Chapter 23
Temperature-Programmed Desorption Study of CO on Pt-Reforming Catalysts R. L . Mieville and M. G . Reichmann
1
Downloaded by UNIV LAVAL on November 5, 2015 | http://pubs.acs.org Publication Date: October 3, 1989 | doi: 10.1021/bk-1989-0411.ch023
Amoco O i l Company, Amoco Research Center, Naperville, I L 60566
The characterization technique of CO TemperatureProgrammed Desorption has been studied with Pt reforming catalysts. C r i t i c a l factors i n the experimental procedure and the catalyst pretreatment conditions were examined. The CO desorption spectrum consists mainly of two peaks which are probably combinations of other peaks and the result of various binding energy states of CO to Pt. These i n turn could be due either to the interaction between Pt and the alumina support or the results of high and low coordination s i t e s on the Pt c r y s t a l l i t e s . No s i g n i f i c a n t relationship between the character of the CO desorption p r o f i l e and the a c t i v i t y of commercial catalysts was observed.
The r o u t i n e c h a r a c t e r i z a t i o n o f P t r e f o r m i n g c a t a l y s t s has depended m a i n l y on t h e t e c h n i q u e s o f X-ray d i f f r a c t i o n and CO and c h e m i s o r p t i o n f o r the s t a t e o f the P t , and N^ BET s u r f a c e a r e a measurements f o r the s u p p o r t . A l t h o u g h t h e s e t e c h n i q u e s can s i g n a l g r o s s changes i n the performance o f the c a t a l y s t , i n s t a n c e s occur when decreases i n a c t i v i t y and s e l e c t i v i t y are not r e f l e c t e d i n measurements made by the above methods. E v i d e n t l y a more d e t a i l e d a n a l y s i s o f P t i s r e q u i r e d . I n t h e o r y t h i s c o u l d be p r o v i d e d by a CO TPD method, but as y e t no r e l a t i o n s h i p between c a t a l y s t p e r f o r m ance and the CO d e s o r p t i o n spectrum has been e s t a b l i s h e d . I n f a c t , the l i t e r a t u r e i s s u r p r i s i n g l y s p a r s e on CO TPD s t u d i e s o f s u p p o r t e d P t . P a r t l y t h i s may be due t o the r e a l i z a t i o n t h a t the d e s o r p t i o n p r o c e s s from porous c a t a l y s t s o c c u r s p r i m a r i l y under e q u i l i b r i u m c o n d i t i o n s ( 1 ) . A l s o the v a r i e t y o f CO p r o f i l e s r e p o r t e d suggest t h a t e x p e r i m e n t a l procedures may be d i f f i c u l t t o reproduce ( 2 - 7 ) . I n o r d e r t o overcome some p o t e n t i a l e x p e r i m e n t a l problems, s p e c i a l c a r e was t a k e n t o t o e l i m i n a t e c o n t a m i n a t i o n . The r e s u l t s o f t h i s and o t h e r i n v e s t i g a t i o n s a r e p r e s e n t e d i n t h i s paper. 1
Current address: Amoco Chemicals, Naperville, IL 60566 0097-6156/89/0411-0243$06.00/0 © 1989 American Chemical Society
In Characterization and Catalyst Development; Bradley, S., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
244
CHARACTERIZATION AND CATALYST DEVELOPMENT
Experimental The TPD a p p a r a t u s c o n s i s t e d o f a s t a i n l e s s s t e e l f l o w system connected t o a t h e r m a l c o n d u c t i v i t y c e l l . C a t a l y s t samples o f 0.1 g were p l a c e d i n one arm o f an L-shaped, 6 mm Vycor t u b e . A d u a l a d s o r p t i o n bed c o n t a i n i n g a l u m i n a and Oxy-Trap ( A l l t e c h ) was p l a c e d i n t h e o t h e r arm t o p r e v e n t c o n t a m i n a t i o n by w a t e r and 0^» r e s p e c t i v e l y . Frequent r e g e n e r a t i o n i n H and He was r e q u i r e d . T h i s i n - s i t u a d s o r p t i o n bed was found n e c e s s a r y d e s p i t e p u r i f i c a t i o n t r a p s on a l l gas l i n e s coming i n t o t h e f l o w system. P u l s e s o f 0.25 c c o f a 10% m i x t u r e o f CO i n He were i n j e c t e d i n t o t h e He c a r r i e r gas and passed o v e r t h e p r e t r e a t e d c a t a l y s t a t room t e m p e r a t u r e . A l l runs were programmed h e a t e d a t a r a t e o f 20 K min . The P t c a t a l y s t s , e i t h e r commercial o r l a b o r a t o r y produced, were p r e p a r e d by t h e i m p r e g n a t i o n o f c h l o r o p l a t i n i c a c i d on Cyanamid's Aero 1000 a l u m i n a , except f o r two c a t a l y s t s which were p r e p a r e d by p l a t i n u m diamino d i n i t r i t e impregnation.
Downloaded by UNIV LAVAL on November 5, 2015 | http://pubs.acs.org Publication Date: October 3, 1989 | doi: 10.1021/bk-1989-0411.ch023
2
R e s u l t s and D i s c u s s i o n Some p r e l i m i n a r y runs were made on t h e Al^O^ s u p p o r t i n t h e absence of P t . H e a t i n g t h i s alumina w i t h o u t CO p u l s i n g showed a s m a l l peak a p p e a r i n g near 100°C. T h i s was i d e n t i f i e d as adsorbed as an i m p u r i t y from t h e c a r r i e r gas. CO c o m p l e t e l y d i s p l a c e s t h e on p u l s i n g a t room temperature and, as p r e v i o u s l y r e p o r t e d , p r o b a b l y r e s u l t s from the presence o f Lewis a c i d - b a s e s i t e s gn t h e alumina (8). The amount o f t h i s peak was a p p r o x i m a t e l y 10 moles p e r g o f Al^O^ w h i c h r e p r e s e n t s l e s s than 5% o f t h e CO d e s o r b i n g from a w e l l d i s p e r s e d P t c a t a l y s t o f 0.4 w t % l o a d i n g . Runs w i t h o u t t h e i n - s i t u H^O and 0« t r a p had shown t h a t CO^ desorbed w i t h t h e CO. However, w i t h t h e I n - s i t u t r a p m i n i m a l CO^ was observed. T h i s was c o n f i r m e d by a p a i r o f runs shown i n F i g u r e 1 w i t h and w i t h o u t A ^ O ^ ( C 0 t r a p ) p l a c e d a t t h e e x i t o f t h e d e s o r p t i o n tube. One o f t h e most i m p o r t a n t v a r i a b l e s i n t h e TPD o f CO from a s u p p o r t e d P t c a t a l y s t i s t h e sample p r e t r e a t m e n t . C a l c i n a t i o n a t 500°C f o r one hour f o l l o w e d by r e d u c t i o n i s t h e c o n v e n t i o n a l method to o b t a i n t h e maximum exposed P t and t h i s f o l l o w s c l o s e l y t o r e f i n e r y p r a c t i c e f o r s t a r t - u p and r e g e n e r a t i o n o f commercial c a t a l y s t s . The f i n a l s t e p i n our case was a 600°C He sweep f o r 30 m i n u t e s t o ensure a f u l l y d e h y d r a t e d c a t a l y s t up t o t h i s temperature so t h a t no w a t e r e v o l v e d d u r i n g t h e subsequent TPD. We had p r e v i o u s l y observed t h a t a h i g h temperature He sweep c o u l d reduce t h e P t c a t a l y s t w i t h o u t a p r i o r H r e d u c t i o n presumably by t h e d e c o m p o s i t i o n o f t h e P t o x i d e . F i g u r e 2 shows t h e e f f e c t i v e n e s s o f t h i s procedure as a f u n c t i o n of t h e p r e o x i d a t i o n t e m p e r a t u r e . A t 500°C p r e o x i d a t i o n no d i f f e r e n c e i s observed between e i t h e r a He o r H^ r e d u c t i o n . A f t e r a 600°C c a l c i n a t i o n t h e He r e d u c t i o n was l e s s e f f e c t i v e , e s p e c i a l l y f o r h i g h e r temperature p e a k s , and t h i s d i f f e r e n c e was more pronounced a f t e r a 700°C c a l c i n a t i o n t e m p e r a t u r e . I t i s i m p o r t a n t t o note t h a t more t h a n o x i d a t i o n o c c u r s a t h i g h t e m p e r a t u r e s , s i n t e r i n g o f t h e P t and d e h y d r a t i o n o f a l u m i n a a l s o o c c u r . However, i t i s n o t s u r p r i s i n g t h a t h a r d t o reduce P t o c c u r s a t t h e h i g h e s t temperature o f p r e o x i d a t i o n . A l l t h e s e f a c t o r s c o n t r i b u t e t o t h e change i n t h e 2
2
In Characterization and Catalyst Development; Bradley, S., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
23.
Desorption ofCO on Pt-Reforming Catalysts
MIEVILLE & REICHMANN
Downloaded by UNIV LAVAL on November 5, 2015 | http://pubs.acs.org Publication Date: October 3, 1989 | doi: 10.1021/bk-1989-0411.ch023
o
500
°C
F i g u r e 1. TPD S p e c t r a o f CO from 0.6 wt% P t / A l 0 3 a) Without C 0 t r a p b) With C 0 t r a p . 2
2
2
1
1
1
r"
1
1—
700°
/
Q. O
1
\
600°C^
o CJ 500°C^^
/ i
100
200
300
400
500
F i g u r e 2. E f f e c t o f C a l c i n a t i o n Temperature W i t h D i f f e r e n t Reductions CO TPD from 0.4 wt% P t / A l 0 1) 1 Hr H a t 500°C than He a t 600°C (30 min.) 2) 1 Hr He a t 600°C . 2
3
2
In Characterization and Catalyst Development; Bradley, S., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
245
Downloaded by UNIV LAVAL on November 5, 2015 | http://pubs.acs.org Publication Date: October 3, 1989 | doi: 10.1021/bk-1989-0411.ch023
246
CHARACTERIZATION AND CATALYST DEVELOPMENT
amount o f CO desorbed and t h e c h a r a c t e r o f t h e d e s o r p t i o n p r o f i l e w i t h the c a l c i n a t i o n t e m p e r a t u r e . F i g u r e 3 shows t h r e e TPD s p e c t r a r a n g i n g from 0.1 t o 0.3 g o f c a t a l y s t sample. B e s i d e s t h e amount o f CO d e s o r b e d , no major change i n t h e s p e c t r a was o b s e r v e d . However, a s m a l l d i s c e r n i b l e s h i f t t o i n c r e a s i n g temperatures i s seen on i n c r e a s i n g sample amount w h i c h suggests a s m a l l i n t e r p a r t i c l e r e a d s o r p t i o n e f f e c t . Pore d i f f u s i o n e f f e c t s on t h e CO TPD s p e c t r a were i n v e s t i g a t e d by v a r y i n g the p a r t i c l e s i z e o f t h e c a t a l y s t . F i g u r e 4 shows t h r e e s p e c t r a r a n g i n g i n p a r t i c l e s i z e from 60-80 mesh t o 14-20 mesh, and e s s e n t i a l l y no d i f f e r e n c e i n t h e s p e c t r a was o b s e r v e d . The e f f e c t o f t i t r a t i n g t h e P t w i t h s m a l l p u l s e s o f CO below t h e t o t a l s a t u r a t i o n coverage was examined. F i g u r e 5 shows t h e r e s u l t s of t h e d e s o r p t i o n s o f p r e v i o u s l y adsorbed i n t e g r a l amounts o f 0.036cc of CO on a 0.3 g sample o f 0.6 w t % P t / A ^ O ^ . CO desorbs s t e p w i s e from the h i g h t o t h e l o w temperature range w h i c h p r o b a b l e r e s u l t s n o t from s e l e c t i v e a d s o r p t i o n b u t from movement o f CO t o h i g h e r b i n d i n g s i t e s on d e s o r p t i o n i n d i c a t i n g t h a t r e a d s o r p t i o n i s o c c u r r i n g f r e e l y . F i g u r e 6 compares t h r e e TPD s p e c t r a , r a n g i n g from 0.3 t o 2.0 w t % P t , and shows t h a t t h e r e i s an o v e r a l l i n c r e a s e i n t h e s i z e o f t h e h i g h , r e l a t i v e t o t h e l o w temperature peak a s t h e P t l o a d i n g i n c r e a s e s . A t t h e same t i m e , t h e r e i s an upward s h i f t i n temperature f o r t h i s low temperature peak. I t might be expected t h a t t h e l a r g e r c r y s t a l l i t e s formed a t h i g h e r P t l o a d i n g s would have more t e r r a c e s i t e s , w h i l e s m a l l e r c r y s t a l l i t e s have more s t e p s and k i n k s w h i c h a r e a s s o c i a t e d w i t h the h i g h e r b i n d i n g s t a t e s ( 9 - 1 2 ) . However, t h i s i s c o n t r a r y t o t h e observed peak s h i f t . One p o s s i b l e e x p l a n a t i o n w h i c h i s c o n s i s t e n t w i t h t h e observed peak s h i f t i n v o l v e s t h e p l a t i n u m -support i n t e r a c t i o n . I n t h i s e x p l a n a t i o n , there i s a l i m i t t o the Al^O^ s i t e s which c a n i n t e r a c t s t r o n g l y w i t h P t (low temperature peak; and on f u r t h e r a d d i t i o n , P t moves t o l e s s i n t e r a c t i n g s i t e s . However, t h i s t h e o r y i s o n l y p a r t i a l l y c o n s i s t e n t w i t h t h e s p e c t r a i n F i g u r e 7 where two samples o f t h e same P t l o a d i n g (0.2 wt%) b u t o f d i f f e r e n t d i s p e r s i o n ( H / P t o f 0.40 and 1.07) a r e shown. A l t h o u g h t h e sample w i t h the h i g h e r d i s p e r s i o n d i d show a l a r g e r l o w temperature peak, i t a l s o appears t o c o n t a i n h i g h e r b i n d i n g s t a t e s w h i c h a r e c o m p l e t e l y absent i n t h e l o w d i s p e r s i o n c a s e . On t h e b a s i s o f the p l a t i n u m s u p p o r t i n t e r a c t i o n t h e o r y , we would e x p e c t a s m a l l e r h i g h temperature peak f o r t h e l e s s h i g h l y d i s p e r s e d sample ( 1 3 ) . I t s h o u l d be noted t h a t d e c r e a s e i n d i s p e r s i o n cannot always be e x p l a i n e d by c r y s t a l l i t e f o r m a t i o n . E v i d e n t a l l y f u r t h e r study and development i s needed. The main g o a l o f t h i s work was t o d e f i n e t h a t p a r t o f the TPD spectrum w h i c h c o n t r i b u t e s most t o t h e a c t i v i t y o f t h e c a t a l y s t . Four used r e f o r m i n g c a t a l y s t s w i t h r e l a t i v e a c t i v i t i e s r a n g i n g from 0.49 t o 1.00 (on the b a s i s o f performance i n a p i l o t p l a n t ) were examined. The r e s u l t s o f t h e s e r u n s a r e shown i n F i g u r e 8 and no o b v i o u s c o r r e l a t i o n seems t o e x i s t between t h e s p e c t r a and t h e corresponding a c t i v i t i e s . An attempt was made t o l e a r n whether i n c r e a s e d i n t e r a c t i o n o f p l a t i n u m w i t h exposed A l i o n s c o u l d be seen on more h i g h l y d r i e d a l u m i n a . The p o p u l a t i o n o f such i o n s i n c r e a s e s w i t h temperature o f d e h y d r a t i o n o f t h e a l u m i n a (8) . A P t / A l ^ c a t a l y s t was p r e d r i e d a t v a r i o u s t e m p e r a t u r e s i n He. The r e s u l t s i n F i g u r e 9 show a 2
In Characterization and Catalyst Development; Bradley, S., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
MIEVILLE & REICHMANN
Desorption oj CO on Pt-Reforming Catalysts
Downloaded by UNIV LAVAL on November 5, 2015 | http://pubs.acs.org Publication Date: October 3, 1989 | doi: 10.1021/bk-1989-0411.ch023
23.
F i g u r e 5. Coverage V a r i a t i o n CO added i n 0.036cc p u l s e s . Number o f p u l s e s as i n d i c a t e d (0.3 g, 0.5 wt% P t / A l 0 3 ) . 2
In Characterization and Catalyst Development; Bradley, S., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
247
248
CHARACTERIZATION AND CATALYST DEVELOPMENT
i
Downloaded by UNIV LAVAL on November 5, 2015 | http://pubs.acs.org Publication Date: October 3, 1989 | doi: 10.1021/bk-1989-0411.ch023
100
1
200
1
300
r
400
500
F i g u r e 6. E f f e c t o f P t L o a d i n g Pt wt% a) 2.00 b) 0.70 c)
t
100
1
200
1
r
300
400
F i g u r e 7. E f f e c t o f P t D i s p e r s i o n 0.2 wt% P t / A l 2 0 3 ( d i a m i n o - d i n i t r i t e Dispersion a) 107% b) 40%.
t
— i
100
1
1
°C
0.30.
500
°C
impregnation)
r
i
i
i
1
200
300
400
500
1
°C
F i g u r e 8. CO TPD S p e c t r a o f P t / A l 2 0 3 C a t a l y s t With D i f f e r e n t Activities Relative A c t i v i t i e s a) 1.0 b) 0.83 c ) 0.49 d) 0.56.
In Characterization and Catalyst Development; Bradley, S., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
23.
Desorption of CO on Pt-Reforming Catalysts
MIEVILLE & REICHMANN
249
Downloaded by UNIV LAVAL on November 5, 2015 | http://pubs.acs.org Publication Date: October 3, 1989 | doi: 10.1021/bk-1989-0411.ch023
p r o g r e s s i v e i n c r e a s e i n t h e r e l a t i v e s i z e o f t h e low temperature peak as t h e p r e d r y i n g t e m p e r a t u r e i s i n c r e a s e d b u t t h e d e c r e a s e i n h i g h temperature peak, a s might be e x p e c t e d , i s n o t c o n s i s t e n t l y seen here. S i m i l a r e x p e r i m e n t s were performed i n an IR s p e c t r o m e t e r . In these e x p e r i m e n t s t h e same P t c a t a l y s t was p r e d r i e d by e v a c u a t i o n a t 500° and 700°C a f t e r i n i t i a l c a l c i n a t i o n a t 500°C, b u t i n t h i s case before reduction i n a t 500°C. CO was added a t room temperature and t h e n p r o g r e s s i v e l y removed a t h i g h e r t e m p e r a t u r e s . T h i s r e s u l t s , as seen i n F i g u r e 10, i n a s e r i e s o f d e c r e a s i n g s i z e bands w i t h a f r e q u e n c y s h i f t t o lower wave numbers. Such s h i f t s i n t h e IR f r e quency w i t h CO coverage c o u l d p o s s i b l y o c c u r by changes i n
t
I
1
i
100
1
1
r
i
i
i
i
200
300
400
500
I
°C
F i g u r e 9. E f f e c t o f P r e d r y i n g Temperature 0.74 wt% P t / A l 0 a) 500°C b) 600°C c)700°C. 2
3
1950 F i g u r e 10. E f f e c t s o f P r e d r y i n g and P a r t i a l D e s o r p t i o n IR S p e c t r a o f Absorbed CO 1. C a l c i n e d a t 500°C 2. C a l c i n e d a t 700°C D e s o r p t i o n Temperature A) A f t e r CO added B) 60°C D)250°C E) 350°C F) 400°C.
on t h e
C)150°C
In Characterization and Catalyst Development; Bradley, S., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
Downloaded by UNIV LAVAL on November 5, 2015 | http://pubs.acs.org Publication Date: October 3, 1989 | doi: 10.1021/bk-1989-0411.ch023
250
CHARACTERIZATION AND CATALYST DEVELOPMENT
d i p o l e - d i p o l e c o u p l i n g . However, i t has been p r e v i o u s l y observed t h a t no changes i n f r e q u e n c y o c c u r d u r i n g the t i t r a t i o n o f a 0.6% P t / A l ^ O ^ sample w i t h s m a l l known amounts o f CO up t o a coverage o f 0. 7 CO m o l e c u l e s / P t atom ( p r e s s u r e ~ 7 x l 0 ~ T o r r ) . .At h i g h e r p r e s s u r e s , the band s h i f t e d from 2060 t o 2070 cm" ( 1 4 ) . This e q u i v a l e n t s h i f t i s seen i n F i g u r e 10 between s p e c t r a A and B. A l l f u r t h e r s h i f t s a r e then l i k e l y caused by the removal o f weaker h e l d CO by t h e r m a l d e s o r p t i o n w h i c h r e s u l t s i n the subsequent i n c r e a s e i n the s t r e n g t h the CO t o P t bond w h i l e d e c r e a s i n g the bond s t r e n g t h o f the C t o 0. The major l o s s o f P t s u r f a c e a r e a seen a f t e r the 700°C p r e t r e a t m e n t was e x p e c t e d on the b a s i s o f p r e v i o u s work showing t h a t h e a t i n g p r e o x i d i z e d P t / a l u m i n a i n vacuum gave e s s e n t i a l l y the same l o s s i n a r e a as h e a t i n g i n oxygen ( 1 4 ) . F i g u r e 10 a l s o shows t h a t the s p e c t r a o b t a i n e d from the more s t r o n g l y d r i e d c a t a l y s t (the 700°C t r e a t m e n t ) s h i f t s i n the band maxima t o f r e q u e n c i e s h i g h e r t h a n seen on the l e s s s t r o n g l y d r i e d c a t a l y s t (the 500°C t r e a t m e n t ) . T h i s peak s h i f t i n d i c a t e s t h a t t h e Pt i n t e r a c t s more w i t h the more h i g h l y d r i e d a l u m i n a s u r f a c e and t h e r e f o r e c o n f i r m s the TPD r e s u l t s . I n c o n c l u s i o n , the TPD s p e c t r a can be c h a r a c t e r i z e d by two broad peaks, one a t 100° and the o t h e r a t 450°. However, these c o u l d be made up o f a c o m b i n a t i o n o f s e v e r a l d i f f e r e n t peaks. Assignments o f these i n d i v i d u a l peaks t o s p e c i f i c P t s t a t e s are h a r d l y p o s s i b l e , b u t the broad TPD p r o f i l e a r i s e s out o f two p o s s i b l e c a u s e s : e i t h e r t o s t r u c t u r a l changes i n the P t c r y s t a l l i t e forms o r t o v a r i a t i o n o f P t - a l u m i n a i n t e r a c t i o n s due t o the h e t e r o g e n e i t y o f the a l u m i n a surface. We would l i k e t o acknowledge the two 0.2 wt% P t c a t a l y s t samples g i v e n t o us by P r o f e s s o r R. L. B u r w e l l and the I.R. s p e c t r a o b t a i n e d from Dr. J . B. P e r i . We s h o u l d a l s o l i k e t o thank them b o t h f o r many helpful discussions. LITERATURE CITED 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14.
Herz, R. K., K i e l a , J . B. and Marin, S. P., J . Catal. 1982, 73, 66. Darling, T. A., and Moss, R. L., J . Catal. 1967, 7, 378. Hoang-Van, C., Ghorbel, A., Pommier, B., and Teichner, S. J . B u l l . Soc. Chim. 1976, 355. Bain, F. T., Jackson, S. D., Thomson, S. J . , Webb, G., and Willocks, E., J . Chem. Soc. (Faraday). 1976, 72, 2516. Foger, K., Anderson, J . R., Appl. Surface S c i . 1979, 2, 335. Zhang, X. Q., Xue, H. and Xiexian, G., Cuihua Xueba. 1981, 2, 100. Saveleva, G. A., Galeev, T. K., Popova, N. M., Vozdvizhenskii, V. F., and Mishchenko, V. M., Kinet. Katal. 1981, 22, 1253. M i e v i l l e , R. L., J . Catal. 105, 1987, 536. Morgan, A. E., and Somorjai, G. A., Surface S c i . 1968,12,405. McCabe, R. W., and Schmidt,L. D., Surface S c i . 1977, 66, 101. Altman, E. I., and Gorte, R. J., Surface Sci. 1986, 172, 71. Gdowski, G. E., and Madix, R. J . , Surface S c i . 1982, 115, 524. Herz, R. K., and McCready, D. F., J . Catal. 1983, 81, 358. P e r i , J . B., J . Phys Chem. 1978, 52, 144.
RECEIVED
January 10, 1989
In Characterization and Catalyst Development; Bradley, S., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.