (1022 cm-1)] (Figure S2), confirmed the almost completeness of the cross-coupling reaction. The structural assignment of PAF-15 was revealed by CP MAS NMR spectroscopic studies. The solid-state
11
B CP MAS NMR spectra of the activated product is
highly sensitive to the immediate bonding environment of boron. In addition,
13
C solid-state
NMR experiment was also performed to reveal the local structure of PAF-15, which strongly indicates the environments of respective atoms. As shown in Figure S3, all the expected signals are matched with the predicted chemical shift values. The experimental PXRD pattern of PAF-15 is shown in Figure 2. The narrow line width peaks indicate the high crystallinity of PAF-15. Moreover, the experimental pattern was finely consisted with the simulated one from the structural model with ctn net in which the Schlafli
ACS Paragon Plus Environment
4
Page 5 of 13
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
The Journal of Physical Chemistry
symbol is (83)4(86)3, which confirms that the structure of PAF-15 was formed as expected into a ctn topology. The optimum simulation reveals the space group of I-43d with the cell parameter of a = 44.6219 Å for PAF-15.
Figure 2. PXRD patterns of PAF-15 and model simulated by Material Studio 5.0 (observed: black; calculated: red) Scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDS) were performed to probe the phase purity of the as-synthesized PAF-15 products. As shown in Figure S4a, PAF-15 was agglomerated nanoparticles with size around 100 nm. In addition, EDS analysis of the various elements confirmed the compositions of PAF-15 derived from modelled structure (Figure S4b) and the result was corresponded to formulations predicted from modeling. The thermal stability of PAF-15 was assessed by thermogravimetric analysis (TGA), which reveals it can stabilize up to 250 °C (Figure S5). To characterize the nature of pores in PAF-15, Argon sorption isotherm was measured at 87 K. As shown in Figure 3, PAF-15 exhibits a typical type I isotherm featured by a sharp uptake at the low-pressure region between P/P0 = 1 × 10−5 to 1 × 10−2. When the Brunauer-Emmett-Teller (BET) model is adopted, the apparent surface area is and 747 m2 g−1 for PAF-15. And the apparent surface area calculated from Langmuir model is 1022 m2 g−1 for PAF-15. The surface area of PAF-15 is much lower than the predicted surface (Connolly surface simulated by
ACS Paragon Plus Environment
5
The Journal of Physical Chemistry
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Page 6 of 13
Materials Studio) which should be about 4500 m2 g-1 and the NLDFT pore size distribution is much smaller than the predicted values from the modeling studies. Such discrepancy may be the result of framework collapse during activation processes.
Figure 3. Reversible argon gas adsorption isotherm for PAF-15 measured at 87 K. STP, standard temperature and pressure. Pore size distributions for PAF-15 (insert) calculated by NLDFT method. PAF-15 exhibits strong fluorescence phenomenon. The absolute quantum yield of fluorescence (ΦFL) value of PAF-15 was as high as 14.00% in CH2Cl2 as a suspension at 25°C using the integrating sphere method.49 The photoluminescence (PL) spectra of PAF-15 when dispersed uniformly in CHCl3 showed maximum emission at 398 nm (excited at 346 nm). As we known, the delocalized π electrons in its system increases the electrostatic interaction between the skeleton and analytes. The fluorescence measurement results shows the addition of 150 ppm common aromatic compounds such as benzene, toluene, chlorobenzene, bromobenzene, phenol and aniline in CHCl3 with PAF-15 dispersed basically does not affect the luminescence intensity of PAF-15 (Figure 4). However, distinct quenching effect was observed upon the addition of nitroaromatics such as nitrobenzene, 2,4-DNT and TNT.
ACS Paragon Plus Environment
6
Page 7 of 13
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
The Journal of Physical Chemistry
Figure 4. PL spectra of the CHCl3 solutions of PAF-15 with different analytes (excited at 346 nm). Benzene, toluene, chlorobenzene, bromobenzene, phenol, aniline, nitrobenzene, 2,4-DNT, and TNT are represented as red, green, blue, cyan, magenta, yellow, navy, purple and wine, respectively. As shown in Figure 5, after the addition of nitrobenzene, 2,4-DNT and TNT with different concentrations in the samples respectively, high luminescence quenching abilities can be observed for PAF-15, which is much more significant than the MOF-150 and Zn(II)-MOF51. This phenomenon could be explained by the interaction that the great amount of electron donor conjugated groups with delocalized π electrons facilitate the electrostatic interaction between the PAF-15 and electron deficient compounds.51,52 What’s more, electron delocalization along the frameworks in PAF-15 provides one means of amplification of this interaction. However, the luminescence quenching abilities of PAF-15 is less than that of PAF-1444, which may be caused by the higher crystallinity of PAF-14 than PAF-15 and the ability of further amplified electron delocalization in PAF-14. After all, the nature of PAF-15 serves its potential as a new type of sensor materials.53
ACS Paragon Plus Environment
7
The Journal of Physical Chemistry
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Page 8 of 13
Figure 5. PL spectra of the CHCl3 solutions of PAF-15 (a, b and c) with different analytes concentration (excited at 346 nm). Conclusions The 3D high fluorescence quantum yield and crystalline PAF material, PAF-15, was successfully designed and synthesized. Experimental results indicate PAF-15 is crystalline with ctn topology. Particularly, PAF-15 exhibits high luminescence quenching ability for TNT, making 3D PAF materials hold great promise for the detection of explosive compounds. ASSOCIATED CONTENT
ACS Paragon Plus Environment
8
Page 9 of 13
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
The Journal of Physical Chemistry
Supporting Information. Synthetic details, analysis equipment and conditions, and spectroscopic results. This material is available free of charge via the Internet at http://pubs.acs.org. AUTHOR INFORMATION Corresponding Author * Guangshan Zhu E-mail:
[email protected]. Funding Sources We are grateful for the financial support of National Basic Research Program of China (973 Program, grant nos. 2012CB821700), Major International (Regional) Joint Research Project of NSFC (grant nos.21120102034) and NSFC (grant nos. 20831002). REFERENCES (1) Davis, M. E. Nature 2002, 417, 813-821. (2) Cundy, C. S.; Cox, P. A. Micropo.r Mesopor. Mat. 2005, 82, 1-78. (3) Brun, N.; Ungureanu, S.; Deleuze, H.; Backov, R. Chem. Soc. Rev., 2011, 40, 771-788. (4) Thomas, A.; Kuhn, P.; Weber, J.; Titirici, M. M.; Antonietti, M. Macromol Rapid. Comm. 2009, 30, 221-236. (5) McKeown, N. B.; Budd, P. M. Macromolecules 2010, 43, 5163-5176. (6) El-Kaderi, H. M.; Hunt, J. R.; Mendoza-Cortes, J. L.; Cote, A. P.; Taylor, R. E.; O'Keeffe, M.; Yaghi, O. M. Science 2007, 316, 268-272. (7) Cote, A. P.; Benin, A. I.; Ockwig, N. W.; O'Keeffe, M.; Matzger, A. J.; Yaghi, O. M. Science 2005, 310, 1166-1170. (8) Furukawa, H.; Yaghi, O. M. J. Am. Chem. Soc. 2009, 131, 8875-8883.
ACS Paragon Plus Environment
9
The Journal of Physical Chemistry
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Page 10 of 13
(9) Cote, A. P.; El-Kaderi, H. M.; Furukawa, H.; Hunt, J. R.; Yaghi, O. M. J. Am. Chem. Soc. 2007, 129, 12914-12915. (10) Ding, X. S.; Guo, J.; Feng, X. A.; Honsho, Y.; Guo, J. D.; Seki, S.; Maitarad, P.; Saeki, A.; Nagase, S.; Jiang, D. L. Angew. Chem. Int. Edit. 2011, 50, 1289-1293. (11) Wan, S.; Guo, J.; Kim, J.; Ihee, H.; Jiang, D. L. Angew. Chem. Int. Edit. 2008, 47, 88268830. (12) Wan, S.; Guo, J.; Kim, J.; Ihee, H.; Jiang, D. L. Angew. Chem. Int. Edit. 2009, 48, 54395442. (13) Chen, L.; Honsho, Y.; Seki, S.; Jiang, D. L. J. Am. Chem. Soc. 2010, 132, 6742-6748. (14) Tilford, R. W.; Mugavero, S. J.; Pellechia, P. J.; Lavigne, J. J. Adv. Mater. 2008, 20, 2741-2746. (15) Tilford, R. W.; Gemmill, W. R.; Zur Loye, H. C.; Lavigne, J. J. Chem. Mater. 2006, 18, 5296-5301. (16) Jiang, J. X.; Su, F.; Trewin, A.; Wood, C. D.; Campbell, N. L.; Niu, H.; Dickinson, C.; Ganin, A. Y.; Rosseinsky, M. J.; Khimyak, Y. Z. et al. Angew. Chem. Int. Edit. 2007, 46, 85748578. (17) Jiang, J. X.; Su, F.; Niu, H.; Wood, C. D.; Campbell, N. L.; Khimyak, Y. Z.; Cooper, A. I. Chem. Commun. 2008, 4, 486-488. (18) Stockel, E.; Wu, X. F.; Trewin, A.; Wood, C. D.; Clowes, R.; Campbell, N. L.; Jones, J. T. A.; Khimyak, Y. Z.; Adams, D. J.; Cooper, A. I. Chem. Commun. 2009, 2, 212-214. (19) Wood, C. D.; Tan, B.; Trewin, A.; Niu, H. J.; Bradshaw, D.; Rosseinsky, M. J.; Khimyak, Y. Z.; Campbell, N. L.; Kirk, R.; Stockel, E. et al. Chem. Mater. 2007, 19, 2034-2048. (20) Dawson, R.; Laybourn, A.; Clowes, R.; Khimyak, Y. Z.; Adams, D. J.; Cooper, A. I. Macromolecules 2009, 42, 8809-8816. (21) Dawson, R.; Adams, D. J.; Cooper, A. I.; Chem. Sci., 2011, 2, 1173-1177. (22) Budd, P. M.; Ghanem, B. S.; Makhseed, S.; McKeown, N. B.; Msayib, K. J.; Tattershall, C. E. Chem. Commun. 2004, 2, 230-231. (23) Budd, P. M.; McKeown, N. B.; Fritsch, D. J. Mater. Chem. 2005, 15, 1977-1986. (24) McKeown, N. B.; Budd, P. M. Chem. Soc. Rev. 2006, 35, 675-683. (25) Ghanem, B. S.; McKeown, N. B.; Budd, P. M.; Selbie, J. D.; Fritsch, D. Adv. Mater. 2008, 20, 2766-2771.
ACS Paragon Plus Environment
10
Page 11 of 13
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
The Journal of Physical Chemistry
(26) Rose, M.; Bohlmann, W.; Sabo, M.; Kaskel, S. Chem. Commun. 2008, 21, 2462-2464. (27) Rose, M.; Klein, N.; Bohlmann, W.; Bohringer, B.; Fichtner, S.; Kaskel, S. Soft Matter. 2010, 6, 3918-3923. (28) Kuhn, P.; Antonietti, M.; Thomas, A. Angew. Chem. Int. Edit. 2008, 47, 3450-3453. (29) Weber, J.; Antonietti, M.; Thomas, A. Macromolecules 2008, 41, 2880-2885. (30) Weber, J.; Thomas, A. J. Am. Chem. Soc. 2008, 130, 6334-6335. (31) Kuhn, P.; Thomas, A.; Antonietti, M. Macromolecules 2009, 42, 319-326. (32) Rabbani, M. G.; Reich, T. E.; Kassab, R. M.; Jackson, K. T.; El-Kaderi, H. M.; Chem. Commun., 2012, 48, 1141-1143. (33) Yuan, D. Q.; Lu, W. G.; Zhao, D.; Zhou, H. C.; Adv. Mater., 2011, 23, 3723-3725. (34) Patel, H. A.; Karadas, F.; Canlier, A.; Park, J.; Deniz, E.; Jung, Y. S.; Atilhan, M.; Yavuz, C. T.; J. Mater. Chem., 2012, 22, 8431-8437. (35) Ben, T.; Pei, C. Y.; Zhang, D. L.; Xu, J.; Deng, F.; Jing, X. F.; Qiu, S. L. Energ. Environ. Sci. 2011, 4, 3991-3999. (36) Ren, H.; Ben, T.; Wang, E. S.; Jing, X. F.; Xue, M.; Liu, B. B.; Cui, Y.; Qiu, S. L.; Zhu, G. S. Chem. Commun. 2010, 46, 291-293. (37) Ben, T.; Ren, H.; Ma, S. Q.; Cao, D. P.; Lan, J. H.; Jing, X. F.; Wang, W. C.; Xu, J.; Deng, F.; Simmons, J. M.; Qiu, S. L.; Zhu, G. S. Angew. Chem. Int. Edit. 2009, 48, 9457-9460. (38) Ren, H.; Ben, T.; Sun, F. X.; Guo, M. Y.; Jing, X. F.; Ma, H. P.; Cai, K.; Qiu, S. L.; Zhu, G. S. J. Mater. Chem. 2011, 21, 10348-10353. (39) Yuan, Y.; Sun, F. X.; Ren, H.; Jing, X. F.; Wang, W.; Ma, H. P.; Zhao, H. J.; Zhu, G. S. J. Mater. Chem. 2011, 21, 13498-13502. (40) Zhao, H. Y.; Jin, Z.; Su, H. M.; Jing, X. F.; Sun, F. X.; Zhu, G. S. Chem. Commun. 2011, 47, 6389-6391. (41) McQuade, D. T.; Pullen, A. E.; Swager, T. M. Chem. Rev. 2000, 100, 2537-2574. (42) Toal, S. J.; Trogler, W. C. J. Mater. Chem. 2006, 16, 2871-2883. (43) Germain, M. E.; Knapp, M. J. Chem. Soc. Rev. 2009, 38, 2543-2555. (44) Yuan, Y.; Ren, H.; Sun. F. X.; Jing. X. F.; Cai, K.; Zhao, X. J.; Wang. Y.; Wei, Y.; Zhu, G. S. J. Mater. Chem.2012, DOI:10.1039/C2JM35341E. (45) Yamaguchi, Y. Synthetic Met., 1996, 82, 149-153. (46) Yamaguchi, S.; Tamao, K. Bull. Chem. Soc. Jpn., 1996, 69, 2327-2334.
ACS Paragon Plus Environment
11
The Journal of Physical Chemistry
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Page 12 of 13
(47) Honglae, S.; Michael, J. S.; Douglas, M.; William, C. T. J. Am. Chem. Soc., 2003, 125, 3821-3830. (48) Yuan, Y.; Ren, H.; Jing, X. F.; Wang, W.; Ma, H. P.; Zhao, H. J.; Sun, F. X. J. Mater. Res., 2011, 433, 1417-1420. (49) Xu, Y. H.; Chen, L.; Guo, Z. Q.; Nagai, A.; Jiang, D. L. J. Am. Chem. Soc. 2011, 133, 17622-17625. (50) Xu, H.; Liu, F.; Cui, Y. J.; Chen, B. L.; Qian, G. D. Chem. Commun., 2011, 47, 31533155. (51) Gole, B.; Bar, A. K.; Mukherjee, P. S. Chem. Commun. 2011, 47, 12137-12139. (52) Zyryanov, G. V.; Palacios, M. A.; Anzenbacher, P. Org. Lett. 2008, 10, 3681-3684. (53) Lee, Y. H.; Liu, H.; Lee, J. Y.; Kim, S. H.; Kim, S. K.; Sessler, J. L.; Kim, Y.; Kim, J. S. Chem-Eur. J. 2010, 16, 5895-5901.
ACS Paragon Plus Environment
12
Page 13 of 13
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
The Journal of Physical Chemistry
BRIEFS A 3D crystalline porous aromatic frameworks, PAF-15, was successfully designed and synthesized through assembling luminescent building blocks. Significantly, PAF-15 exhibits high luminescence quenching ability for hazardous and explosive molecules, affording itself as novel functional material. SYNOPSIS
ACS Paragon Plus Environment
13