9 Telomerization Reactions Involving
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on March 20, 2017 | http://pubs.acs.org Publication Date: June 1, 1974 | doi: 10.1021/ba-1974-0130.ch009
Amine-Chelated Lithium Catalysts W. A. BUTTE and G. G. EBERHARDT Sun Research and Development Co., Marcus Hook, Pa. 19061
Complexes of organolithium compounds with certain diamines are remarkably active in the metalation of unsaturated hydrocarbons and addition to ethylene. These complexes form a new class of initiators for the telomerization of ethylene with aromatic hydrocarbons and olefins. The distribution of the products is in accordance with a mechanism involving competitive transmetalation and addition to ethylene. By proper selection of the telogen and regulation of the ethylene pressure, it is possible to influence the nature of the telomeric products and produce phenylalkanes, polyalkylbenzenes, and long-chain olefins with a variable average degree of telomerization. The assistance of the amine in accelerating the reaction is attributed to the formation of a coordination complex with lithium which facilitates ionization of the carbon-lithium bond.
T n 1955 P i n e s a n d S c h a a p ( J ) d i s c o v e r e d that t o l u e n e w a s a l k y l a t e d b y ·*· ethylene i n the presence of
s o d i u m or p o t a s s i u m m e t a l or,
specifically, t h e i r o r g a n o m e t a l l i c d e r i v a t i v e s .
more
This reaction requires a
h i g h t e m p e r a t u r e ( a b o u t 2 0 0 ° C ) a n d c o n s i d e r a b l e olefin pressure; the o r g a n o m e t a l l i c catalyst is essentially i n s o l u b l e i n t h e r e a c t i o n m e d i u m . T h e catalyst c y c l e — f o r e x a m p l e , i n the s i d e - c h a i n e t h y l a t i o n of t o l u e n e — i n v o l v e s a b e n z y l c a r b a n i o n w h i c h a d d s to ethylene to f o r m a p r i m a r y a l k y l c a r b a n i o n . T h e latter i m m e d i a t e l y abstracts a p r o t o n f r o m the excess toluene r e a c t a n t to f o r m n - p r o p y l b e n z e n e a n d to r e f o r m the e n e r g e t i c a l l y f a v o r e d b e n z y l i c a n i o n i n a c a t a l y t i c cycle. O n f u r t h e r c o n v e r s i o n of t h e n - p r o p y l b e n z e n e ,
additional benzylic
h y d r o g e n s are e t h y l a t e d . T h e h i g h rate of t r a n s m e t a l a t i o n i n v o l v i n g the p r i m a r y a l i p h a t i c o r g a n o s o d i u m or p o t a s s i u m i n t e r m e d i a t e s a n d the a l k y l 186 Langer; Polyamine-Chelated Alkali Metal Compounds Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
9.
BUTTE
AND EBERHARDT
187
Telomerization Reactions H H
H
W
(la)
•C-C-C-C-C
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on March 20, 2017 | http://pubs.acs.org Publication Date: June 1, 1974 | doi: 10.1021/ba-1974-0130.ch009
H
H H
prevents
formation
of
(lb)
(le)
c—c—H
H
aromatic hydrocarbon
0
H
telomeric
products
with
these catalysts e v e n at h i g h e r e t h y l e n e pressures. The
carbanionic
ethylene
adduct
c a n also u n d e r g o
a cyclization
r e a c t i o n to i n d a n e s w i t h e l i m i n a t i o n of a h y d r i d e i o n ( R e a c t i o n
la).
T h i s r e a c t i o n is m o r e p r o n o u n c e d w i t h o r g a n o p o t a s s i u m or s o m e c o m p l e x o r g a n o p o t a s s i u m catalysts ( 2 ) .
High-molecular-weight growth
products
are n o t o b t a i n e d f r o m either s o d i u m - or p o t a s s i u m - d e r i v e d catalysts. A n i n i t i a t o r system has b e e n f o u n d i n d e p e n d e n t l y i n the laboratories of E s s o a n d S u n O i l (3, 4).
T h i s system p r o m o t e s t r a n s m e t a l a t i o n a n d
c h a i n p r o p a g a t i o n reactions at c o m p a r a b l e rates so that a t e l o m e r i z a t i o n r e a c t i o n of e t h y l e n e w i t h a r o m a t i c h y d r o c a r b o n s is r e a l i z e d u n d e r r e l a tively m i l d operating conditions. Nature
of the
The
Initiator
i n i t i a t o r consists
of
an organolithium-amine
organolithium component could be
a commercially
complex.
The
available material
s u c h as n - b u t y l l i t h i u m i n h e x a n e s o l u t i o n . T h e a m i n e c o m p o n e n t s h o u l d b e free of r e a c t i v e h y d r o g e n , i n c l u d i n g a r o m a t i c , a l l y l i c , a n d
benzylic
protons, a n d i t is therefore l i m i t e d to t e r t i a r y a l i p h a t i c amines. M a x i m u m catalyst a c t i v i t y is o b t a i n e d w i t h c h e l a t i n g - t y p e d i a m i n e s l i k e t e t r a m e t h y l ethylenediamine
( T M E D A ) and bridgehead-type
ethylenediamine
(TEDA).
bridgehead
Sparteine,
n i t r o g e n atoms, f o r m s
a
amines
diamine
s u c h as t r i -
containing
an exceptionally
tertiary
stable a n d h i g h l y
r e a c t i v e catalyst. T h e i n i t i a t o r m a y b e p r e f o r m e d or g e n e r a t e d in situ s i m p l y b y b i n i n g the organolithium c o m p o u n d
w i t h the a m i n e .
com-
D e s p i t e its h i g h
r e a c t i v i t y , the r e s u l t i n g c o m p l e x c a n b e easily h a n d l e d as a h y d r o c a r b o n s o l u t i o n . I m p u r i t i e s s u c h as w a t e r , a i r , a n d c a r b o n d i o x i d e m u s t b e r i g i d l y e x c l u d e d b e c a u s e of t h e i r r a p i d r e a c t i o n w i t h o r g a n o l i t h i u m
compounds.
Langer; Polyamine-Chelated Alkali Metal Compounds Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
188
POLY AMINE-CHELATED
ALKALI
METAL
COMPOUNDS
H y d r o g e n acts as a p o i s o n b e c a u s e l i t h i u m h y d r i d e r e s u l t i n g f r o m h y d r o genolysis of the l i t h i u m - c a r b o n b o n d is i n a c t i v e as a catalyst c o m p o n e n t . A l l of the e v i d e n c e ( 3 , 4) s t r o n g l y suggests that the f u n c t i o n of the a m i n e is that of associating w i t h the l i t h i u m i n the r e a c t i o n m i x t u r e . A s a r e s u l t the c a r b o n - l i t h i u m b o n d is m o d i f i e d a n d a m o r e reactive i n c i p i e n t c a r b a n i o n results.
A d y n a m i c e q u i l i b r i u m exists b e t w e e n
c o m p l e x a n d the d i s s o c i a t e d species.
the
lithium
T h e i n s t a b i l i t y constant, K „ is a
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on March 20, 2017 | http://pubs.acs.org Publication Date: June 1, 1974 | doi: 10.1021/ba-1974-0130.ch009
m e a s u r e of the p o s i t i o n of the e q u i l i b r i u m . Ki
RLi«n Amine
R L i + η Amine
(2)
W i t h T E D A , K is r e l a t i v e l y large. T h e r e f o r e the d e g r e e of associa {
t i o n a n d thus t h e r e a c t i o n rate is m a t e r i a l l y i m p r o v e d b y i n t r o d u c i n g a n excess of the a m i n e . W i t h T M E D A , K is s m a l l so there is l i t t l e a d v a n t a g e t
to u s i n g greater t h a n e q u i m o l a r a m o u n t s of a m i n e . Transmetalation In
contrast w i t h the l o w r e a c t i v i t y o b s e r v e d
solutions i n h y d r o c a r b o n s
(5)
o r ether ( 6 ) ,
with n-butyllithium
the n - b u t y l l i t h i u m - a m i n e
adducts r a p i d l y metalate unsaturated hydrocarbons including even simple olefins. I n this respect t h e y surpass e v e n o r g a n o s o d i u m c o m p o u n d s w i l l probably prove
to b e of c o n s i d e r a b l e
synthetic value.
and
Addition
of a hexane s o l u t i o n c o n t a i n i n g e q u i m o l a r a m o u n t s of n - b u t y l l i t h i u m a n d a n a m i n e to excess t o l u e n e at o r d i n a r y temperatures results i n r a p i d f o r m a t i o n of a b e n z y l l i t h i u m - a m i n e c o m p l e x that i n some cases separates as a y e l l o w c r y s t a l l i n e s o l i d . C H Li.Amine + C H C H 4
9
6
6
3
-> C H C H L i . A m i n e + C H i 6
6
2
4
(3)
0
T h e effecitveness of v a r i o u s amines as p r o m o t e r s for transmetalations c a n b e r e a d i l y d i s c e r n e d b y c o m p a r i n g the amounts of b e n z y l l i t h i u m formed under identical conditions ( T a b l e I ) . TEDA
on
excellent
the
donor
r e a c t i v i t y of
T h e m a r k e d i n f l u e n c e of
n-butyllithium can
characteristics of
the b r i d g e h e a d
that d i s r u p t s t h e n - b u t y l l i t h i u m aggregates ( 8 ) .
be
to
the
nitrogen atom
ascribed
(7)
F u r t h e r m o r e the c o o r d i
n a t i o n of l i t h i u m b y the a m i n e p o l a r i z e s the c a r b o n - l i t h i u m b o n d t h e r e b y easing l i t h i u m - h y d r o g e n interchange. T a b l e I also shows that T M E D A has a m u c h greater effect o n the r e a c t i v i t y of b u t y l l i t h i u m t h a n does either t r i e t h y l a m i n e or N , N ' - d i m e t h y l piperazine.
T o e x p l a i n this difference i t is suggested t h a t t h e r e a c t i v e
species c o n t a i n t w o c o o r d i n a t e d a m i n e groups.
T h e unusual reactivity
w i t h T M E D A is t h e n r e l a t e d to the f a v o r a b l e e n t r o p y c h a n g e u s u a l l y
Langer; Polyamine-Chelated Alkali Metal Compounds Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
9.
BUTTE
AND
Table I.
Extent of Metalation of
Amine
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on March 20, 2017 | http://pubs.acs.org Publication Date: June 1, 1974 | doi: 10.1021/ba-1974-0130.ch009
β 6
2
2
2
2
2
2
2
2
2
2
2
2
3
2
2
3
Extent of metalaHon, % b
3 1 1 1 1 1 1 2
3
2
Toluene"
Amine/BuLi, molar ratio
Et N M e N (CH CH ) NMe Me NCH NMe Me NCH CH NMe Me NCH CH CH(Me)NMe Sparteine N(CH CH ) N N(CH CH ) N 2
189
Telomerization Reactions
EBERHARDT
2
2
2 5 6 77 60 90 43 66
One hour at 60°C, 1.0M butyllithium. Percent of theory based on butyllithium.
associated w i t h chelate f o r m a t i o n . S u p p o r t f o r this i n t e r p r e t a t i o n comes f r o m the p r e d i c t a b l e effect of r i n g size u p o n the r e l a t i v e r e a c t i v i t y of the a d d u c t s a n d f r o m the h i g h r e a c t i v i t y n o t e d for the r i g i d b i d e n t a t e c o m p l e x f o r m e d w i t h sparteine. Telomerization
of Ethylene
with Aromatic
Hydrocarbons
E t h y l e n a t i o n of n - b u t y l l i t h i u m , p h e n y l l i t h i u m , a n d b e n z y l i c l i t h i u m c o m p o u n d s does not o c c u r at l o w t e m p e r a t u r e a n d o r d i n a r y pressure
(9).
U n d e r m o r e rigorous c o n d i t i o n s , t e l o m e r i z a t i o n of ethylene i n a r o m a t i c h y d r o c a r b o n s p r o c e e d s v i g o r o u s l y i n t h e presence of a n o r g a n o l i t h i u m c o m p o u n d a n d a n a m i n e . A l t h o u g h n - b u t y l l i t h i u m is i n t r o d u c e d i n i t i a l l y , r a p i d t r a n s m e t a l a t i o n occurs to the m o r e a c i d i c a r o m a t i c
hydrocarbon
( t e l o g e n ) w h i c h s u b s e q u e n t l y adds to ethylene ( t a x o g e n ) a n d initiates the c a r b a n i o n i c p o l y m e r i z a t i o n of ethylene. T h i s p o l y m e r i z a t i o n p r o c e e d s to modest m o l e c u l a r w e i g h t , b u t i t is t e r m i n a t e d b y t r a n s m e t a l a t i o n b a c k to the a r o m a t i c h y d r o c a r b o n w h i c h initiates another c h a i n to
complete
the c a t a l y t i c cycle. n-BuLi + A r H ArLi + C H 2
Ar(CH CH )Li + 2
2
4
(η -
•n-BuH + A r L i
(4)
•A r C H C H L i
(5)
2
1) C H 2
4
2
—• Ar(CH CH ) Li
(6)
•A r ( C H C H ) H + ArLi
(7)
2
2
n
fc
3
Ar(CH CH ) Li + ArH 2
2
n
2
2
n
S i n c e thé p r o p a g a t i o n r e a c t i o n ( R e a c t i o n 6 ) a n d the transfer r e a c t i o n (Reaction
7)
are c o m p e t i t i v e , t h e r e s u l t i n g p r o d u c t
is a m i x t u r e of
molecular weights governed b y a simple statistical distribution shown i n
Langer; Polyamine-Chelated Alkali Metal Compounds Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on March 20, 2017 | http://pubs.acs.org Publication Date: June 1, 1974 | doi: 10.1021/ba-1974-0130.ch009
190
POLYAMINE-CHELATED
ALKALI
M E T A L
COMPOUNDS
NUMBER OF ETHYLENE UNITS Figure 1. Distribution of telomeric products obtained from ethylene and benzene at 110°C F i g u r e 1. T h e average degree of p o l y m e r i z a t i o n o f t h e p r o d u c t , n , i s a f u n c t i o n o f the r e l a t i v e rates o f ethylene c o n s u m p t i o n a n d transfer. B y i n v o k i n g t h e steady-state a s s u m p t i o n , i t c a n b e s h o w n that t h e average degree o f p o l y m e r i z a t i o n is g o v e r n e d b y the c o m p e t i t i v e rates o f p r o p a g a t i o n a n d transfer. 1
fc (C2H ) 2
n
4
= kÂÂrÏÏj
+
1
=
β +
,
Λ
1
(
8
Q
.
)
F o r c o n v e n i e n c e , t h e r a t i o of transfer a n d p r o p a g a t i o n rates is ex p r e s s e d as β since this r a t i o is r e l a t e d t o t h e m o l e f r a c t i o n , X , o f p r o d u c t n
w i t h degree of p o l y m e r i z a t i o n , η ( E q u a t i o n 9 ) . T h i s r e l a t i o n s h i p m a y b e m o d i f i e d t o a l l o w c a l c u l a t i n g β f r o m t h e a m o u n t of p r o d u c t a t t w o successive v a l u e s o f n , as s h o w n i n E q u a t i o n 10.
(9)
Langer; Polyamine-Chelated Alkali Metal Compounds Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
9.
BUTTE
AND EBERHARDT
191
Telomerization Reactions
β = ^
-
1
(10)
E q u a t i o n 6 i m p l i e s t h a t the rate of e t h y l e n e c o n s u m p t i o n d u r i n g t e l o m e r i z a t i o n is a f u n c t i o n of its c o n c e n t r a t i o n b u t is essentially i n d e p e n d e n t of the t e l o g e n c o n c e n t r a t i o n present i n l a r g e excess.
Further
m o r e , a c c o r d i n g to E q u a t i o n 8, t h e β v a l u e m a y b e v a r i e d b y c h a n g i n g the pressure or the n a t u r e of the telogen. T h i s is i n d e e d the case, as seen Downloaded by UNIV OF CALIFORNIA SAN DIEGO on March 20, 2017 | http://pubs.acs.org Publication Date: June 1, 1974 | doi: 10.1021/ba-1974-0130.ch009
f r o m t h e average m o l e c u l a r w e i g h t of telomers o b t a i n e d f r o m reactions c a r r i e d out at v a r i o u s e t h y l e n e pressures a n d w i t h a n u m b e r of a r o m a t i c telogens. T a b l e I I shows t h a t t h e average d e g r e e of p o l y m e r i z a t i o n rises as the pressure is i n c r e a s e d . C o n s e q u e n t l y the c h a i n l e n g t h — t h a t i s , t h e average m o l e c u l a r w e i g h t of the p r o d u c t — c a n b e r e g u l a t e d b y the p r o p e r Table II. Telogen C6H5CH3
Influence of Pressure on Molecular Weight" Pressure, psig
η
Average molecular weight
100 300 500 800 100 300 500 800
1.4 2.0 2.7 4.0 1.6 2.6 3.9 5.5
131 148 168 204 123 151 187 232
4.0
ETHYLENE PRESSURE, psig Figure 2.
Influence of pressure on product distribution with three aromatic telogens at 100°C
Langer; Polyamine-Chelated Alkali Metal Compounds Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
192
POLYAMINE-CHELATED
Table III.
Telomer
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on March 20, 2017 | http://pubs.acs.org Publication Date: June 1, 1974 | doi: 10.1021/ba-1974-0130.ch009
Toluene Xylene Ethylbenzene Benzene Isobutylene
C H CH (CH CH )nH CH C H CH (CH CH )nH C H CH(CH ) (CH CH )nH C H (CH CH )nH CH C(CH )CH (CH CH )nH 6
5
2
3
6
6
2
4
2
2
5
6
2
3
5
2
2
Conditions: 100°C, OMM
s e l e c t i o n of
METAL
COMPOUNDS
Effect of Telogen on Telomer Structure"
Telogen
a
ALKALI
2
2
2
2
3
2
2
2
η
Average molecular weight
2.7 3.0 4.4 3.9 8.1
168 190 230 187 380
n-butyllithium, T M E D A .
operating conditions.
T h e r e l a t i o n s h i p of β
to
ethylene
pressure for three telogens is s h o w n i n F i g u r e 2. T h e influence of t h e t e l o g e n u p o n m o l e c u l a r w e i g h t of the t e l o m e r is s h o w n i n T a b l e I I I . S i n c e , u n d e r e q u i v a l e n t c o n d i t i o n s , t h e m o l e c u l a r weight
depends
only on
the
transmetalation rate, the
hydrocarbons
c a n b e r a n k e d i n o r d e r of t h e i r d e c r e a s i n g k i n e t i c a c i d i t y : t o l u e n e xylene >
benzene
>
ethylbenzene.
>
T h e h i g h r e a c t i v i t y of b e n z e n e is
s u r p r i s i n g b u t consistent w i t h the f a c i l e m e t a l a t i o n o f b e n z e n e w i t h the b u t y l l i t h i u m a m i n e c o m p l e x n o t e d elsewhere. Reaction
Rate
T h e r a t e of t e l o m e r i z a t i o n of e t h y l e n e i n t o l u e n e i s , as d i r e c t l y p r o p o r t i o n a l to the R L i - T M E D A
expected,
c o n c e n t r a t i o n at 0 . 0 4 M
to
0 . 1 0 M ( T a b l e I V ) . T h u s s o l u b i l i t y of the catalyst is n o t a l i m i t i n g f a c t o r at these c o n c e n t r a t i o n levels. W i t h other a m i n e s , the influence of s t r u c t u r e a n d c o n c e n t r a t i o n is analogous to t h a t discussed i n c o n n e c t i o n w i t h transmetalation. A
nearly
first-order
d e p e n d e n c e is o b s e r v e d
between
the
initial
r e a c t i o n r a t e a n d the e t h y l e n e pressure. A s m a l l d e v i a t i o n occurs w h i c h Table I V .
Effect of Amine Structure and Concentration Structural type
RLi molarity
Amine mole/mole RLi
Rate
N(CH CH ) N
Bridgehead
(Me N) CH (Me NCH )
C h e l a t e (4) C h e l a t e (5)
0.10 0.10 0.05 0.04 0.04 0.08 0.10 0.04
1 2 4 1 1 1 2 1
12 19 32 12 126 128 130 25
Amine
2
2
2
2
2
2
3
2 2
(Me NCH ) CH 2
2
a
2
2
C h e l a t e (6)
° Number in parentheses indicates ring size of chelate. Moles C = /mole R L i / h r over first hour at 105°C and 500 psig. 6
2
Langer; Polyamine-Chelated Alkali Metal Compounds Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
h
9.
BUTTE
AND
193
Telomerization Reactions
EBERHARDT
is e x p l i c a b l e i n terms of n o n i d e a l b e h a v i o r of ethylene.
The
observed
d e p e n d e n c e i n d i c a t e s that t h e i n i t i a l a d d i t i o n of e t h y l e n e to t h e c a r b a n i o n d e r i v e d f r o m the telogen is the r a t e - c o n t r o l l i n g step. T h e t e l o m e r i z a t i o n rates v a r y s i g n i f i c a n t l y w i t h t h e n a t u r e of telogen.
T h e o r d e r of i n c r e a s i n g r a t e — t o l u e n e
b e n z e n e > b u t e n e > ethylene i n o r d e r of d e c r e a s i n g a c i d i t y .
T h u s the t e l o m e r i z a t i o n r e a c t i o n p r o v i d e s a means
of c o m p a r i n g the a c i d i t y o f v e r y w e a k l y a c i d i c u n s a t u r a t e d h y d r o c a r b o n s . H o w e v e r , the m e a s u r e m e n t is k i n e t i c i n n a t u r e a n d does n o t n e c e s s a r i l y a c c u r a t e l y reflect the t h e r m o d y n a m i c a c i d i t y .
Literature Cited 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19.
Pines, H., Schaap, L., Advan. Catal. (1960) 12, 117. Schaap, L., Pines, H., J. Amer. Chem. Soc. (1957) 79, 4967. Eberhardt, G. G., Butte, W. Α., J. Org. Chem. (1964) 29, 2928. Langer, A. W., Trans. Ν.Y. Acad. Sci. (1965) 27, 741. Gilman, H., Morton, J. W., Jr., Org. React. (1954) 8, 265. Gilman, H., Gaj, B. J., J. Org. Chem. (1963) 28, 1725. Brown, H. C., Sujishi, S., J. Amer. Chem. Soc. (1948) 70, 2878. Margerison, D., Newport, J. P., Trans. Faraday Soc. (1963) 59, 2058. Bartlett, P. D., Tanber, S. J., Weber, W. P., J. Amer. Chem. Soc. (1969) 91, 6362. Ziegler, K., Angew. Chem. (1959) 71, 623. Broaddus, C. D., J. Org. Chem. (1970) 35, 10. Butte, W. Α., Hydrocarbon Process. (1966) 45, 277. Tobin, M. C., Currano, M. J., J. Polym. Sci. (1957) 24, 93. Hart, H., Crocker, R. E., J. Amer. Chem. Soc. (1960) 82, 418. Eberhardt, G. G., Davis, W. R., J. Polym. Sci. (1965) A3, 3753. Ziegler, K., Gellert, H., Justus Liebigs Ann. Chem. (1950) 567, 195. Broaddus, C., Logan, T., Flautt, T., J. Org. Chem. (1963) 28, 1174. Krimm, S., Liang, C., Sutherland, G., J. Chem. Phys. (1956) 25, 549. Bryant, W., Voter, R., J. Amer. Chem. Soc. (1953) 75, 6113.
RECEIVED March 13, 1973.
Langer; Polyamine-Chelated Alkali Metal Compounds Advances in Chemistry; American Chemical Society: Washington, DC, 1974.