y
Left h a n d e d line
X/g-
Right handed
line
F i g u r e 10. Top v i e w o f t h e m a n i f o l d showing p o s s i b l e o r i e n t a t i o n s of t h e s t o p c o c k .
In Experimental Organometallic Chemistry; Wayda, A., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1987.
Techniques in the Handling of Highly Reduced Organometallics 51
Downloaded by UNIV MASSACHUSETTS AMHERST on October 6, 2012 | http://pubs.acs.org Publication Date: November 24, 1987 | doi: 10.1021/bk-1987-0357.ch003
3. ELLIS
IDENTIFICATION AND A
S.J.
Β
50
MM MM OD
35/20
C
20
1 0 MM O B L I Q U E PLUG STOPCOCK
E
S.T. 45/50 JOINTS
F
30
CM
G
20
MM OD
H
50
MM OD
I
10
CM
J
18-20
Κ
S.J.
L
25
COMPONENTS
BALL
D
JOINT
BORE,
GROUND
HOLLOW
GLASS
CM 35/20
SPHERICAL
JOINTS
MM
NOTE : LAR„E C O C K S MAY B E COMPONENT D
F i g u r e 11.
OF
DIMENSIONS
BORE T E F L O N SUBSTITUTED
STOP FOR
C o l d t r a p assembly o f t h e vacuum l i n e .
In Experimental Organometallic Chemistry; Wayda, A., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1987.
EXPERIMENTAL ORGANOMETALLIC CHEMISTRY
F r o m gas purification unit
Downloaded by UNIV MASSACHUSETTS AMHERST on October 6, 2012 | http://pubs.acs.org Publication Date: November 24, 1987 | doi: 10.1021/bk-1987-0357.ch003
4»
R u g of glass w o o l
IDENTIFICATION AND A
S.J.
OF
COMPONENTS
DIMENSIONS 35/20
BALL
JOINT
Β
15 MM OD
C
50 MM
D
KONTES
Ε
75
MM
F
30
MM
G
50
MM
OD
H
2 5 MM
OD
I
25
MM
J
15
MM
ID
O-RING
SEAL
Κ
SWAGELOK
UNION,
3/8
L
3/8
Figure
IN
12.
K826500,
COPPER
0 - 8 MM
JOINTS IN
TUBING
Molecular
sieve
trap.
In Experimental Organometallic Chemistry; Wayda, A., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1987.
Downloaded by UNIV MASSACHUSETTS AMHERST on October 6, 2012 | http://pubs.acs.org Publication Date: November 24, 1987 | doi: 10.1021/bk-1987-0357.ch003
3.
ELLIS
Techniques in the Handling of Highly Reduced Organometallics 53
w h i c h uses o n l y s t o p c o c k s w i t h T e f l o n p l u g s , (14) Perhaps the p r i n c i p a l advantage i s u s i n g g l a s s s t o p c o c k s r e l a t i v e t o the T e f l o n v a r i e t y i s t h e i r r e s i s t a n c e t o s c r a t c h i n g t and f o u l i n g by bumped s o l u t i o n s , v o l a t i l e s o l i d s , etc. This l a t t e r property i s e s p e c i a l l y i m p o r t a n t w i t h a medium vacuum l i n e on w h i c h s y n t h e s e s and p u r i f i c a t i o n of i n o r g a n i c or o r g a n o m e t a l l i c m a t e r i a l s a r e r o u t i n e l y c a r r i e d out. Almost i n v a r i a b l y , a r a t h e r n a s t y c o n c o c t i o n of d e b r i s f i n d s i t s way through the s t o p c o c k o r i f i c e i n t o the vacuum chamber over a p e r i o d of time. The performance of a T e f l o n s t o p c o c k can be s e r i o u s l y i m p a i r e d under t h e s e c o n d i t i o n s . Another advantage of g l a s s over T e f l o n s t o p c o c k s w i t h r e s p e c t to a d o u b l e m a n i f o l d vacuum l i n e i s t h a t e v a c u a t i o n and r e f i l l o p e r a t i o n s i n v o l v i n g s m a l l volumes a r e conducted more e a s i l y i n one smooth o p e r a t i o n . For example, w i t h the Wayda-Dye l i n e mentioned p r e v i o u s l y ( 1 4 ) , two independent T e f l o n s t o p c o c k s must be m a n i p u l a t e d t o a c h i e v e the same r e s u l t . D i s a d v a n t a g e s i n u s i n g a l l g l a s s i n s t e a d of T e f l o n s t o p c o c k s a r e c o n s i d e r a b l e , the most important o f w h i c h i s u n d o u b t e d l y the r e q u i r e m e n t t h a t they be g r e a s e d . Grease i s o f t e n i n t r i n s i c a l l y troublesome s t u f f t o a p r a c t i c i n g s y n t h e t i c c h e m i s t . I t c h a n n e l s and thereby a l l o w s a i r t o get i n t o the system, c o n t a m i n a t e s o t h e r w i s e pure compounds, o c c a s i o n a l l y r e a c t s w i t h m a t e r i a l s and can be e a s i l y l e a c h e d out of s t o p c o c k s and j o i n t s by s o l v e n t v a p o r . C h a n n e l l i n g can be e s p e c i a l l y p r o b l e m a t i c i f components of a g l a s s s t o p c o c k do not e x a c t l y match. Grease a l s o t r a p s s o l v e n t v a p o r , w h i c h can g r e a t l y d e c r e a s e t h e vacuum of t h e system. Another s i g n i f i c a n t problem w i t h a l l g l a s s vacuum s t o p c o c k s i s t h a t the components a r e g e n e r a l l y not i n t e r c h a n g e a b l e . O f t e n the e n t i r e s t o p cock must be r e p l a c e d i f e i t h e r the b a r r e l or p l u g i s damaged. R e p a i r of vacuum l i n e s c o n t a i n i n g g l a s s s t o p c o c k s can a l s o be more d i f f i c u l t than t h o s e c o n t a i n i n g T e f l o n p l u g s s i n c e the l i n e must g e n e r a l l y be degreased b e f o r e r e p a i r , p a r t i c u l a r l y i f the e n t i r e l i n e i s t o be p l a c e d i n an* a n n e a l i n g oven. Another s e r i o u s problem i s t h a t g l a s s s t o p c o c k b a r r e l s can be e a s i l y warped d u r i n g r e p a i r and/or annealing. G l a s s b l o w e r s a r e not always as c a r e f u l as they s h o u l d be i n r e p a i r s of t h i s s o r t , p a r t i c u l a r l y when the r e p a i r i s made c l o s e t o the b a r r e l o f a s t o p c o c k . Anyone who uses h i g h vacuum g l a s s s t o p cocks should l e a r n how t o hand-lap or r e g r i n d warped ones f o r t h i s reason. By m a s t e r i n g t h i s s i m p l e t e c h n i q u e (which i s d i s c u s s e d i n some d e t a i l on page 163 of r e f e r e n c e 1) many t r i p s t o the g l a s s blower and c o n s i d e r a b l e money can be saved. A f i n a l d i s a d v a n t a g e o f custom ground g l a s s s t o p c o c k s i s one of economics: they a r e c o n s i d e r a b l y more e x p e n s i v e t o manufacture t h a n T e f l o n s t o p c o c k s and the c o s t d i f f e r e n t i a l between t h e s e two items seems t o be s t e a d i l y i n c r e a s i n g . I f t h i s t r e n d c o n t i n u e s , h i g h vacuum g l a s s s t o p c o c k s may be p r i c e d out of the market i n the not too d i s t a n t future. A summary of the approximate p r i c e s f o r t h e components of the d o u b l e m a n i f o l d vacuum l i n e i s shown i n T a b l e I I . A more r e c e n t e s t i m a t e (10/86) from our g l a s s b l o w i n g shop ( l a b o r : $24/hr)
t T h i s i s a s e r i o u s problem w i t h T e f l o n p l u g s , e s p e c i a l l y t h o s e w h i c h do not have r e p l a c e a b l e o - r i n g s , such as ones marketed by C o r n i n g g l a s s ( R o t a - f l o s t o p c o c k s ) and J . Young L t d . of London.
In Experimental Organometallic Chemistry; Wayda, A., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1987.
EXPERIMENTAL ORGANOMETALLIC CHEMISTRY
54
i n d i c a t e d t h a t i t s h o u l d be p o s s i b l e t o c o n s t r u c t t h i s double mani f o l d l i n e and a c c e s s o r i e s (items 1-6) f o r about $1500. A l s o shown i s p r i c e i n f o r m a t i o n on t h e f l e x i b l e s t a i n l e s s s t e e l t u b i n g assembly. The t u b i n g and f i t t i n g s a r e a v a i l a b l e from t h e C a j o n Company, 32550 Old South M i l e s Road, S o l o n , Ohio 44139.
Downloaded by UNIV MASSACHUSETTS AMHERST on October 6, 2012 | http://pubs.acs.org Publication Date: November 24, 1987 | doi: 10.1021/bk-1987-0357.ch003
Table I I .
Approximate Cost f o r Components o f t h e Vacuum-Inert Gas L i n e
1.
M o l e c u l a r S i e v e Trap i n c l u d i n g 3/8 i n . Swagelok U n i o n
A l l items f a b r i c a t e d $108.00 by G l a s s Tech. S e r v i c e U n i v e r s i t y o f Minnesota
2.
Double M a n i f o l d Vac. L i n e (5 t a p s )
610.00
3.
Manometers (5) @ 57.50 Cost o f t h e system c a n be reduced somewhat by i n c o r p o r a t i n g o n l y 2 o r 3 manometers. However, the system w i l l be a c c o r d i n g l y l e s s f l e x i b l e .
287.00
4.
O p t i o n a l N u j o l Bubblers
118.00
5.
C o l d Trap Assembly i n c l u d i n g t r a p s
6.
G l a s s C o n n e c t i o n t o Vacuum Pump
(2) @ 59.00
160.00 30.00
Not i n c l u d e d i n t o t a l c o s t : F l e x i b l e t u b i n g and c o n n e c t i o n s , vacuum pump, clamps, Dewars and a McLeod gauge. TOTAL ESTIMATED COST (1984-1985 PRICES) OF LINE: 7.
$1,300
F l e x i b l e S t a i n l e s s S t e e l Tubing Assembly a. G l a s s a d a p t o r , 14/35 o u t e r , two 9 mm ID o - r i n g seal joints
18.00
b.
Swagelok U n i o n s , 1/4 χ 1/4 B400-6 @ 1.80
7.20
c.
F l e x i b l e SS t u b i n g , 1/4 OD, 24 i n . 321-4-X-24 @ 58.50
d.
S l e e v e I n s e r t f o r SS t u b i n g 1/4 OD 304-4-XBA @ 2.00
e.
K o v a r - G l a s s S e a l , 1/4 OD @ 10.00
f.
O-ring
117.00
8.00 40.00
S e a l J o i n t s (4) @ 5.00
20.00 Est. Total:
$210.00
S p e c i a l i z e d Glassware and Techniques I n t h i s f i n a l s e c t i o n some o f t h e s p e c i a l i z e d g l a s s w a r e
and t e c h -
In Experimental Organometallic Chemistry; Wayda, A., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1987.
Downloaded by UNIV MASSACHUSETTS AMHERST on October 6, 2012 | http://pubs.acs.org Publication Date: November 24, 1987 | doi: 10.1021/bk-1987-0357.ch003
3.
ELLIS
Techniques in the Handling of Highly Reduced Organometallics 55
n i q u e s we use i n c o n d u c t i n g bench top o r g a n o m e t a l l i c c h e m i s t r y w i l l be r e v i e w e d . I n c l u d e d i n t h i s s e c t i o n w i l l be a d i s c u s s i o n of a low temperature f i l t r a t i o n a p p a r a t u s , s o l v e n t c o l l e c t i o n u n i t , s o l v e n t s t o r a g e f l a s k s and a s i m p l e s i d e arm r e a c t i o n f l a s k w h i c h we now use e x t e n s i v e l y i n our r e s e a r c h . An a p p a r a t u s w h i c h has proven t o be p a r t i c u l a r l y u s e f u l f o r doing l i q u i d ammonia c h e m i s t r y and the f i l t e r i n g of t h e r m a l l y u n s t a b l e o r g a n o m e t a l l i c s i s our low temperature f i l t r a t i o n a p p a r a t u s d e p i c t e d i n F i g u r e 13.(15) T h i s d e s i g n i s not c o m m e r c i a l l y a v a i l a b l e and has the advantage t h a t the c o o l a n t l e v e l extends down i n t o the lower g r o u n d - g l a s s j o i n t . A l t h o u g h we have s p e c i f i e d an a l l g l a s s s t o p c o c k i n the d e s i g n , c l e a r l y s u b s t i t u t i o n of a T e f l o n s t o p c o c k c o u l d be advantageous. A l s o , the top i n n e r j o i n t may be r e p l a c e d by an o u t e r j o i n t w h i c h would f a c i l i t a t e the use of s e p t a . Two d i f f e r e n t s e t o f dimensions a r e i n d i c a t e d . The l a r g e r u n i t i s u s e f u l f o r f i l t e r i n g up t o a l i t e r o f s o l u t i o n , w h i l e the s m a l l e r u n i t i s more convenient f o r the i s o l a t i o n o f s o l i d s a t low t e m p e r a t u r e s . S o l v e n t c o l l e c t i o n u n i t and s o l v e n t s t o r a g e f l a s k s w h i c h we use a r e shown i n F i g u r e s 14 and 15, r e s p e c t i v e l y . Improvements of the s o l v e n t c o l l e c t i o n u n i t over those c o m m e r c i a l l y a v a i l a b l e i n c l u d e the use of vacuum T e f l o n s t o p c o c k s as w e l l as the d i r e c t f u s i o n of a w a t e r c o o l e d condenser (or a l t e r n a t i v e l y , a d r y i c e - a c e t o n e condenser f o r low b o i l i n g s o l v e n t s ) t o a v o i d the use of greased s t a n d a r d t a p e r joints. S u p p l i e r s o f t e n recommend the use o f T e f l o n s l e e v e s o r T e f l o n coated standard taper j o i n t s f o r greaseless a p p l i c a t i o n s , but we have not found these items to be s a t i s f a c t o r i l y vacuum t i g h t . On the top of t h e condensor i s f u s e d a n o t h e r T e f l o n s t o p c o c k w h i c h i s connected v i a a Τ p i e c e t o a mercury b u b b l e r and the vacuum l i n e . A l t h o u g h we p r e f e r a c o m b i n a t i o n of g l a s s and copper t u b i n g i n these c o n n e c t i o n s , b u t y l r u b b e r can be used i f one i s c a r e f u l t o evacuate and r e f i l l s e v e r a l times b e f o r e a d m i t t i n g i n e r t gas i n t o the d i s t i l l a t i o n u n i t . P o s s i b l e improvements i n the d e s i g n of the s o l v e n t c o l l e c t i o n u n i t i n c l u d e the use o f an o - r i n g b a l l j o i n t f o r the s o l v e n t t a k e o f f t a p , w h i c h would p r e v e n t s t o p c o c k g r e a s e c o n t a m i n a t i o n , i n c o r p o r a t i o n of a thermometer w e l l , d i r e c t f u s i o n of a V i g r e u x column t o the s o l v e n t c o l l e c t i o n u n i t and r e p l a c e m e n t of the r i g h t angled T e f l o n s t o p c o c k on the r e s e r v o i r w i t h an Ace G l a s s " F l i c k i t " v a l v e (Andrea Wayda i s thanked f o r t h i s s u g g e s t i o n ) . The l a t t e r would have t o c o n t a i n K a l r e z o - r i n g s t o w i t h s t a n d hot s o l v e n t v a p o r , however. F r e s h l y d i s t i l l e d s o l v e n t can e i t h e r be s t o r e d i n t h e one l i t e r r e s e r v o i r of the c o l l e c t i o n u n i t o r i n a s o l v e n t s t o r a g e f l a s k ( F i g u r e 15). S o l v e n t can be c o n v e n i e n t l y removed by c a n n u l a o r s y r i n g e v i a the r i g h t angled s t o p c o c k a f t e r removal of the T e f l o n p l u g under a c o u n t e r c u r r e n t of n i t r o g e n o r argon (a v a r i e t y of r u b b e r s e p t a w i l l f i t i n o r o v e r t h e b a r r e l s o f these s t o p c o c k s , thus p e r m i t t i n g t r a n s f e r o f the s o l v e n t under p o s i t i v e p r e s s u r e and f a i r l y r i g o r o u s a n a e r o b i c c o n d i t i o n s ) . I n r e c e n t y e a r s , our group has u t i l i z e d even s i m p l e r s o l v e n t s t o r a g e f l a s k s w h i c h a r e e a s i l y made by s e a l i n g a r i g h t a n g l e d T e f l o n s t o p c o c k t o t h e top of round bottom, o r F l o r e n c e f l a s k s ( F i g u r e 16). We have made s i m i l a r c o n t a i n e r s from 15 and 40 ml c o n i c a l shaped graduated c e n t r i f u g e tubes w h i c h a r e p a r t i c u l a r l y u s e f u l f o r s t o r a g e and d i s p e n s i n g o f l i q u i d organop h o s p h i n e s , d e u t e r a t e d s o l v e n t s and o t h e r l i q u i d s under p o s i t i v e
In Experimental Organometallic Chemistry; Wayda, A., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1987.
Downloaded by UNIV MASSACHUSETTS AMHERST on October 6, 2012 | http://pubs.acs.org Publication Date: November 24, 1987 | doi: 10.1021/bk-1987-0357.ch003
EXPERIMENTAL ORGANOMETALLIC CHEMISTRY
F i g u r e 13. next page.
Low-temperature f i l t r a t i o n a p p a r a t u s . C o n t i n u e d on
In Experimental Organometallic Chemistry; Wayda, A., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1987.
3. ELLIS
Techniques in the Handling of Highly Reduced Organometallics 57
IDENTIFICATION
OF
COMPONENTS AND
DIMENSIONS
Downloaded by UNIV MASSACHUSETTS AMHERST on October 6, 2012 | http://pubs.acs.org Publication Date: November 24, 1987 | doi: 10.1021/bk-1987-0357.ch003
LARGE UNIT
SMALL UNIT
A
11
CM
10
CM
Β
20
CM
20
CM
C
11
CM
10
CM
D
25
MM
25
CM
Ε
40
MM
40
MM
F
70
MM
35
MM OD
G
120
80
MM OD
H
12
MM
12
MM
I
12
MM
12
MM OD
J
8
MM
Κ
4
MM t
L
S.T.
M
STURDY
Ν
60
OD
MM OD
MM
OD ROD
34/45
8
MM
2
MM t
S.T.
GLASS FRIT
30
ROD
24/40
HOOKS MM
FRIT
+NOTE: T H E 2 A N D 4 MM OBLIQUE B O R E VACUUM S T O P C O C K S MAY B E REPLACED WITH TEFLON S T O P C O C K S TO GOOD ADVANTAGE
F i g u r e 13.
Continued.
In Experimental Organometallic Chemistry; Wayda, A., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1987.
Downloaded by UNIV MASSACHUSETTS AMHERST on October 6, 2012 | http://pubs.acs.org Publication Date: November 24, 1987 | doi: 10.1021/bk-1987-0357.ch003
F i g u r e 14.
Solvent c o l l e c t i o n u n i t .
Continued on next page.
In Experimental Organometallic Chemistry; Wayda, A., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1987.
Downloaded by UNIV MASSACHUSETTS AMHERST on October 6, 2012 | http://pubs.acs.org Publication Date: November 24, 1987 | doi: 10.1021/bk-1987-0357.ch003
3. ELLIS
Techniques in the Handling of Highly Reduced Organometallics 59
A
50
MM
Β
25
MM
C
13
CM
D
15
MM
Ε
KONTES
F
15
G
ACE
H
15-25
I
8
OD
OD K826500,
0-8
MM
CM
MM
NOTES:
8192-03,
0-3
MM
MM OD
1.
EFFICIENT
DRY
CONDENSORS
ARE
ICE
-
J
S.T.
Κ
75
MM
L
12
MM
M
25
MM
Ν
40
MM
Ο
8
Ρ
THERMOMETER
Q
1000
R
O R I E N T A T I O N OF STOPCOCK F WITH R E S P E C T TO THE BOTTOM OF THE R E S E R V O I R TO P E R M I T NEARLY COMPLETE REMOVAL OF SOLVENT WITH A NEEDLE
iPROH
FUSED
24/40
INNER
MM G L A S S
ML
AND/OR
DIRECTLY
ROD WELL
RESERVOIR
WATER
ONTO
COOLED
THE
RESERVOIR. 2.
THE BOTTOM OF THE U N I T IS TO BE CONNECTED BY A S . T . 2 4 / 4 0 J O I N T C A S S H O W N ) OR P R E F E R A B L Y BY D I R E C T F U S I O N TO A 12 INCH V I G R E U X OR S I M I L A R C O L U M N , W H I C H I S C O N N E C T E D T O T H E S O L V E N T P O T BY 24/40 JOINTS.
3.
ONLY
TWO
VIEW
OF
F i g u r e 14.
STOPCOCKS THE
ARE
SHOWN
ON
JOINT
THE
SIDE
UNIT.
Continued.
In Experimental Organometallic Chemistry; Wayda, A., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1987.
EXPERIMENTAL ORGANOMETALLIC CHEMISTRY
Downloaded by UNIV MASSACHUSETTS AMHERST on October 6, 2012 | http://pubs.acs.org Publication Date: November 24, 1987 | doi: 10.1021/bk-1987-0357.ch003
60
F i g u r e 15.
S o l v e n t s t o r a g e f l a s k . Continued
on next page.
In Experimental Organometallic Chemistry; Wayda, A., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1987.
3.
ELLIS
Techniques in the Handling of Highly Reduced Organometallics 61
IDENTIFICATION
OF
COMPONENTS
Downloaded by UNIV MASSACHUSETTS AMHERST on October 6, 2012 | http://pubs.acs.org Publication Date: November 24, 1987 | doi: 10.1021/bk-1987-0357.ch003
AND
DIMENSIONS
A
75
Β
12-25
MM MM
C
S.T.
24/40
D
ACE
8192-03
Ε
25
MM
F
30
MM
G
40
MM
H
15-20°
I
500-2000
OUTER
OD
ML
NOTE: T H E S I D E ARM STOPCOCK IS O R I E N T E D SO A N E E D L E W I L L REACH TO T H E B O T T O M O F T H E F L A S K WHEN S O L V E N T IS REMOVED
F i g u r e 15.
Continued.
F i g u r e 16. I n e x p e n s i v e s o l v e n t s t o r a g e f l a s k from w h i c h o r o t h e r l i q u i d s a r e d i s p e n s e d by c a n n u l a o r s y r i n g e .
In Experimental Organometallic Chemistry; Wayda, A., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1987.
solvent
Downloaded by UNIV MASSACHUSETTS AMHERST on October 6, 2012 | http://pubs.acs.org Publication Date: November 24, 1987 | doi: 10.1021/bk-1987-0357.ch003
62
EXPERIMENTAL ORGANOMETALLIC CHEMISTRY
p r e s s u r e and s t r i c t l y a n a e r o b i c c o n d i t i o n s ( F i g u r e 1 7 ) . By employ i n g these v o l u m e t r i c c o n t a i n e r s one can a v o i d t h e use o f s y r i n g e s which o f t e n contaminate reagents. A l s o approximate d e n s i t i e s o f l i q u i d s c a n be e a s i l y determined w i t h t h i s a p p a r a t u s . Although the second s t o p c o c k may seem s u p e r f l u o u s , we have found t h a t t h e T e f l o n s t o p c o c k s used f o r t h e p r i m a r y s e a l o c c a s i o n a l l y p e r m i t s l o w e n t r y of a i r , p a r t i c u l a r l y i f the o - r i n g o r T e f l o n plug i s scratched. Some l i q u i d s a l s o a t t a c k o - r i n g s . F o r t h e s e reasons t h e a l l g l a s s s t o p c o c k ( l u b r i c a t e d w i t h A p i e z o n H o r Τ g r e a s e ) f u n c t i o n s as a u s e f u l "second l i n e o f d e f e n s e " and can be q u i t e i m p o r t a n t i n t h e l o n g term s t o r a g e o f h i g h l y r e a c t i v e l i q u i d s o u t s i d e o f a drybox. Of course t h e b e s t and cheapest method f o r l o n g term s t o r a g e o f r e a c t i v e l i q u i d s i s t o s e a l them i n g l a s s , b u t t h i s method i s n o t always p r a c t i c a l o r c o n v e n i e n t . A p a r t i c u l a r l y u s e f u l and i n e x p e n s i v e r e a c t i o n v e s s e l i s shown i n F i g u r e 18. T h i s i s s i m p l y a s i d e arm, one neck round bottom f l a s k , equipped w i t h a r i g h t a n g l e d T e f l o n s t o p c o c k , so l i q u i d s c a n be added o r removed v i a t h e b a r r e l o f t h e s t o p c o c k as i l l u s t r a t e d i n F i g u r e 19. I n t h i s f a s h i o n one can m i n i m i z e exposure o f an a i r
f-20 Corning 8140 centrifuge tube
F i g u r e 17. C o n i c a l shaped v o l u m e t r i c s t o r a g e v e s s e l f o r a i r sensitive liquids.
In Experimental Organometallic Chemistry; Wayda, A., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1987.
Downloaded by UNIV MASSACHUSETTS AMHERST on October 6, 2012 | http://pubs.acs.org Publication Date: November 24, 1987 | doi: 10.1021/bk-1987-0357.ch003
3. ELLIS
Techniques in the Handling of Highly Reduced Organometallics 63
Front view
F i g u r e 18. stopcock.
Side
view
Reaction v e s s e l incorporating a r i g h t angle
Teflon
Cannula Rotaflo 0-3 mm"
Flexible tubing open to a Nujol or mercury bubbler
Rotaf lo 0-3 mm
Flexible tubjng from the vacuum line.open to a pressurized source of inert gas
F i g u r e 19. I l l u s t r a t i o n showing t h e t r a n s f e r o f a l i q u i d by c a n n u l a from a s t o r a g e f l a s k i n t o t h e r e a c t i o n v e s s e l v i a t h e b a r r e l of t h e r i g h t a n g l e T e f l o n s t o p c o c k .
In Experimental Organometallic Chemistry; Wayda, A., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1987.
64
EXPERIMENTAL ORGANOMETALLIC CHEMISTRY
s e n s i t i v e m a t e r i a l t o t h e atmosphere when adding r e a c t a n t s , removing samples f o r IR s p e c t r a , e t c . on t h e bench. I t i s much more l i k e l y t h a t a e r i a l o x i d a t i o n w i l l o c c u r i f t h e sample i s removed v i a t h e 24/40 j o i n t o f t h e f l a s k than from t h e s t o p c o c k b a r r e l . Exposure o f t h e r e a c t i o n m i x t u r e t o s t o p c o c k grease i s a l s o m i n i m i z e d i n t h i s fashion.
Downloaded by UNIV MASSACHUSETTS AMHERST on October 6, 2012 | http://pubs.acs.org Publication Date: November 24, 1987 | doi: 10.1021/bk-1987-0357.ch003
C o n c l u d i n g Remarks I n t h i s a r t i c l e I have attempted t o r e v i e w the most i m p o r t a n t a s p e c t s o f apparatus and t e c h n i q u e s used i n o u r l a b o r a t o r y f o r t h e h a n d l i n g o f o r g a n o m e t a l l i c compounds. Very l i t t l e was mentioned c o n c e r n i n g a c t u a l procedures i n c a r r y i n g o u t o r g a n o m e t a l l i c r e a c t i o n s o r t h e p u r i f i c a t i o n o f m a t e r i a l s , which a r e m a t t e r s o f t r e mendous importance. But o t h e r a r t i c l e s i n t h i s volume address t h i s important t o p i c . I n c l o s i n g , however, i t i s perhaps u s e f u l t o s t r e s s t h a t s u c c e s s i n t h e c h a l l e n g i n g , r e w a r d i n g and r a t h e r f a s t paced a r e a o f o r g a n o m e t a l l i c c h e m i s t r y r e q u i r e s more than good equipment, i d e a s and t i m i n g . One must r e g u l a r l y r e a d t h e c u r r e n t l i t e r a t u r e , ( e x p e r i m e n t a l s e c t i o n s c a n be e s p e c i a l l y h e l p f u l ) , have a s t r o n g work e t h i c and develop e x c e l l e n t l a b o r a t o r y t e c h n i q u e . I t i s a l s o i m p o r t a n t t o be p e r s i s t e n t , r e s i l i e n t , and have a h e a l t h y measure o f d e d i c a t i o n and f a i t h t h a t t h e e f f o r t i s w o r t h w h i l e ! Acknowledgements The N a t i o n a l S c i e n c e F o u n d a t i o n and P e t r o l e u m Research Fund, admini s t e r e d by the American Chemical S o c i e t y , have g e n e r o u s l y p r o v i d e d f i n a n c i a l a s s i s t a n c e f o r r e s e a r c h which d i r e c t l y l e d t o t h e development o r t e s t i n g o f many o f t h e t e c h n i q u e s d i s c u s s e d h e r e i n . I am a l s o v e r y g r a t e f u l t o many d e d i c a t e d co-workers who have h e l p e d over a p e r i o d o f s e v e r a l y e a r s i n t h e d e s i g n and t e s t i n g o f a p p a r a t u s . Andrea Wayda i s acknowledged f o r many h e l p f u l d i s c u s s i o n s o f t e c h n i q u e s i n o r g a n o m e t a l l i c c h e m i s t r y as w e l l as h e r n o t so g e n t l e p r o d d i n g t o f i n i s h t h i s a r t i c l e ! A l s o , a s i n c e r e thank you t o P r o f e s s o r Du S h r i v e r f o r h i s e x t r e m e l y u s e f u l book, "The M a n i p u l a t i o n o f A i r S e n s i t i v e Compounds", w h i c h has s e r v e d me w e l l f o r many y e a r s and remains a g o l d mine o f i n f o r m a t i o n f o r a l l concerned i n this field. F i n a l l y , I would l i k e t o acknowledge my former a d v i s o r , P r o f e s s o r A l a n D a v i s o n , who s t r o n g l y encouraged a c r e a t i v e and i m p r o v i s a t i o n a l approach t o o r g a n o m e t a l l i c and i n o r g a n i c c h e m i s t r y .
Literature Cited 1. 2. 3.
Shriver, D.F.; Drezdzon, M.A. The Manipulation of Air Sensitive Compounds; 2nd Edition; Wiley-Interscience: New York, 1986. Brauer, G., Ed. Handbook of Preparative Inorganic Chemistry; 2nd Edition; Academic Press: New York, 1963; Vol. 1 and 2. Dodd R.E.; Robinson, P.L. Experimental Inorganic Chemistry; Elsevier: Amsterdam, 1957.
In Experimental Organometallic Chemistry; Wayda, A., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1987.
3. ELLIS
4. 5. 6. 7.
Downloaded by UNIV MASSACHUSETTS AMHERST on October 6, 2012 | http://pubs.acs.org Publication Date: November 24, 1987 | doi: 10.1021/bk-1987-0357.ch003
8. 9. 10. 11. 12. 13. 14. 15. 16.
Techniques in the Handling of Highly Reduced Organometallics 65
Eisch, J.J.; King, R.B. Organometallic Syntheses; Academic Press: New York, 1965, Vol. 1; 1981, Vol. 2. Jolly, W.L., The Synthesis and Characterization of Inorganic Compounds ; Prentice-Hall: New York, p. 170. Yamamoto, A. Organotransition Metal Chemistry; Wiley-Inter science: New York, 1986; Ch. 5. Herzog, S; Dehnert, J.; Luhder, K. In Technique of Inorganic Chemistry; Johassen, H.B. Ed.; Interscience-Wiley: New York, 1968; Vol. 7, pp. 119-149. DeLiefde Meijer, H . J . ; Janssen, J.J.; Van Der Kerk, G.J.M. Studies in the Organic Chemistry of Vanadium; Institute for Organic Chemistry T.N.O.: Utrecht, Netherlands, 1963; pp. 41-58. Kramer, G.W.; Levy, A.B.; Midland, M.M. In Organic Syntheses Via Boranes, Brown, H.C., Ed.; J . Wiley and Sons: New York, 1975, Ch. 9. Burlicht, J . How to Use Ace No-air Glassware; Ace Glass Inc.: Vineland, New Jersey, 1970; Pamphlet No. 570. Lane, C.F.; Kramer, G.W. Aldrichim. Acta 1977, 10, 11 (Aldrich Chemical Co. Periodical). Gill, G.B.; Whiting, D.A. Aldrichim. Acta 1986, 19, 31. Handbook of Compressed Gases, Compressed Gas Association, Van Nostrand Reinhold: New York, 1981. Wayda, A . L . ; Dye, J.L.; J. Chem. Ed., 1985, 62, 356 Warnock, G.F.P.; Ellis, J . E . , J . Am. Chem. Soc., 1984, 106, 5016 and references cited therein. Kelsey, B.A.; Ellis, J . E . ; J . Am. Chem. Soc., 1986, 108, 1344; Chi, K.M.; Frerichs, S.R.; Stein, B.K.; Blackburn, D.W.; Ellis, J . E . ; submitted for publication.
RECEIVED
July 31,
1987
In Experimental Organometallic Chemistry; Wayda, A., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1987.
Chapter 3: Application 1
Preparation and Isolation of Crystalline Samples Using Low-Temperature Solution Techniques
Downloaded by UNIV MASSACHUSETTS AMHERST on October 6, 2012 | http://pubs.acs.org Publication Date: November 24, 1987 | doi: 10.1021/bk-1987-0357.ch003
Malcolm H . Chisholm and David L. Clark Department of Chemistry, Indiana University, Bloomington, IN 47405
Attached is a schematic drawing (Fig. 1) of a low-temperature reaction vessel for the high yield preparation and isolation of thermally unstable compounds. The dimensions of a typical reaction vessel are summarized in a). The Kontes valve may either be sealed directly to the glass, or connected via Tygon tubing depending on the air sensitivity of the materials used. The reactant solution is placed on the frit, and the Kontes valve closed under nitrogen. The closed end of the vessel is then immersed in liquid nitrogen just below the f r i t as shown in b). This provides the vacuum to pull the solution through the f r i t and into the closed end of the vessel where it is frozen at -196°C. The volatile reactant is then condensed into the vessel, and the vessel sealed with a torch as indicated in b). The vessel may then be warmed to the desired reaction temperature and ultimately cooled to -78°C in a Dewar of dry ice as shown in c). This procedure obviously mandates the use of a solvent such as toluene to avoid freezing at this temperature. Ideally, crystals w i l l grow at -78°C as indicated in c). When crystals are present, the vessel is inverted, and placed in liquid nitrogen just below the constriction to pull the f i l t r a t e solution into the receiving bulb. This procedure w i l l deposit crystals on the frit. The vessel is then sealed at thé constriction leaving the f i l t r a t e in the bulb and crystals in a fritted ampule as shown in d). Caution: care should be used to get a uniform and tempered seal i n step b) to avoid cracking when immersing i n l i q u i d nitrogen. RECEIVED
August 13,
1987
0097-6156/87/0357-066$06.00/0
© 1987 American Chemical Society
In Experimental Organometallic Chemistry; Wayda, A., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1987.
In Experimental Organometallic Chemistry; Wayda, A., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1987.
a)
15mm
b)
reactant solution
crystals!
c)
i4P
Λ Dewar
sealed glass
frozen filtrate
crystals
F i g u r e 1. Schematic drawing o f a low-temperature r e a c t i o n v e s s e l f o r the h i g h y i e l d p r e p a r a t i o n and i s o l a t i o n o f t h e r m a l l y u n s t a b l e compounds.
Dewar
Kontes valve
frozen solution
porous ^.fritted disk
2cm
^
Downloaded by UNIV MASSACHUSETTS AMHERST on October 6, 2012 | http://pubs.acs.org Publication Date: November 24, 1987 | doi: 10.1021/bk-1987-0357.ch003
1
ο
I
g
5'
I
ο
ο
a.
Ο
>
ο
ο
X
η X
Chapter 3: Application 2
Recrystallization Apparatus for Air-Sensitive Compounds Alan E . Friedman and Peter C. Ford
Downloaded by UNIV MASSACHUSETTS AMHERST on October 6, 2012 | http://pubs.acs.org Publication Date: November 24, 1987 | doi: 10.1021/bk-1987-0357.ch003
Department of Chemistry, University of California, Santa Barbara, CA 93106
Described here is a crystallization apparatus that uses vapor transfer as the method of slowly exchanging the solvents. This technique allows small quantities of air and moisture sensitive organometallic complexes to be crystallized easily under an inert atmosphere to give X-ray diffraction quality crystals. A Schlenk tube (Figure 1) is modified so that a deep dish sample v i a l can be easily placed inside in a small glass cup to provide s t a b i l i t y . For convenience a ring-like glass handle is placed on the sample v i a l to assist in i t s removal once crystals have formed. The 24/40 stopper of the Schlenk tube is also altered with a hook placed on the inside to hoist the sample v i a l . Lastly, a syringe port is set on the side of the Schlenk tube to provide access to both the outside and inside of the sample v i a l . A recrystallization is accomplished by placing a sample of the solid material into the sample v i a l which is then placed into the Schlenk tube. The Schlenk tube is evacuated and/or flushed with the appropriate oxygen free gas by several pump/fill cycles. A minimum of degassed solvent in which the sample is soluble is then added to the sample v i a l via syringe techniques through the septum covering the syringe port. A second degassed solvent, in which the sample is known to be insoluble, is then placed i n the outside part of the Schlenk tube so that gaseous diffusion from the outside to the sample containing v i a l can occur. After a few days crystals w i l l begin to form. For materials that are thermally sensitive the apparatus may be placed i n a refrigerator or freezer during this time. Use of this apparatus may be modified for assembly within a dry box. The advantage of this technique over similar methods is the compactness of the apparatus allowing i t to be oven dried and i t s convenience for use with vacuum lines and syringe techniques. Another advantage is the relative convenience by which crystals can be removed from the v i a l . One main limitation is the small size of the inner v i a l which may overflow i f the "outer" solvent is the more volatile of the two. RECEIVED July 31, 1987 0097-6156/87/0357-0068$06.00/0
© 1987 American Chemical Society
In Experimental Organometallic Chemistry; Wayda, A., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1987.
Downloaded by UNIV MASSACHUSETTS AMHERST on October 6, 2012 | http://pubs.acs.org Publication Date: November 24, 1987 | doi: 10.1021/bk-1987-0357.ch003
3.2
FRIEDMAN AND FORD
Recrystallization Apparatus
69
F i g u r e 1. C r y s t a l l i z a t i o n A p p a r a t u s : The h o l l o w 24/40 s t o p p e r i s f i t t e d w i t h a hook t h a t extends 5 cm below t o the r i n g o f the 1 cm sample v i a l . The s y r i n g e p o r t i s made from 7 mm t u b i n g w h i l e a 2 mm h o l l o w p l u g , h i g h vacuum s t o p c o c k i s u s e d on the sidearm. The d i a m e t e r o f the main body i s 3.5 cm w h i l e the o v e r a l l l e n g t h i s 20 cm.
In Experimental Organometallic Chemistry; Wayda, A., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1987.
Chapter 3: Application 3
Inert Atmosphere Apparatus for U V Photochemical Reactions William C. Trogler
Downloaded by UNIV MASSACHUSETTS AMHERST on October 6, 2012 | http://pubs.acs.org Publication Date: November 24, 1987 | doi: 10.1021/bk-1987-0357.ch003
Department of Chemistry, D-006, University of California at San Diego, La Jolla, CA 92093
Small (1-5 g) scale UV photolysis of air sensitive compounds can be performed in quartz Schlenk tubes, or in conventional Schlenkware with the use of a UV transparent quartz stopper. The latter apparatus is easily adapted to low temperature irradiations. Large scale (10-50 g) UV photochemical reactions use quartz immersion well reactors. Medium pressure Hg-arc lamps are the preferred radiation sources for synthetic applications. This report summarizes conventional methods for UV irradiation of air sensitive organometallic compounds at ambient or subambient temperatures. Of the irradiation sources available (V) the medium pressure Hanovia 450 W arc lamp systems (2) are of moderate price, reliable, and versatile in our experience. Caution: Powerful arc lamps can cause eye damage or blindness within seconds and UV pro tective goggles (available from most scientific supply houses) must be worn. Never look directly at the radiation source. For safety of other workers lamps should be enclosed i n a vented box with baffles. If Pyrex transmits enough UV radiation for an efficient reaction, as for photochemical reactions of metal-metal bonded complexes (3)» then conventional Schlenkware can be used for photolysis and no special glassware is needed. Since a 2 mm thick wall of Pyrex transmits only 10$ of the UV light at 300 nm, UV transparent quartz reaction vessels are often needed for photoreactions of mononuclear organometallic complexes. Quartz Schlenk tubes are inexpensive if made from standard quartz tubing closed at one end, and attached to a graded seal. The desired stopcock and joint are attached to the Pyrex end of the seal. Stock tubing and seals with 1 cm I.D. to 3-1/2 inch I.D. are available commercially (4). Although the curved surface of a quartz tube reflects much light, the apparatus is effective for moderate scale reactions (