The Application of the Law of Mathematical Probability to the Behavior

The Application of the Law of Mathematical Probability to the Behavior of Gases in their Pressure–Volume–Temperature Relations. George A. Linhart...
1 downloads 0 Views 363KB Size
THE APPLICATION O F THE LAW O F MATHEMATICAL PROBABILITY TO THE BEHAVIOR OF GASES IN THEIR PRESSURE-VOLUME-TEMPERATURE RELATIONS' GEORGE A. LINHART

Department of Mathematics, Riverside Junior College, Riverside, California Received October 18, 193.9

The equation,

+ kzK)

2/ = y,lczK/(l

has been shown to hold for the course of a large variety of natural processes (1)) and it is of interest to find that it also applies to the behavior of a gas in its pressure-volume-temperature relations. I n the present case the equation assumes the form,

l/vp=

IcPK/(l

+ IcPK)V,

(1)

where V p denotes the volume at any pressure, P; V,, the ultimate molal volume of the gas; and k and K are constants, characteristic of the gas considered. V is expressed in standard units, i.e., the volume of a mole of gas at standard conditions is taken as unity. P is expressed in atmospheres. Equation 1 may also be written in the form, V,/(Vp

- V,>

=

kPK

(2)

and, at 1 atmosphere pressure may be written, (3)

V , / ( V , - V m ) = IC

Dividing equation 2 by equation 3, we obt,ain, (VI

-

vm>/(v,- v,) =

PK

(4)

In testing the constancy of K in equation 4, it was assumed for convenience of calculation that a t 1 atmosphere pressure Charles' Law is obeyed, i.e., 'VI = 'V0T/To,where V o = 1 and T o = 273"A. V , is given by the point of inflection on the curve obtained by plotting on a rather

' Read before the Mathematical Association of America, Southern California Section, San Diego Teachers College, March, 1932. 645

646

GEORGE A. LINHART

TABLE 1 Hydrogen gas

--

T P

___

1/

= 092.

v

K

T

= 15.5"C.

1IV

K

T = 99.3"C.

T

K

1/V

1lV

=

200.3"C K

atm.

1

100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000 2100 2200 2300 2400 2500 2600 2700 2800 2900 3000

93.5 136.0 175.7 213.2 248.1 280.9 311.8 340.9 368.6 394.8 318.9 442.7 465.1 487.1 507.6 532.2 544.9 563 .,8 579.7 610.9 642.0 670.7 698.3 724.6 749.3 772.5 794,9 816.3 837.2 857.3 876.4 894.5 911.1 927.6 948.2 959.7 975. e

0 999 0.999 0.999 0.999 0,998 0.998 0.997 0.997 0.996 0.996 0.995 0.995 0.994 0.994 0.994 0.995 0.992 0.993 0.992 0.991 0.991 0.990 0.990 0.991 0.991 0.991 0.992 0.992 0.993 0.993 0.995 0.995 '0.995 0.996 0.998 0.998 0.999

1500.C

Av. = 0.994

W

1.7334

1.9463

1

--

88.6 129.0 166.9 202,4 236.5 268.2 298,3 326.6 353.4 378,8 402.9 426.1 447.9 469.3 489.0 509.2 527.5 545.8 562.8 593.5 623,4 652.3 679.3 705.2 729.9 754.1 776.4 797,l 818.0 837.5 855.8 873.7 887.4 908.3 923.7 940.7 956.9 972.8 987.6

0.998 0.998 0.998 0,997 0.997 0.997 0.997 0,996 0.996 0.995 0.995 0.994 0.994 0,994 0,993 0.993 0.993 0.993 0,993 0.992 0.991 0.991 0.991 0.991 0.991 0.992 0.992 0.993 0.993 0.994 0.994 0.994 0.994 0.996 0.997 0.998 1.000 1,001 1.002

1500.0

Av. = 0.995

D ,5768

101.6 132.2 161.3 189.2 215.7 241,l 265.5 288.8 311.1 332.7 353.2 373.1 392.0 410.5 428.1 445.6 460.0 477,8

0.998 0.997 0.997 0.997 0.997 0.997 0.997 0.996 0.996 0.996 0.995 0.995 0.995 0.994 0.994 0.994 0.993 0,993

1500.0

Av. = 0,996

81.2 106.2 130.2 153.4 175.6 197.0 217.8 237,5 257.0 275.7 293.9 311.4 328.4 344.8 360.8 376,4

0,999 0.998 0,998 0,998 0.997 0.997 0.997 0,997 0,996 0.996 0.996 0.996 0.996 0.995 0.995 0,995

1500.0

Av. = 0.997

-

-

FIG. 1. HYDROQEN GAS A T 0°C.

FIG.2. OXYGENGAS AT 0°C. 647

648

GEORGE A. LINHART

TABLE 2 Oxygen gas P

T = 0°C.

v

11

T K

=

15.6"C.

K 1/v -

T I/

=

v

QQ.5"C. K

T = ISQ.5OC. K

1/v

alm.

1

1

100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850

107.9 164.2 218.8 268.4 311.7 348.6 380.4 408.2 432.5 453.7 472.5 489.7 505.3 519.5 532.2 543.2 555.6 566.3 576.4 594.5 611.6 627.4 642.3 655.3 667.8 679.3 690.3 700.8 710.2 719.4 728.0 736.4 744.3 752.2 759.6 766.9 774.0 791.3

1.043 1.058 1.068 1.075 1.079 1.080 1.080 1.os0 1.079 1.077 1.075 1.073 1.072 1.070 1.068 1.066 1.065 1.064 1.062 1.060 1.059 1.058 1.058 1.057 1.057 1.057 1.057 1.058 1.058 1.059 1.060 1.061 1.062 1.064 1.065 1.068 1.070 1.073

920.0

Av. = 1.066

900 950 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000 2100 2200 2300 2400 2500 2600 2700 2800 2900 3000 m

0.9459 99.6 151.2 201.1 246.7 287.9 324.0 355.6 383.0 407.5 429.2 448.8 466.4 481.9 497.3 510.5 523.3 534.5 546.1 555.6 574.7 592.1 607.9 623.0 636.5 649.4 660.7 671.8 682.6 692.5 702.2 711.2 719.4 727.8 735.3 742.9 750.8 757.9 765.1 771.6 920.0

0.7329 1.036 1.049 1.058 1.064 1.068 1.070 1.071 1.071 1.070 1.069 1.068 1.066 1.065 1.064 1.062 1.061 1.060 1.059 1.057 1.055 1.053 1.052 1.052 1.051 1.051, 1.051 1.051 1.051 1.051 1.052 1.053 1.054 1.055 1.056 1.057 1.059 1.061 1.063 1.065

72.7 108.5 142.9 175.6 206.5 234.9 261.1 285.5 308.3 329.5 348.8 366.7 383.1 398.7 413.7 427.7 440.9 453.3 464.9

0.5778 1.016 1.022 1.027 1.031 1.033 1.035 1.036 1.037 1.038 1.038 1.038 1.038 1.038 1.037 1.037 1.037 1.037 1.036 1.036

-

-

920.0

Av. = 1.034

83.3 110.0 135.1 159.2 182.1 204.0 224.6 243.9 262.5 280.1 296.6 312.3 327.2 341.4 355.6 367.9 380.4

1.011 1.015 1.017 1.019 1.020 1.021 1.022 1.022 1.023 1.023 1.023 1.024 1.024 1.024 1.024 1.024 1.024

920.0

Av. = 1.021

Av. = 1.058

649

MATHEMATICAL PROBABILITY IN BEHAVIOR OF GASES

TABLE 3 Nitrogen gas T

P I/

T=

= 0°C.

v

K

1/

v

16.0"C.

K

T

= 99.5OC.

1/v

K

-

T

= 199.5"C.

11 v

K

alm.

1

100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000 2100 2200 2300 2400 2500 2600 2700 2800 2900 3000

1

100.9 148.5 192.5 230.9 264.1 292.9 318.3 340.1 359,7 377.1 393.2 407.8 421.2 433.5 445.0 455.6 465.3 474.6 483,3 499.1 513.9 527.3 539.7 551.4 562,3 573.1 583.3 592.3 601.1 609.4 617.3 624.6 631.5 637.7 643.9 649.8 655.7 665.8 667.1

0,9446 1.031 1.040 1.044 1.047 1.048 1.047 1.046 1.045 1.043 1.041 1.039 1.038 1.036 1.035 1.034 1.032 1.031 1.030 1.029 1.027 1.025 1.024 1.023 1.023 1.023 1.023 1.024 1.024 1.025 1.026 1.027 1.028 1.029 1.029 1.030 1.031 1.033 1.039 1.036

-

94.2 138.7 179,5 216.0 247.8 276.2 301 .O 322.8 342.7 360.4 376.4 391.2 404.9 417.2 428.8 439.8 449,6 459.1 468,2 485.0 500.0 514.1 527.1 539.4 550,l 560.5 570.8 579.9 588.6 597.0 605.0 612.7 619.8 626.6 633.3 639.4 645.4 651 .O 656.8

1.026 1.033 1.038 1.041 1.041 1.041 1.041 1.039 1.038 1.037 1.035 1.034 1.032 1.031 1.030 1.029 1.028 1.027 1.026 1.024 1.023 1.022 1.021 1.021 1.021 1.021 1.021 1.021 1.022 1.022 1.023 1.024 1.025 1.026 1.027 1.028 1.029 1.030 1.032

800.0

Av. = 1.029

Av. = 00

800.0

1.032

0,7329 103.5 134.3 162.6 188.6 212.6 234.5 254.9 273.6 291 .O 306.9 321.7 335.6 348,3 360.4 371.8 382.3 392.9

0.5780 1.015 1.018 1.015 1.020 1.021 1.020 1.020 1.020 1.020 1.019 1.019 1.018 1.017 1.017 1.016 1.015 1.014

80.6 104.9 127.6 148.9 168.9 187.6 205.1 221.5 237.1 251.7 265.5 278.6 291.1 303.0 314.1 324.8 334.8

Av. = 800.0

1.018

800.0

1.006 1.008 1.009 1.009 1.010 1.010 1.009 1.009 1.009 1.009 1.009 1.008 1.008 1.008 1.007 1.007 1.007

-

Av. = 1.007

650

GEORGE A . LINHART

TABLE 4 Air P

T

= 0°C.

T

= 15.7"C.

T

T

= BD.4"C.

K

K

K

1/

= 200.4"C.

v

K

atm.

I . 9453

1

1

100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000 2100 2200 2300 2400 2500 2600 2700 2800 2900 3000

102.8 152.4 198.0 238.3 273.4 303,3 329.4 352.5 373.1 391.7 408.2 423.2 437.1 449.4 461.3 472.6 482.9 492.6 502.0 515.7 531.1 545,3 558.2 570.1 581.2 591.5 601.7 610.9 620.0 628.7 636.9 645.0 652.1 659.4 666.7 673.6 680.5 687.3 694.0

1.035 1.044 1.050 1.053 1.054 1.054 1.053 1.052 1.050 1.049 1.047 1.045 1.044 1.042 1.041 1.040 1.039 1.038 1.037 1.033 1.031 1.031 1.030 1.029 1.028 1.029 1.029 1.030 1.030 1.031 1.033 1.034 1.035 1.037 1.039 1.041 1.043 1.046 1.049

822.0

Av. = 1.040

00

-

0.7329

95.6 141.8 184.3 222.0 255.6 285.7 311.6 334.3 354,4 373.1 390.2 405.8 420,O 432.5 444.5 455.8 466.4 476.0 485.4 502.0 517.3 531.9 545.3 557.6 569.2 579.7 590,O 599,5 608.6 613.9 625.8 633.7 641.2 648.5 655.7 662.3 668.9 675.4 682.1

1.029 1.038 1.043 1.045 1.047 1.048 1.047 1.046 1.044 1.043 1.042 1.041 1.040 1.038 1.037 1.035 1.035 1.033 1.033 1.031 1.029 1.028 1.028 1.028 1.027 1.027 1.027 1.028 1.028 1.026 1.030 1.031 1.032 1.033 1.035 1.036 1.038 1.040 1.043

822.0

Av. = 1.035

71.3 104.8 136.3 165.5 192.5 219.6 240.6 261.6 280.7 298.2 314.8 330.5 344.8 358.4 371.2 383.3 394.2 404.4 414.2

0.5766 1.014 1.018 1.020 1.022 1.023 1.024 1.025 1.025 1.024 1.023 1.023 1.023 1.022 1.022 1.021 1.021 1.020 1.020 1.019

81.4 106.0 129.3 151.O 171.5 190.8 209.0 226.1 242.3 257.5 272.0 285.5 298.4 310.7 322.4 333.3 344.5 353.6

1.009 1.010 1.011 1.012 1.012 1.012 1.012 1.012 1.013 1.012 1.012 1.012 1.012 1.012 1.012 1.011 1.011 1.010

822.0

Av. = 1.012

-

822.0

Av. = 1.022

65 1

MATHEMATICAL PROBABILITY I N BEHAVIOR O F GASES

large scale l / V p against log P, for a t this point, lcPR = 1. This may be verified by taking the second derivative of 1 / V with respect to log P , and

FIG.3. NITROGEN GAS A T 0°C.

6

FIG.4. AIR AT 0°C.

placing the resulting expression equal to zero. Hence, by equation 1, 1/2V, = 1 / V at inflection, which can be easily located from the perfect

652



GEORGE A. LINHART

symmetry of the curve. Only one curve for each gas is given, since they are all of the same general trend and of nearly equal accuracy. V , may also be obtained approximately from density measurements of the given substance in its solid state near the absolute zero of temperature, since V is practically independent of temperature and pressure. However, the inflection point method is preferable, for density measurements a t extremely low temperatures are not likely to be generally reliable. The gases chosen for this study are hydrogen, oxygen, nitrogen and air. As the most complete P-V-T data (2) available are those of Amagat, ranging from 0°C. to 200°C. and from 1 atmosphere pressure to 3000 atmospheres pressure, these data were used in the calculation of K . RESULTS O F CALCULATIONS

The data for hydrogen gas are those of tables 4 and 8 of the original article cited above; for oxygen gas, of tables 4 and 7; for nitrogen gas, of tables 5 and 9; and for air, of tables 5 and 10. TABLE 5 Variation of K with the absolute temperature: a summary T

OXYGEN

HYDROQEN

I

NITROQEN

1

AIR

~~~

273 290 373 473 m

‘ .

1.OB6 1.058 1.034 1.021 1.000

0.994 0.995 0.996 0.997 1.000 I

I

1.032 1,029 1.018 1.007 1.ooo

I

1.040 1.035 1.022 1.012 1.ooo I

DISCUSSION O F T H E CONSTANTS

The concordance of the constants in each of the sixteen sets of results is quite remarkable and justifies the assumption that a t 1 atmosphere pressure Charles’ Law is valid. It is also of considerable interest to note that with rise in temperature of the gas the constant, K , in every case approaches unity (see figure 5 ) . This phenomenon is in accord with the kinetic theory of gases, leading to the simple expression, PV = a constant. The conditions postulated by the kinetic theory can be fulfilled only a t high temperature and a t moderately low pressure, in which case equation 4,

(v,- V , > / ( V , - v,) = P K reduces to PV = a constant, since a t high temperatures and low pressures K approaches, in all cases, unity, and V , becomes negligibly small as compared with either VI or V p . It may be noted that K for hydrogen approaches unity from below, while in the other cases K approaches unity from above. This phenom-

MATHEMATICAL PROBABILITY IN BEHAVIOR OF GASES

653

enon is shown on figure 5, where K is plotted to four significant figures against the absolute temperature. In conclusion, it may be pointed out that equation 4 is an empirical one, in that y of the general equation is replaced by 1 / V without any theoretical reason for doing so. The general equation, however, does possess a theoretical foundation, since, as will be shown in a subsequent paper, it is based upon the law of mathematical probability. Furthermore, equation 4 is not intended either for extrapolation or interpolation

purposes, for, as stated in the first paragraph of this article, the writer is merely endeavoring to show that the equation,

describes the general trend of a vast variety of natural processes in the fields of chemistry, physics, botany, biology, bacteriology and sociology, and even in practical engineering; for example, the depreciation and the life expectancy of physical property. REFERENCES (1) LINHART: J. Phys. Chem. 36, 1908 (1932). (2) AMAGAT: Ann. chim. phys. 29, 68 (1893). Extensive work in this field is contemplated by Mitchells: Proc. Roy. SOC.London A1930, 127-258.