3
The Chemical Fractionation of Boron
Isotopes
Downloaded by UNIV OF TEXAS EL PASO on December 28, 2014 | http://pubs.acs.org Publication Date: June 1, 1969 | doi: 10.1021/ba-1969-0089.ch003
A. A .
PALKO
a n d J . S. D R U R Y
Chemistry Division, O a k Ridge National Laboratory, O a k Ridge, T e n n .
This review
deals with studies
National
Laboratory
of boron
isotopes
compounds.
process
viously
employed.
nation
of the
anomalous
equilibrium
3
exchange
reaction
addition of a
to methods
which
for
of the
of different
isotopic
It also
accounted
preexpla-
in the molecular
variations
as a function
reaction
data.
which
of boron-10
maximum
exchange
other boron
its molecular in the development
was superior
and the observed
constants
experimental
and
Ridge
fractionation
The work also led to a theoretical
predicted
for the
BF
at the Oak
the chemical
resulted
which
concentration
tion compound,
model
between
This research
new separation
performed
concerning
isotopic
donors.
equilibrium
were
the
The
constants
consistent
predicted
the addi-
with
the
of
the
behavior
halides.
" T ^ T a t u r a l l y o c c u r r i n g b o r o n contains 1 9 . 8 % boron-10 a n d 8 0 . 2 % ^
boron-
11. T h e a b s o r p t i o n cross section of the n a t u r a l p r o d u c t f o r t h e r m a l
neutrons is 752 b a r n s ; f o r p u r e boron-10 a n d b o r o n - 1 1 , t h e c o r r e s p o n d i n g values
( 8 ) a r e 3837 a n d 0.005 b a r n s , respectively.
p u r e boron-10
is five times m o r e
effective
natural boron.
I n v i e w of this difference,
Thus, isotopically
as a n e u t r o n s h i e l d t h a n i t is n o t s u r p r i s i n g that a
d e m a n d arose, v e r y early i n t h e n u c l e a r era, for separated b o r o n isotopes. T h e search f o r a m e t h o d b y w h i c h b o r o n isotopes m i g h t b e separated began
as a classified p r o g r a m of t h e M a n h a t t a n Project i n 1943, at
C o l u m b i a U n i v e r s i t y . S e v e n separation schemes w e r e c o n s i d e r e d : t h e r mal
diffusion
of B F a n d d i s t i l l a t i o n 3
of B F , ( C H 0 ) B , 3
3
3
H B0 , 3
3
( C H ) 0 • B F , ( C H ) 0 • B F , a n d ( C H O ) B • 2 B F . T h e distillation 2
5
2
3
3
2
3
2
s
3
3
of ( C H ) 0 • B F w a s selected as t h e most p r o m i s i n g separation m e t h o d . 3
2
3
A l t h o u g h t h e selected isotope separation process w a s d e e m e d
supe-
r i o r to a n y other separation m e t h o d t h e n k n o w n , i t h a d c e r t a i n deficien40
In Isotope Effects in Chemical Processes; Spindel, W.; Advances in Chemistry; American Chemical Society: Washington, DC, 1969.
3.
Chemical
PALKO A N D DRURY
41
Fractionation
cies. U n d e r e q u i l i b r i u m c o n d i t i o n s , o n l y 6 0 % of the M e 0 • B F 2
3
complex
present i n the v a p o r phase of the d i s t i l l a t i o n c o l u m n s w a s dissociated i n t o B F a n d M e 0 . T h e presence of u n d i s s o c i a t e d c o m p l e x i n the v a p o r 3
2
phase s u b s t a n t i a l l y r e d u c e d the single-stage isotopic f r a c t i o n a t i o n factor for the process, a n d i n c r e a s e d b o t h the c a p i t a l i n v e s t m e n t for the p l a n t a n d the u n i t cost of the p r o d u c t . A l s o , a p p r e c i a b l e i r r e v e r s i b l e d e c o m p o s i t i o n of the M e 0 • B F 2
boron-10 as w e l l as B F
3
c o m p l e x o c c u r r e d , w i t h a n a t t e n d a n t loss of
3
a n d M e 0 . T o m i n i m i z e this d e c o m p o s i t i o n , it 2
Downloaded by UNIV OF TEXAS EL PASO on December 28, 2014 | http://pubs.acs.org Publication Date: June 1, 1969 | doi: 10.1021/ba-1969-0089.ch003
w a s necessary to operate the d i s t i l l a t i o n e q u i p m e n t at r e d u c e d pressure. T h i s r e s t r i c t i o n r e d u c e d the c a p a c i t y of the separation p l a n t a n d s u b stantially i n c r e a s e d the cost of the p r o d u c t .
Furthermore, i n the opera-
t i o n a l p r o c e d u r e s c u r r e n t i n 1954, difficulties w e r e e n c o u n t e r e d i n recove r i n g p r o d u c t B F f r o m the M e 0 • B F 3
2
3
complex.
T h e d o m a i n of the search for a n i m p r o v e d separation process w a s defined b y c e r t a i n c r i t e r i a : ( a ) i s o t o p i c f r a c t i o n a t i o n s h o u l d b e a c h i e v e d b y means of a two-phase, c h e m i c a l exchange r e a c t i o n w h i c h w a s a m e n a b l e to e o u n t e r c u r r e n t o p e r a t i o n i n a m u l t i s t a g e contactor at a m b i e n t t e m p e r a t u r e a n d pressure;
(b)
the single-stage isotopic f r a c t i o n a t i o n
factor for the r e a c t i o n s h o u l d b e a p p r e c i a b l y larger t h a n that for the d i s t i l l a t i o n of M e 0 • B F ; ( c ) 2
3
the m o l e c u l a r species
i n e a c h process
stream s h o u l d be t h e r m a l l y refluxable—i.e., c o n v e r t i b l e f r o m one
species
to the o t h e r b y the a d d i t i o n or r e m o v a l of heat alone; ( d ) process m a t e rials s h o u l d b e m o r e stable w i t h respect to i r r e v e r s i b l e d e c o m p o s i t i o n t h a n those u s e d i n the ( C H ) 0 process; a n d ( e ) 3
2
the c h e m i c a l f o r m of
the p r o d u c t s h o u l d p e r m i t a r e a d y , q u a n t i t a t i v e c o n v e r s i o n of the separ a t e d isotopes to the e l e m e n t a l state. Criteria (a)
and (c)
l i m i t e d research l a r g e l y to a class of i s o t o p i c
exchange reactions r e p r e s e n t e d b y E q u a t i o n 1: D • »BX (1) + 8
1 0
B X ( g ) = D • ™BX (1) + 3
3
1 1
BX (g)
(1)
3
w h e r e D • B X was a m o l e c u l a r a d d i t i o n c o m p o u n d , D was a L e w i s base 3
c o n t a i n i n g F , O , S, Se, N , P , A s , or C , a n d X w a s H , C H , or a h a l o g e n . 3
C r i t e r i a ( b ) a n d ( d ) g e n e r a l l y l i m i t e d the L e w i s base to those c o n t a i n i n g N , O , or S donors.
T h e same c r i t e r i a r e s t r i c t e d X , for the most p a r t , to
t h e first m e m b e r of the h a l o g e n f a m i l y . O u r research thus dealt m a i n l y w i t h B F complexes of ethers ( d i m e t h y l , d i e t h y l , d i p h e n y l , a n d m e t h y l 3
p h e n y l ) , thioethers ( d i m e t h y l , d i e t h y l , d i - n - b u t y l , a n d d i p h e n y l ) , m e r captans
( e t h y l a n d b u t y l ) , amines
( t r i e t h y l , JV-methyl d i p h e n y l , a n d
N , N ' - d i m e t h y l p h e n y l ) , and a small group hydrofuran,
of other molecules
phenol, thiophenol, nitrobenzene,
(tetra-
methyl isocyanide,
di-
m e t h y l selenide, a n d d i m e t h y l t e l l u r i d e ) . I n a d d i t i o n , b r i e f studies w e r e m a d e of B C 1 complexes of d i p h e n y l ether, d i p h e n y l t h i o e t h e r , t h i o p h e n o l , 3
and acetyl chloride.
In Isotope Effects in Chemical Processes; Spindel, W.; Advances in Chemistry; American Chemical Society: Washington, DC, 1969.
42
ISOTOPE E F F E C T S IN C H E M I C A L
PROCESSES
D o n o r s w e r e screened first o n the basis of d i s s o l v i n g sufficient L e w i s acid.
A L e w i s a c i d : d o n o r r a t i o of 1.0 was d e s i r e d .
If w a r r a n t e d , the
e q u i l i b r i u m constant for R e a c t i o n 1 w a s t h e n d e t e r m i n e d .
Attractive
donors w e r e tested for r e v e r s i b l e d i s s o c i a t i o n of the m o l e c u l a r a d d i t i o n compound.
T h o s e s u r v i v i n g this test w e r e u s u a l l y g i v e n c o m p l e t e e x a m i -
nations w i t h respect to the k i n e t i c s of exchange, c h e m i c a l s t a b i l i t y , c o r r o sion
characteristics, a n d p h y s i c a l properties
of
engineering
interest.
F i n a l l y , bench-scale e q u i p m e n t w a s set u p i n w h i c h the selected exchange Downloaded by UNIV OF TEXAS EL PASO on December 28, 2014 | http://pubs.acs.org Publication Date: June 1, 1969 | doi: 10.1021/ba-1969-0089.ch003
r e a c t i o n was i n t e g r a t e d w i t h the reflux reactions a n d p u r i f i c a t i o n steps, a n d the entire process w a s o p e r a t e d for weeks or m o n t h s to demonstrate the f e a s i b i l i t y of the process. D u r i n g the latter stages of the i n v e s t i g a t i o n , R a m a n a n d i n f r a r e d spectroscopic studies w e r e m a d e of c e r t a i n i s o t o p i cally substituted molecular addition compounds.
T h e s e studies e n a b l e d
i s o t o p i c e q u i l i b r i u m constants to b e c a l c u l a t e d for c o m p a r i s o n w i t h those o b t a i n e d e x p e r i m e n t a l l y . C o n s i d e r a t i o n of a l l i n f o r m a t i o n g e n e r a t e d b y t h e p r o g r a m l e d to the d e v e l o p m e n t of a t h e o r e t i c a l m o d e l of the exchange r e a c t i o n w h i c h satisfactorily a c c o u n t e d
for
the
k n o w n chemistry
of
R e a c t i o n 1.
Physical Properties of the Molecular
Addition
Compounds of BF
3
A d d u c t s f o r m e d f r o m v e r y w e a k L e w i s bases w e r e e x c l u d e d because of u n a t t r a c t i v e B F / d o n o r ratios. C o n v e r s e l y , a d d u c t s f o r m e d f r o m v e r y 3
strong donors w e r e solids w h i c h w e r e not a m e n a b l e to c o u n t e r - c u r r e n t processing unless d i s s o l v e d i n an a p p r o p r i a t e solvent. T h e necessity for t h e solvent to b e u n r e a c t i v e w i t h gaseous B F c o m p l i c a t i o n s l i k e l y to be u n e c o n o m i c . of B F
3
3
introduced operational
I n a d d i t i o n , the rate of
w i t h a d d u c t s of v e r y strong donors p r o v e d to be
exchange
unacceptably
slow. T h u s , i n g e n e r a l , w e sought donors of i n t e r m e d i a t e b a s i c i t y w h i c h f o r m e d l i q u i d complexes at a m b i e n t temperatures. T y p i c a l l y , the heats of association of s u c h a d d u c t s r a n g e d f r o m a b o u t 5 to 20 k i l o c a l o r i e s per mole. P o t e n t i a l l y i n t e r e s t i n g donors w e r e first screened o n the basis of the s a t u r a t i o n pressure of the a d d u c t .
( T h e t e r m " s a t u r a t i o n p r e s s u r e " refers
to the t o t a l pressure of v a p o r i n e q u i h b r i u m w i t h a s a m p l e of m o l e c u l a r addition compound.
T h e v a p o r m a y consist of free a c i d , base, u n d i s s o -
c i a t e d c o m p l e x , or a c o m b i n a t i o n of a l l of these constituents.)
Measured
q u a n t i t i e s of B F a n d the d o n o r w e r e e q u i l i b r a t e d at a g i v e n t e m p e r a t u r e 3
i n the a p p a r a t u s s h o w n i n R e f e r e n c e 14. M a n o m e t r i c observations ( c o r r e c t e d for the free v o l u m e of the e q u i p m e n t ) w e r e m a d e over t h a t p a r t of the l i q u i d r a n g e w h i c h l a y b e t w e e n r o o m t e m p e r a t u r e a n d t h e f r e e z i n g p o i n t of the c o m p l e x .
E s t i m a t e s of the heat of association of the c o m -
plexes w e r e o b t a i n e d f r o m the t e m p e r a t u r e d e p e n d e n c e of the s a t u r a t i o n
In Isotope Effects in Chemical Processes; Spindel, W.; Advances in Chemistry; American Chemical Society: Washington, DC, 1969.
3.
PALKO A N D DRURY
Chemical
43
Fractionation
pressures, o r , i n a f e w instances, f r o m l i q u i d - o r gas-phase c a l o r i m e t r i c measurements. T h e f r e e z i n g p o i n t of e a c h c o m p l e x w a s d e t e r m i n e d f r o m r e c o r d e d c o o l i n g curves, a n d f r o m d i r e c t observations of t h e t e m p e r a t u r e at w h i c h c r y s t a l l i z a t i o n o c c u r r e d .
T h e results of these studies are s u m -
marized i n Table I and Table II.
Downloaded by UNIV OF TEXAS EL PASO on December 28, 2014 | http://pubs.acs.org Publication Date: June 1, 1969 | doi: 10.1021/ba-1969-0089.ch003
Table I. Saturation Pressures of Some 1:1 Molecular Addition Compounds from the Freezing Point to Room Temperature LogP Freezing Point °C.
Adduct
±
=
a-(b/T)
a std. error
b ^^•association ± std. error (kcal/mole) Ref.
19,6 — — 35.7 — Donor decomposed by B F 92 Adduct dissociates irreversibly upon melting (C H ) NMe • B F , 100 Adduct dissociates irreversibly upon melting Me 0 • BF -12 9.806 2775 13.6" Et 0 • BF - 5 9 10.082 2879 11.9* Bu 0 • B F — -30 5 5.65 ± 0.05 1010 ± 15 HCOOEt • B F — -8 5.70 ± 0.05 1330 ± 20 6" MeCOOEt • B F 8.5 7.20 1870 EtCOOEt • B F , 12.6 9.83 2726 (CH ) 0 • B F 12 9.734 3126 16.8* C H O H • 0.8BF 8.7* -15 9.94 ± 0.008 1900 ± 16 C H O M e • 0.9BF 12.4 — 2 10.1 ± 0.1 2140 ± 33 C H OEt • BF 10.9 2575 11.8" (C H ) 0 • B F Does not form at - 4 0 ° C . — — C H N0 • BF — 0 9.2 C H OBu • BF 12.1" 12.04 2650 Me S • B F 10.2 - 2 0 10.164 ± 0.001 2209 ± 70 Et S • B F - 6 2 10.030 ± 0.004 2111 ± 21 9.6 Bu S • B F 12.8 2174 ± 19 < - 6 0 10.39 ± 0.06 CgfLjSH • B F , Does not form at - 4 0 ° C . (C H ) S • B F Does not form at - 4 0 ° C . Me Se • B F 8.3° -43 9.945 ± 0.005 1824 ± 25 Me Te • B F , Does not form at - 3 0 ° C . — — M e C O C l • BC1, — -60 — — 5.3 — 4 (C H ) 0 • BCi C^rL^SF! • BC1 Adduct completely dissociated at 25°C. 8.8 (CeH ) S • BC1 42 — —
Et N • B F MeNC • B F C H NMe • BF 3
3
3
6
5
3
2
6
5
3
2
2
3
2
3
2
a
3
3
a
3
a
2
6
5
6
5
6
5
4
3
3
3
6
5
6
3
2
5
6
r
3
5
3
2
a
3
a
3
2
6
a
3
5
2
3
2
3
2
6
5
2
a
s
3
5
(18) JT4) (14) (19) (19) (9) (9) (15) (20) (21) (11)
3
2
2
(1) (18) (18)
2
a
3
(4) (10) (19, 22) (23) (24) (18) (18) (19) (19) (6) (6,13) (18) (18)
Estimate was based on the relationship, A H = 2.303 Rb, where R is the gas constant and b is the coefficient of the temperature term in the equation, log P =
0
a 8 S O C l a t i o n
a b
c
(b/T).
This value was obtained from gas-phase dissociation measurements. Datum is from measurements made in nitrobenzene solutions.
In Isotope Effects in Chemical Processes; Spindel, W.; Advances in Chemistry; American Chemical Society: Washington, DC, 1969.
44
ISOTOPE E F F E C T IN C H E M I C A L
Table II.
Solubility of B F , in Donor (moles B F / m o l e Donor) 3
Temp. (°C.)
Donor Me 0
-19.0 -16.5 -9.0 -8.1 5.5 6.0 22.0 30.0 31.0 -20.0 -19.0
Downloaded by UNIV OF TEXAS EL PASO on December 28, 2014 | http://pubs.acs.org Publication Date: June 1, 1969 | doi: 10.1021/ba-1969-0089.ch003
2
Et 0 2
-10.0 -9.5 -8.5 5.5 22.0 (CH ) 0 2
4
Et S 2
EtSH
C H N0 6
5
PROCESSES
2
8.0 14.0 22 -25.0 -17.0 -16.0 -8.0 -6.0 10.5 22.5 31.0 31.5 -78 -50 0 25 -4.0 1.1 7.0 11.0 14.0 21.0 25.0
Pressure 400 Torr
1.103 1.082 — — 1.051 1.034 — 1.027 — 1.161 1.159 1.111 — 1.106 1.069 1.043 1.043 1.021 1.011 1.005 1.116 1.085 — 1.052 — 0.997 0.936 — 0.857 — — — — 0.2134 0.0792 — 0.0538 0.0458 0.0318 0.0253
760 Ton 1.201 — — 1.133 1.085 — 1.050 1.038 — 1.276 1.271 — — 1.185 1.182 1.116 1.070 1.062 1.048 1.032 — — 1.138 — 1.092 1.032 0.996 0.950 — 3.425 2.402 0.0324 0.000 0.765 — 0.1146 0.0948 0.0838 0.0597 0.0506
T h e i n d e x of s t a b i l i t y o b t a i n e d b y d i r e c t l y c o m p a r i n g the s a t u r a t i o n pressures of t w o c o m p l e x e s w a s b i a s e d b y the v o l a t i l i t y of t h e free d o n o r
In Isotope Effects in Chemical Processes; Spindel, W.; Advances in Chemistry; American Chemical Society: Washington, DC, 1969.
3.
Chemical
PALKO A N D DRURY
45
Fractionation
i f the b o i l i n g p o i n t of the latter w a s r e l a t i v e l y l o w . B e t t e r estimates
(2)
of s t a b i l i t y w e r e o b t a i n e d b y c o m p a r i n g the t h e r m a l d e p e n d e n c e of the saturation pressures. T h i s p r o c e d u r e was e q u i v a l e n t to a c o m p a r i s o n of t h e enthalpies of f o r m a t i o n of the a d d u c t s f r o m t h e i r constituent m o l e cules.
S u c h comparisons w e r e u s u a l l y consistent w i t h the o r d e r of sta-
b i l i t y d e t e r m i n e d b y other c r i t e r i a .
H o w e v e r , for s t r u c t u r a l l y diverse
complexes, these comparisons w e r e not a l w a y s d e p e n d a b l e since, i n some cases, e n t r o p y effects strongly i n f l u e n c e d the t h e r m a l d e p e n d e n c e of the Downloaded by UNIV OF TEXAS EL PASO on December 28, 2014 | http://pubs.acs.org Publication Date: June 1, 1969 | doi: 10.1021/ba-1969-0089.ch003
saturation pressures. I n g e n e r a l , w e f o u n d that the s t a b i l i t y of s i m i l a r B F a d d u c t s v a r i e d 3
w i t h different d o n o r atoms, d e c r e a s i n g i n the o r d e r
N > 0 > S > S e >
T e . T h u s , M e 0 • B F w a s m o r e stable t h a n M e S • B F 2
3
2
or M e S e • B F .
3
2
3
T h e s t a b i l i t y of B F a d d u c t s c o n t a i n i n g the same d o n o r a t o m , b u t differ3
ent substituents i n the d o n o r m o l e c u l e , also v a r i e d . T h e presence of a n e l e c t r o p h i l i c g r o u p i n the d o n o r m o l e c u l e decreased the b a s i c i t y of the d o n o r a n d w e a k e n e d the a d d u c t . and C H O M e • B F 6
5
3
Thus, ( C H ) O B F 6
5
2
3
was less stable t h a n M e 0 • B F . 2
d i d not f o r m , C o n v e r s e l y , the
3
presence of a s m a l l n u c l e o p h i l i c substituent i n the d o n o r m o l e c u l e t e n d e d to s t a b i l i z e the r e s u l t i n g a d d u c t . H o w e v e r , i f the n u c l e o p h i l i c substituent w e r e sufficiently l a r g e a w e a k e n e d a d d u c t c o u l d result, o w i n g to steric interference b e t w e e n the substituent a n d the b o r o n t r i h a l i d e ( 3 ) .
Thus,
M e S • B F w a s s o m e w h a t m o r e stable t h a n E t S • B F . H e r e , the ^ - c a r b o n 2
3
2
3
atoms i n the e t h y l groups of the latter c o m p o u n d interfere w i t h the n o r m a l p o s i t i o n i n g of the fluorine atoms i n the a d d u c t . A s i m i l a r degree of steric interference existed b e t w e e n the /3-carbon atoms a n d the
fluorine
atoms
of the B u S a d d u c t , b u t this c o m p l e x was s o m e w h a t m o r e stable t h a n 2
the e t h y l c o m p o u n d , p r e s u m a b l y because the b u t y l groups c o n t r i b u t e a greater i n d u c t i v e effect t h a n the e t h y l groups. T h i s d o m i n a n c e of i n d u c t i v e effect over steric interference i n the B u S a d d u c t w o u l d not 2
be
e x p e c t e d i n the B u 0 • B F m o l e c u l e . H e r e , the s m a l l e r size of the d o n o r 2
3
a t o m l e d to severe steric interference b e t w e e n the a l k y l groups a n d the fluorine
atoms
(3).
A f u r t h e r e x a m p l e of the influence of steric interference i n ether a d d u c t s of
BF
(C H ) 0-BF 2
5
2
3
3
was provided by and ( C H ) O B F . 2
4
3
a comparison
of
the stabilities of
A l t h o u g h the a t o m i c
compositions
of these m o l e c u l e s differed o n l y b y t w o protons, the e n t h a l p y of associat i o n of the latter m o l e c u l e e x c e e d e d that of the f o r m e r b y m o r e t h a n 40%.
It seems clear that the increase i n s t a b i l i t y of the t e t r a h y d r o f u r a n
c o m p l e x m u s t b e a t t r i b u t e d to the r i n g s t r u c t u r e of the d o n o r w h i c h locks the i n t e r f e r i n g e t h y l groups out of the w a y of the fluorine atoms, thus e l i m i n a t i n g , or at least r e d u c i n g , steric interference ( 3 ,
17).
In Isotope Effects in Chemical Processes; Spindel, W.; Advances in Chemistry; American Chemical Society: Washington, DC, 1969.
46
ISOTOPE E F F E C T S IN C H E M I C A L PROCESSES
Table III.
Equilibrium Constants and Related + Donor • BF (l)
BF (g)
10
Donor
Downloaded by UNIV OF TEXAS EL PASO on December 28, 2014 | http://pubs.acs.org Publication Date: June 1, 1969 | doi: 10.1021/ba-1969-0089.ch003
2
2
4
5
6
5
6
5
6
3
= BF (g) n
+
3
-AH° (cal. mole' )
b std. error
±
K
0.018 ± 0.005 0.010 ± 0.005 (0.006)
2
2
6
a std error
±
Me 0 Et 0 Bu 0 HCOOEt MeCOOEt EtCOOEt (CH ) 0 C H OH C H OMe C H OEt C H OBu Me S Et S Bu S Me Se Et N
n
3
1
40 33 (7)
8.8 ± 1.5 7.1 ± 1.3 (1.6)
0.094
32.5
0.0089 ± 0.006 0.023 ± 0.001 0.022 ± 0.006 0.026
6.0 ± 1.8 10.1 ± 0.3 10.5 ± 1.8 12.9
28 46 48 59
0.020 0.012 0.018 0.013 0.012
10.7 8.5 9.6 8.1 6.4
49 39 44 37 30
148.5
5
2
2
2
2
8
± ± ± ± ±
The Isotopic Exchange
0.004 0.002 0.005 0.001 0.002
± ± ± ± ±
1.1 0.6 1.2 0.4 0.5
Reaction
A f t e r p r e l i m i n a r y s c r e e n i n g o n the basis of v a p o r pressure m e a s u r e ments, a t t r a c t i v e donors w e r e screened
f u r t h e r o n the basis of t h e i r
e q u i l i b r i u m constants for the isotopic exchange r e a c t i o n : Donor • B F ( l ) + n
8
1 0
B F ( g ) = Donor • 3
1 0
BF (1) +
n
8
BF (g).
(2)
8
T h e e q u i l i b r i u m constants for a p a r t i c u l a r d o n o r w e r e d e t e r m i n e d b y s t i r r i n g a p p r o p r i a t e q u a n t i t i e s of the d o n o r a n d B F for several hours i n 8
a s u i t a b l e r e a c t i o n vessel (24).
R e p l i c a t e a l i q u o t s of B F b e f o r e a n d after 8
e q u i l i b r a t i o n w e r e a n a l y z e d for b o r o n - 1 0 b y means of a 6 - i n c h , 60°-sector r a t i o mass spectrometer.
I n o u r experiments the a m o u n t of b o r o n t r i -
fluoride i n the gas phase w a s d e l i b e r a t e l y k e p t s m a l l , c o m p a r e d w i t h the a m o u n t of b o r o n t r i f l u o r i d e i n the l i q u i d phase.
F o r this c o n d i t i o n , the
r a t i o of b o r o n - 1 0 to b o r o n - 1 1 i n the gas before a n d after e q u i l i b r a t i o n a p p r o x i m a t e d the t r u e single-stage f r a c t i o n a t i o n factor, 1 0
B/ B(gas).
W h e n c o r r e c t e d for the B F
n
3
1 0
B/
1 1
B(liquid)/
present i n the l i q u i d phase
i n excess of the 1 : 1 m o l e r a t i o r e q u i r e d b y the m o l e c u l a r a d d i t i o n c o m pound
( T a b l e I I ) , these single-stage f r a c t i o n a t i o n factors
represented
the isotopic e q u i l i b r i u m constants for R e a c t i o n 2. E q u i l i b r i u m constants for the exchange of b o r o n b e t w e e n B F p o u n d s of B F
3
8
gas a n d fifteen a d d i t i o n c o m -
are s h o w n i n T a b l e I I I . C u r v e s of t h e f o r m , l o g K
eq
=
(b/T)
— a, w e r e fitted to the d a t a b y means of the least squares t e c h -
nique.
F r o m the slopes of these curves a n d the values of the i s o t o p i c
In Isotope Effects in Chemical Processes; Spindel, W.; Advances in Chemistry; American Chemical Society: Washington, DC, 1969.
3.
Chemical
PALKO A N D DRURY
47
Fractionation
Thermodynamic Functions for the Isotopic Exchange Reaction Donor • BF (l); 10
3
Log K
K
-AS (e.u.)
AF° mole' )
0Q
0
1
15 19
Downloaded by UNIV OF TEXAS EL PASO on December 28, 2014 | http://pubs.acs.org Publication Date: June 1, 1969 | doi: 10.1021/ba-1969-0089.ch003
= (b/T) - a
eq
0.08 0.05
15 14 18 26
0.04 0.11 0.10 0.10
22 22 19 19 13
0.09 0.06 0.08 0.06 0.05
30°C. 1.026 1.031 1.029 1.033 1.019 1.026 1.024 1.030 1.042 1.026 1.037 1.037 1.032 1.032 1.022
0°C.
Ref.
1.033 1.037
(19) (23) (19) (29) (9) (9) (18) (20) (21) (U) (10) (19) (23) (24) (19) (23)
(20°C.) (28°C.) (45°C.) 1.031 1.040 1.039 (25°C.) (25°C.) 1.046 1.043 1.040 1.039 1.028
e q u i l i b r i u m constants, the t h e r m o d y n a m i c q u a n t i t i e s , A F ° ,
Ai/°,
and
A S ° , w e r e c o m p u t e d for the i s o t o p i c exchange r e a c t i o n . It m a y b e seen f r o m F i g u r e 1 that the e q u i l i b r i u m constants for R e a c t i o n 2 v a r i e d w i t h d o n o r , d o n o r substituents, a n d w i t h t e m p e r a t u r e . A t 30 ° C . the f o l l o w i n g d o n o r o r d e r w a s o b s e r v e d : d i e t h y l sulfide > d i m e t h y l sulfide > d i m e t h y l selenide >
d i b u t y l sulfide >
d i m e t h y l ether >
d i e t h y l ether >
tetrahydrofuran >
phenol >
m e t h y l p h e n y l ether
>
triethyl amine. In gen-
eral, the isotopic e q u i l i b r i u m constants for donors c o n t a i n i n g s u l f u r w e r e greater t h a n those for s i m i l a r donors c o n t a i n i n g oxygen.
Equilibrium
constants for donors c o n t a i n i n g o x y g e n w e r e greater t h a n those for c o r r e s p o n d i n g bases c o n t a i n i n g n i t r o g e n . F o r m o l e c u l a r a d d i t i o n c o m p o u n d s i n w h i c h the d o n o r a t o m w a s s u l f u r , the v a l u e of the isotopic e q u i l i b r i u m constant at 3 0 ° C . v a r i e d w i t h substituents i n the f o l l o w i n g o r d e r : e t h y l > methyl > >
butyl.
A t l o w e r temperatures this o r d e r w a s m e t h y l >
b u t y l , o w i n g to differences i n e n t h a l p y of the respective
reactions. F o r oxygen donors, the o r d e r at 3 0 ° C . was e t h y l > tetrahydrofuran > acetate
>
formate
butyl > >
methyl ^
O H . W i t h esters, the o r d e r at 3 0 ° C .
propionate.
ethyl
exchange
I n g e n e r a l , it w a s o b s e r v e d
was that
w e a k e r m o l e c u l a r a d d i t i o n c o m p o u n d s r e s u l t e d i n larger i s o t o p i c e q u i l i b r i u m constants.
A d e t a i l e d d i s c u s s i o n of the t h e o r y of i s o t o p i c f r a c -
t i o n a t i o n b y means of R e a c t i o n 1 w i l l b e p r e s e n t e d later i n this p a p e r . T h e rate of exchange of b o r o n b e t w e e n the m o l e c u l e s p a r t i c i p a t i n g i n R e a c t i o n 1 is i m p o r t a n t i n p r a c t i c a l a p p l i c a t i o n s . If the r e a c t i o n is to Library American Chemical Socfe^f In Isotope Effects in Chemical Processes; Spindel, W.; Advances in Chemistry; American Chemical Society: Washington, DC, 1969.
48
ISOTOPE E F F E C T S IN C H E M I C A L PROCESSES
b e u s e d i n p a c k e d c o l u m n s , the h a l f - t i m e of the exchange r e a c t i o n s h o u l d b e of the order of seconds, otherwise the effective stage l e n g t h w i l l be excessive.
Q u a l i t a t i v e observations
made
d u r i n g e q u i l i b r i u m constant
d e t e r m i n a t i o n s i n d i c a t e d that the rate of exchange of b o r o n b e t w e e n B F a n d the m o l e c u l a r a d d i t i o n c o m p o u n d was p r o b a b l y r a p i d for
3
adducts
w h i c h w e r e h i g h l y d i s s o c i a t e d i n the v a p o r phase, s u c h as the anisole c o m p l e x , b u t w a s c o n s i d e r a b l y slower for stronger m o l e c u l a r a d d i t i o n compounds
s u c h as the t r i e t h y l a m i n e c o m p l e x .
Downloaded by UNIV OF TEXAS EL PASO on December 28, 2014 | http://pubs.acs.org Publication Date: June 1, 1969 | doi: 10.1021/ba-1969-0089.ch003
of these t w o complexes
with B F
were
3
T h e rates of
exchange
determined quantitatively by
c o n t a c t i n g the n o r m a l B F c o m p l e x w i t h boron-10 e n r i c h e d gas. A n a l y s i s 3
of the gas before a n d after e q u i l i b r a t i o n s h o w e d h o w m u c h
exchange
occurred.
was
F o r the anisole system, the h a l f - t i m e of exchange
less
t h a n f o u r seconds. A h a l f - t i m e of a b o u t fifty m i n u t e s w a s estimated for the t r i e t h y l a m i n e system ( T a b l e I V ) . .0261
1
1
,
,
,
!
1
1
,
1
T Figure 1.
Variations of the isotopic equilibrium
Donor • H B F ( 1 ) + 8
constants of the
B F ( g ) = Donor • B F ( 1 ) + With donor and temperature 1 0
3
1 0
3
n
reaction
BF (g) 3
F r o m T a b l e I I I i t is a p p a r e n t that a n u m b e r of different donors c o u l d be u s e d to o b t a i n v e r y attractive f r a c t i o n a t i o n factors. I n d e e d , at 3 0 ° C , the isotopic e q u i l i b r i u m constant w a s 1.03, or m o r e , for phenetole, anisole, d i e t h y l ether, e t h y l formate, d i m e t h y l selenide, d i m e t h y l sulfide, a n d d i e t h y l sulfide. H o w e v e r , a l l of these donors w e r e not e q u a l l y satisfactory for our purpose. T h e b o r o n t r i f l u o r i d e complexes of the thioethers, the selenide, a n d the ester h a d a p r o n o u n c e d t e n d e n c y t o w a r d i r r e v e r s i b l e d e c o m p o s i t i o n a n d w e r e too u n s t a b l e to be seriously c o n s i d e r e d for a n
In Isotope Effects in Chemical Processes; Spindel, W.; Advances in Chemistry; American Chemical Society: Washington, DC, 1969.
3.
PALKO A N D DRURY
i n d u s t r i a l process.
Chemical
49
Fractionation
D i e t h y l ether, w h i c h h a d b e e n rejected earlier for the
e x c h a n g e - d i s t i l l a t i o n m e t h o d i n the M a n h a t t a n Project studies, was r e jected b y o u r c r i t e r i a also, t h o u g h o n different grounds.
Since t h e B F
3
a d d u c t of this ether w a s p a r t i a l l y associated i n the v a p o r phase, it w a s not a m e n a b l e to t h e r m a l refluxing. T h u s , of a l l the donors l i s t e d i n T a b l e I I I , o n l y anisole a n d phenetole r e m a i n e d for c o n s i d e r a t i o n .
T h e former
c o m p o u n d was a n i n e x p e n s i v e , c o m m e r c i a l l y - a v a i l a b l e solvent; the latter c o m p o u n d w a s expensive, a n d w a s a v a i l a b l e o n l y i n research q u a n t i t i e s . Downloaded by UNIV OF TEXAS EL PASO on December 28, 2014 | http://pubs.acs.org Publication Date: June 1, 1969 | doi: 10.1021/ba-1969-0089.ch003
W e chose anisole as the d o n o r to be f u r t h e r i n v e s t i g a t e d .
If, at some
f u t u r e date, phenetole becomes c o m m e r c i a l l y a v a i l a b l e a n d e c o n o m i c a l l y c o m p e t i t i v e w i t h anisole, it w i l l be a n attractive substitute for anisole since its B F a d d u c t y i e l d s a s o m e w h a t larger s e p a r a t i o n factor t h a n does 3
the B F a d d u c t of anisole. 3
Reflux Studies I n c h e m i c a l exchange
systems,
reflux consists
of
converting
the
c h e m i c a l forms of the i s o t o p i c species f r o m that of one reactant to that of the other.
I n the systems u n d e r c o n s i d e r a t i o n i n this p a p e r ,
these
reactions a r e : heat Donor • B F ( 1 )
-»
3
Donor(l) + B F ( g )
(3)
3
cool Donor(1) + B F ( g ) -> Donor • B F . (4) R e a c t i o n s 3 a n d 4 are t e r m e d the p r o d u c t - e n d reflux a n d the w a s t e - e n d 3
reflux, respectively.
3
I n p r a c t i c a l a p p l i c a t i o n s , the d o n o r r e s u l t i n g f r o m
R e a c t i o n 3 is u s e d as the reactant i n R e a c t i o n 4. T h e B F associated w i t h 3
the d o n o r i n R e a c t i o n 3 is e n r i c h e d i n boron-10.
T h e B F associated w i t h 3
the d o n o r i n R e a c t i o n 4 is d e p l e t e d i n boron-10. r e m i x i n g of separated isotopes
p r o d u c t - e n d reflux r e a c t i o n m u s t b e free of B F c o n t a i n i n g species.
It is o b v i o u s that, i f
is to b e a v o i d e d , the d o n o r f r o m 3
or a n y other
the
boron-
T h e c r u c i a l n a t u r e of R e a c t i o n 3 becomes e v e n m o r e
a p p a r e n t w h e n it is r e a l i z e d that, for systems of interest i n this p a p e r , e a c h m o l e of p r o d u c t m u s t u n d e r g o R e a c t i o n 3 a p p r o x i m a t e l y 200 times. It is also obvious that, for reflux ratios of this m a g n i t u d e , v e r y l i t t l e i r r e v e r s i b l e d e c o m p o s i t i o n of the a d d u c t , or the donor, c a n b e t o l e r a t e d . T h e r e v e r s i b l e d i s s o c i a t i o n of the anisole a d d u c t was first e x a m i n e d u n d e r l a b o r a t o r y c o n d i t i o n s . A q u a n t i t y of the 1 : 1 c o m p l e x w a s p l a c e d i n a r o u n d - b o t t o m flask w h i c h w a s a t t a c h e d to a v a c u u m t r a i n . T h e flask w a s e q u i p p e d w i t h a r e f l u x i n g condenser, a pressure r e g u l a t o r a n d a p o r t for s a m p l i n g the l i q u i d phase. predetermined
T h e flask w a s h e a t e d e l e c t r i c a l l y at a
pressure u n t i l B F
3
no
longer
escaped
from
the
In Isotope Effects in Chemical Processes; Spindel, W.; Advances in Chemistry; American Chemical Society: Washington, DC, 1969.
flask.
50
ISOTOPE E F F E C T S IN C H E M I C A L
PROCESSES
Table IV. Rate of (Donor • B F ( l ) + B F ( g ) — n
Adduct C H OCH 6
5
3
• 0.87 B F
E t N • 1.0 B F
Downloaded by UNIV OF TEXAS EL PASO on December 28, 2014 | http://pubs.acs.org Publication Date: June 1, 1969 | doi: 10.1021/ba-1969-0089.ch003
3
a
3
3
1 0
3
3
Wt. Adduct (g)
Vol. BF (ST? ml.)
Elapsed Time (sec.)
10.523 10.207 10.480 11.296 12.737 12.083
224.5 164.0 128.6 160.3 147.8 126.3
15 7 15 30 300 1800 3600
3
Without isotope effect.
S a m p l e s of the l i q u i d w e r e t h e n o b t a i n e d for analysis, a n d the e x p e r i m e n t w a s r e p e a t e d at a h i g h e r pressure. o n l y 50-60 parts p e r m i l l i o n of B F c o m p l e x w a s h e a t e d to 1 6 0 ° C .
F r o m T a b l e V it m a y b e seen t h a t 3
r e m a i n e d i n the anisole w h e n the
T h i s degree of r e c o v e r y of B F f r o m the 3
c o m p l e x w a s satisfactory e v e n for the p r o d u c t i o n of v e r y h i g h p u r i t y boron-10. Table V .
Reversible Dissociation of the Anisole • B F Complex 3
Pressure of BF (ton)
Moles BF Remaining per 10 Moles of Anisole
800 875 937 999 1060
69 60 42 54 59
3
Temperature (°C.) 157.0 159.8 163.2 165.0 166.2 Integrated Operation
ti
s
of the Anisole System
T o c o n f i r m the f a v o r a b l e results o b t a i n e d for the anisole system u n d e r l a b o r a t o r y c o n d i t i o n s , a bench-scale,
integrated pilot plant was
con-
structed. T h i s u n i t consisted of a p a c k e d exchange c o l u m n , 1 i n c h o.d. X 36 inches l o n g ; a p a c k e d c o l u m n , 1 i n c h o.d. X 22 inches l o n g , i n w h i c h the a d d u c t w a s f o r m e d ( w a s t e - e n d r e f l u x e r ) ; a p a c k e d c o l u m n , 2 i n c h o.d. X 30 inches l o n g , to w h i c h a reservoir w a s a t t a c h e d ( p r o d u c t e n d r e f l u x e r ) ; a n d a solvent p u r i f i c a t i o n still. P u m p s , valves, a n d i n s t r u m e n t a t i o n w e r e s u p p l i e d as n e e d e d to ensure a u t o m a t i c o p e r a t i o n of the equipment.
C o n t i n u o u s r u n s , one as l o n g as 78 d a y s , w e r e m a d e i n this
equipment.
A p p r o p r i a t e samples w e r e t a k e n to measure t h e
In Isotope Effects in Chemical Processes; Spindel, W.; Advances in Chemistry; American Chemical Society: Washington, DC, 1969.
isotopic
3.
Chemical
PALKO A N D DRURY
51
Fractionation
Exchange for the Reaction Donor • B F ( 1 ) + B F ( g ) ) 10
n
3
%
3
B
10
Before
After
CaYd. % B at Equilibrium
40.71 40.82 47.19 47.19 25.26 25.26 25.26
23.05 23.96 44.41 44.12 23.55 23.14 22.46
23.2 21.45 21.70 22.03 20.10 20.05 20.05
Downloaded by UNIV OF TEXAS EL PASO on December 28, 2014 | http://pubs.acs.org Publication Date: June 1, 1969 | doi: 10.1021/ba-1969-0089.ch003
10
CaYd. %
a
Exchange
100 90 10.9 12.2 33.1 40.7 53.6
f r a c t i o n a t i o n , the solvent d e c o m p o s i t i o n rate, the b o r o n content of the p r o d u c t - e n d refluxer, as w e l l as the c o r r o s i o n rates of v a r i o u s m a t e r i a l s of c o n s t r u c t i o n . T a b l e s V I a n d V I I s u m m a r i z e the results. T h e d a t a of T a b l e V I s h o w that i r r e v e r s i b l e d e c o m p o s i t i o n
of the d o n o r solvent is
a c c e p t a b l y l o w u n d e r realistic o p e r a t i n g c o n d i t i o n s . It m a y also b e seen that corrosion, as m e a s u r e d b y the presence of F e , C r , a n d N i i n the l i q u i d , is a c c e p t a b l y l o w .
T h e d a t a i n T a b l e V I I illustrate the effectiveness
the r e c o m b i n e r i n c o n v e r t i n g B F
3
gas to the 1:1
of
molecular addition
compound. Table V I . Data Relating to Donor and A d d u c t Stability D u r i n g Operation of the Bench-Scale Pilot Plant Run No.
Length of Run (days)
23 29 30 31* 32 33
20 19 50 20 37 78
b
6 e
e f
Donor Recovered,
%
Decomp. Rate, % /Day
93.4 80 92 95 78
0.35 0.40 0.40 0.35 0.28
Metal in Donor, a
B
Fe
Cr
Ni 3
128 470 169 566 315
v.v.m.
6 119 2 2.5
2 3
38 5 1 1.2
Cu 26 59 54 2.4 3.5
° % Working inventory/day. Nickel packing in exchange column, decomposer, and recombiner. Stainless steel packing. Same as Run 30 plus addition of copper. Same as Run 30 plus addition of black iron. Apparatus contained stainless steel packing, transfer lines, and pumps. Valves were Monel, hence copper is in effluent. b
c
d
e f
T h e results of the f o r e g o i n g l a b o r a t o r y investigations of the anisole d o n o r w e r e sufficiently a t t r a c t i v e to w a r r a n t a n e n g i n e e r i n g e v a l u a t i o n of the t e c h n i c a l f e a s i b i l i t y of u s i n g this m e t h o d to separate l a r g e q u a n t i t i e s
In Isotope Effects in Chemical Processes; Spindel, W.; Advances in Chemistry; American Chemical Society: Washington, DC, 1969.
52
ISOTOPE E F F E C T S IN C H E M I C A L PROCESSES I
I
1
1
1
1
1
1
1 —
1.050
4
1.045 r 1 . 0 4 0 '— : 1.035 7
Downloaded by UNIV OF TEXAS EL PASO on December 28, 2014 | http://pubs.acs.org Publication Date: June 1, 1969 | doi: 10.1021/ba-1969-0089.ch003
1.025
2
= ••EtAc I
" —
2
"
B
u
^^^^ ^ ^ J C 6 H
2
5
-_
S 0 C H
3
^Me Se 2
i i i i I i
1.030
-=
Et S - • - • ^ Me S
• EtPr
Mej^O
^
THF •
—-
" -
C H 0H 6
5
—
1.020
1.015 8.0
1
1 11.0
1
9.0
10.0
1 12.0
1 13.0
1 14.0
HEAT OF ASSOCIATION OF DONOR A N D B F
Figure
2.
Isotopic equilibrium
1 16.0
1 15.0
1 17.0
(kcal./mole)
3
constants for the
reaction
Donor • H B F ( 1 ) + B F ( g ) = Donor • B F ( 1 ) + BF (g) As a function of the enthalpy of association of the adduct 1 0
8
of b o r o n isotopes.
3
1 0
n
3
3
T h i s w o r k was p e r f o r m e d at another U . S. A t o m i c
E n e r g y C o m m i s s i o n i n s t a l l a t i o n b y a n e n g i n e e r i n g research g r o u p r e p o r t e d t h e i r findings i n d e t a i l elsewhere (16). ing
who
After thoroughly study-
the system f r o m the s t a n d p o i n t of H T U i n a 6 - i n c h i . d . c o l u m n ,
flooding
rate for 5 / 8 - i n c h P a l l p a c k i n g , solvent d e g r a d a t i o n , r e v e r s i b l e
d i s s o c i a t i o n of the c o m p l e x , r e c o m b i n a t i o n of the c o m p l e x , s o l v e n t - d r y i n g p r o c e d u r e s , materials of c o n s t r u c t i o n , a n d corrosion, t h e y c o n c l u d e d that the large-scale anisole process w a s t e c h n i c a l l y feasible.
Table VII.
Operation of the Waste-End Refluxer in the Bench-Scale Pilot Plant Mole Ratio BF /Anisole Leaving Recombiner
Temp. rc.)
Pressure (ton)
1.07 1.06 0.92
6 7 20
850 950 875
3
Run No. 16 17 20
Since the anisole process w a s s u p e r i o r to the d i m e t h y l ether process w i t h respect to s e p a r a t i o n factor, t h r o u g h p u t , i r r e v e r s i b l e d e c o m p o s i t i o n , a n d ease of p r o d u c t recovery, i t was expected to b e m o r e e c o n o m i c a l as
In Isotope Effects in Chemical Processes; Spindel, W.; Advances in Chemistry; American Chemical Society: Washington, DC, 1969.
3.
Chemical
PALKO A N D DRURY
well.
53
Fractionation
T h i s e x p e c t a t i o n w a s s u b s t a n t i a t e d b y cost analyses of the t w o
processes.
T h e u n i t cost of b o r o n - 1 0 separated b y the anisole process
was e s t i m a t e d to b e a p p r o x i m a t e l y o n e - h a l f that for the d i m e t h y l ether process
(12).
T h e s e c o n d objective of the present i n v e s t i g a t i o n w a s to u n d e r s t a n d the m e c h a n i s m b y w h i c h b o r o n isotopes are f r a c t i o n a t e d i n R e a c t i o n 1. W e w i s h e d to e x p l a i n w h y b o r o n - 1 0 c o n c e n t r a t e d p r e f e r e n t i a l l y i n the m o l e c u l a r a d d i t i o n c o m p o u n d , c o n t r a r y to the u s u a l e x p e c t a t i o n t h a t the Downloaded by UNIV OF TEXAS EL PASO on December 28, 2014 | http://pubs.acs.org Publication Date: June 1, 1969 | doi: 10.1021/ba-1969-0089.ch003
h e a v y isotope s h o u l d b e p r e f e r r e d b y the c o m p l e x e d species.
W e also
w i s h e d to e x p l a i n the v a r i a t i o n s of the i s o t o p i c e q u i l i b r i u m constants for R e a c t i o n 1 for v a r i o u s d o n o r molecules. F u r t h e r , i t w a s d e s i r a b l e to c o m p u t e t h e o r e t i c a l m a x i m a for the isotopic e q u i l i b r i u m constants of R e a c t i o n 1 to serve as guides for the p r a c t i c a l w o r k . F i n a l l y , w e w i s h e d to e v a l u a t e t h e p o t e n t i a l usefulness of other b o r o n t r i h a l i d e s i n the f r a c t i o n a t i o n of b o r o n isotopes b y R e a c t i o n 1. Theory of Isotopic Fractionation BF
3
and Its Molecular
Addition
in the Exchange of Boron Between Compounds
(25)
T h e u n u s u a l i s o t o p i c c h e m i s t r y of R e a c t i o n 2 m a y b e
understood
i n terms of the e l e c t r o n i c configurations a n d s t r u c t u r a l details of B F a n d its constituent atoms.
T h u s , the three v a l e n c e electrons of
h a v e a n o m i n a l 2$ 2p* c o n f i g u r a t i o n . W h e n B F 2
electrons of b o r o n h y b r i d i z e to sp
2
3
3
boron
is f o r m e d , the v a l e n c e
orbitals w h i c h form n o r m a l sigma
b o n d s w i t h the u n p a i r e d p e l e c t r o n of e a c h fluorine a t o m . T h i s results i n a p l a n a r B F m o l e c u l e h a v i n g the u s u a l 120° c e n t r a l v a l e n c e b o n d a n g l e , 3
a n d a left-over e m p t y b o r o n o r b i t a l , w h i c h projects f r o m the p l a n e of the m o l e c u l e at a n angle of 9 0 ° . T h e seven v a l e n c e electrons of have a nominal 2s 2p 2
5
fluorine
c o n f i g u r a t i o n . T h r e e p a i r s of these electrons are
n o n - b o n d i n g . B e c a u s e of the s m a l l size of the fluorine a t o m , these n o n b o n d i n g e l e c t r o n p a i r s are closer i n fluorine t h a n i n a n y other element. T h e r e p u l s i v e forces b e t w e e n t h e m , c o n s e q u e n t l y , are greater t h a n i n other elements. T h e r e p u l s i v e forces are so great that w h e n B F is f o r m e d , 3
one p a i r of these electrons o c c u p i e s the e m p t y p b o r o n o r b i t a l . T h u s , one of the three fluorine atoms i n B F is effectively d o u b l e - b o n d e d to b o r o n 3
w h i l e the other t w o h a v e c o n v e n t i o n a l s i g m a b o n d s . figurations
Three such con-
are possible, a n d resonance occurs b e t w e e n t h e m (27).
Cotton
a n d L e t o ( 5 ) e s t i m a t e d this resonance energy to be 48 k c a l . / m o l e . It is this s u r p r i s i n g l y large energy associated w i t h the ?r-bonding w h i c h is d i r e c t l y responsible for the u n e x p e c t e d e n r i c h m e n t of the h e a v y b o r o n isotope i n the gas phase. W h e n a m o l e c u l a r a d d i t i o n c o m p o u n d is f o r m e d f r o m B F L e w i s base, energy associated w i t h the 7r-bond i n the B F
3
3
and a
m o l e c u l e is
a b s o r b e d , a n d energy associated w i t h the c o o r d i n a t e c o v a l e n t b o n d i n
In Isotope Effects in Chemical Processes; Spindel, W.; Advances in Chemistry; American Chemical Society: Washington, DC, 1969.
54
ISOTOPE E F F E C T S IN C H E M I C A L
PROCESSES
t h e a d d u c t is released. It is c o n v e n i e n t to v i e w these changes as separate, d i s c r e t e steps, a n d to r e g a r d the e x c h a n g e as p r e c e d i n g t h r o u g h a h y p o t h e t i c a l , i n t e r m e d i a t e m o l e c u l e B F , i n w h i c h no 7r-bonding occurs—i.e., 3
a m o l e c u l e i n w h i c h e a c h fluorine a t o m is a t t a c h e d to the b o r o n w i t h a normal sigma bond.
W e m a y n o w r e g a r d R e a c t i o n 2 as a c o m p o s i t e
of
t w o separate reactions a n d r e w r i t e i t as s h o w n b y E q u a t i o n s 5 a n d 6. 1 0
BF
+ HBF
3
= HBF
3
+
3
D • !°BF + H B F = D •
Downloaded by UNIV OF TEXAS EL PASO on December 28, 2014 | http://pubs.acs.org Publication Date: June 1, 1969 | doi: 10.1021/ba-1969-0089.ch003
3
3
1 0
1 1
BF
(5)
3
BF +
1 0
3
BF
(6)
3
It w i l l b e seen that w h e n the reactions are w r i t t e n i n this m a n n e r , the isotopes c o n c e n t r a t e i n the s o - c a l l e d " c o r r e c t " d i r e c t i o n ; that is, the h e a v y isotope is associated i n e a c h case w i t h w h a t is o b v i o u s l y the m o r e s t r o n g l y b o n d e d species.
T h e expressions for the i s o t o p i c e q u i l i b r i u m constants
for these reactions are g i v e n b y E q u a t i o n s 7 a n d 8,