The "Cleanex" Process: A Versatile Solvent Extraction Process for

Apr 16, 1980 - The process was so effective that it was later incorporated into the mainline operations at the Transuranium Processing Plant (TRU) at ...
1 downloads 0 Views 808KB Size
11 The "Cleanex" Process: A Versatile Solvent Extraction Process for Recovery and Purification of Lanthanides,

Downloaded by UNIV OF TEXAS AT DALLAS on April 25, 2017 | http://pubs.acs.org Publication Date: April 16, 1980 | doi: 10.1021/bk-1980-0117.ch011

Americium, and Curium JOHN E. BIGELOW, EMORY D. COLLINS, and LESTER J. KING Oak Ridge National Laboratory, Oak Ridge, TN 37830

The reagent di(2-ethylhexyl) phosphoric acid (HDEHP), a liquid cation exchanger, is used to extract trivalent actinide and lanthanide elements in the "Cleanex" solvent extraction process. The name "Cleanex" was coined because the process was initially developed to "clean up" several batches of rework solutions from a wide variety of contaminants. The process was so effective that i t was later incorporated into the mainline operations at the Transuranium Processing Plant (TRU) at the Oak Ridge National Laboratory (ORNL), where it has been in routine use for 12 years. At TRU, the process has been applied to a number of different batch solvent extraction operations at the 50-liter scale. These include purification of solutions of transplutonium elements, transfer of transplutonium elements from nitrate to chloride solutions, and recovery of transplutonium elements from rework and waste streams (1). The transplutonium elements involved are trivalent actinides. The Cleanex process was adapted from the Dapex process (2), which has been used for many years in the uranium milling industry. The c h e m i s t r y , r e a g e n t s , e q u i p m e n t , a n d b a s i c o p e r a t i o n s r e l a t i n g t o t h e C l e a n e x p r o c e s s and t y p i c a l r e s u l t s o b t a i n e d w i t h the Cleanex process are covered i n the s e c t i o n s below. Process

Chemistry

The p r o c e s s c o n s i s t s o f l i q u i d - l i q u i d s o l v e n t e x t r a c t i o n o f t r i v a l e n t a c t i n i d e s and/or l a n t h a n i d e s from a d i l u t e a c i d o r s a l t s o l u t i o n i n w h i c h t h e a n i o n c a n be e i t h e r n i t r a t e o r c h l o r i d e . The r e l a t i v e l y i n e x t r a c t a b l e i m p u r i t i e s c a n be s c r u b b e d f r o m t h e p r e g n a n t o r g a n i c p h a s e w i t h d i l u t e a c i d ( 0 . 0 3 M) a n d t h e s o l u t e s back-extracted, or s t r i p p e d , with more-concentrated acid (2-6 M). The p r o c e s s i s e q u a l l y e f f e c t i v e w i t h n i t r i c o r h y d r o c h l o r i c a c i d , or mixtures of the a c i d s . S i n c e t h e e x t r a c t e d s p e c i e s does n o t c o n t a i n c o m p l e x e d a c i d , t h e s o l u t e s may b e s t r i p p e d i n t o a n a c i d d i f f e r e n t t h a n t h e one f r o m w h i c h t h e y were i n i t i a l l y extracted.

American Chemical 0-8412-05i^^8û/47J17-l^$05.00/0

© 1980 Afte/fiSh efiîftfyal Society

1155 15th St. N. W.

Navratil and Schulz; Actinide Separations Washington, D. C. Society: 20036Washington, DC, 1980. ACS Symposium Series; American Chemical

148

ACTINIDE

SEPARATIONS

The o r g a n i c e x t r a c t a n t i s t h e e s t e r 2 ? £ s - 2 - e t h y l h e x y l hydrogen phosphate, which has a c i d i c p r o p e r t i e s because o f the r e p l a c e a b l e h y d r o g e n i o n , and i s u s u a l l y c a l l e d i n t h e t r a d e d i ( 2 - e t h y l h e x y l ) p h o s p h o r i c a c i d o r HDEHP. Since t h i s reagent h a s a r e l a t i v e l y h i g h d e n s i t y and v i s c o s i t y , i t i s u s u a l l y d i l u ­ t e d w i t h a nonpolar s o l v e n t t o a c o n c e n t r a t i o n of about 1 M t o p r o d u c e an o r g a n i c e x t r a c t a n t p h a s e w i t h s u i t a b l e o p e r a t i n g characteristics. In the Cleanex process, a l i p h a t i c d i l u e n t s are p r e f e r r e d over aromatic d i l u e n t s because of about a f i v e f o l d h i g h e r e x t r a c t i o n c o e f f i c i e n t f o r the t r i v a l e n t a c t i n i d e s . The HDEHP i s a c a t i o n e x c h a n g e r , and i t s e x t r a c t i o n o f t r i ­ v a l e n t m e t a l i o n s ( M ) c a n be e x p r e s s e d by t h e f o l l o w i n g chem­ ical reaction:

Downloaded by UNIV OF TEXAS AT DALLAS on April 25, 2017 | http://pubs.acs.org Publication Date: April 16, 1980 | doi: 10.1021/bk-1980-0117.ch011

3 +

M + 3 (HDEHP) Ζ M(DEHP) + 3H . aq org ^ 3, org aq 3 +

0

(1)

+

At e q u i l i b r i u m , the concentrations of the r e a c t i n g species are r e l a t e d as f o l l o w s ( n e g l e c t i n g a c t i v i t y c o e f f i c i e n t s ) : [M(DEHP) . ]

[H ]^ +

Κ =

(2)

51, [HDEHP]

o r g

[M

3 +

]

a q

where Κ i s t h e e q u i l i b r i u m c o n s t a n t f o r t h e r e a c t i o n . The e q u i l i ­ b r i u m e x t r a c t i o n c o e f f i c i e n t (E) f o r t h e t r i v a l e n t m e t a l , d e f i n e d as t h e r a t i o o f t h e c o n c e n t r a t i o n i n t h e o r g a n i c phase t o t h e c o n ­ c e n t r a t i o n i n t h e aqueous p h a s e a t e q u i l i b r i u m , c a n be o b t a i n e d by a rearrangement of E q . ( 2 ) : [M(DEHP) [M ] 3 +

aq

]

Κ [HDEHP];* [H ] +

3

aq

T h u s , t h e e x t r a c t i o n c o e f f i c i e n t , E, v a r i e s d i r e c t l y w i t h t h e t h i r d power o f t h e c o n c e n t r a t i o n o f u n c o m b i n e d HDEHP i n t h e o r ­ g a n i c p h a s e ( n e g l e c t i n g a c t i v i t y c o e f f i c i e n t s ) and i n v e r s e l y w i t h t h e t h i r d power o f t h e aqueous p h a s e a c i d i t y (H ). The a c i d d e p e n d e n c y o b s e r v e d i n p r a c t i c e has* b e e n o n l y a p ­ p r o x i m a t e l y i n v e r s e t h i r d power. Impurities i n Cleanex feed s o l u t i o n s o f t e n c a u s e a d e p a r t u r e f r o m i d e a l i t y ( e . g . , by commoni o n e f f e c t o r by c o n s u m p t i o n o f some o f t h e HDEHP), and we h a v e not been a b l e t o c o n t r o l the e x t r a c t i o n o f the a c t i n i d e elements s o l e l y by m o n i t o r i n g t h e aqueous-phase a c i d i t y . Fortunately, when p r o c e s s i n g t r a n s p l u t o n i u m e l e m e n t s , t h e h i g h s p e c i f i c a c t i v ­ i t y of Cm f a c i l i t a t e s the d e t e c t i o n of t h a t isotope i n both phases, thus p e r m i t t i n g a r a p i d d e t e r m i n a t i o n of the degree of extraction. The e x t r a c t i o n c o e f f i c i e n t s o f t h e t r i v a l e n t a c t i ­ n i d e s and l a n t h a n i d e s a r e a l l q u i t e s i m i l a r , so t h e Cm serves as an e x c e l l e n t marker f o r a l l the e x t r a c t e d i o n s . 2i+i+

2tfI+

Navratil and Schulz; Actinide Separations ACS Symposium Series; American Chemical Society: Washington, DC, 1980.

11.

B i G E L O w E T AL.

The "Cleanex"

Process

149

Materials

Downloaded by UNIV OF TEXAS AT DALLAS on April 25, 2017 | http://pubs.acs.org Publication Date: April 16, 1980 | doi: 10.1021/bk-1980-0117.ch011

Feed S o l u t i o n s . The p r o c e s s i s a p p l i c a b l e t o s o l u t i o n s o f t r i v a l e n t a c t i n i d e s or lanthanides i n e i t h e r d i l u t e a c i d or a v a r i e t y of s a l t s o l u t i o n s i n e i t h e r n i t r a t e o r c h l o r i d e or mixed media. Sodium c o n c e n t r a t i o n s up t o 3 M c a n be t o l e r a t e d , b u t l i t h i u m b e g i n s t o have a d v e r s e e f f e c t s above 2 M and p o t a s s i u m i s o b j e c t i o n a b l e e v e n a t 0 . 5 M. C e r t a i n s p e c i a l c o n s t i t u e n t s c a n be t o l e r a t e d i n t h e f e e d i f s p e c i f i c p r e c a u t i o n s ( d e s c r i b e d l a t e r ) are taken. E x t r a c t i v e Reagent. The e x t r a c t i v e r e a g e n t i s c o m m e r c i a l g r a d e d i ( 2 - e t h y l h e x y l ) p h o s p h o r i c a c i d (HDEHP). Various l o t s of m a t e r i a l o b t a i n e d f r o m M o b i l , f r o m S t a u f f e r , and f r o m U n i o n C a r b i d e , have a l l appeared e q u a l l y u s a b l e . The c o m m e r c i a l m a t e r i a l t y p i c a l l y c o n t a i n s 1-1.5% o f the monoester (which i s d i a c i d i c ) and a s m a l l amount o f i n e r t m a t e r i a l , p r o b a b l y u n r e a c t e d 2 - e t h y l h e x a n o l and p y r o p h o s p h o r i c a c i d s . The HDEHP g e n e r a l l y t i t r a t e s a b o u t 98% ( 2 . 8 M) and i s u s e d w i t h o u t t r e a t m e n t o t h e r than d i l u t i o n . Diluents. An a l i p h a t i c d i l u e n t w i t h a h i g h f l a s h p o i n t i s preferred for safety reasons. A t TRU, b o t h Amsco 1 2 5 - 8 2 and NPH ( n o r m a l p a r a f f i n h y d r o c a r b o n , s u p p l i e d by The S o u t h Hampton C o . , S i l s b e e , T e x a s ) , h a v e g i v e n good r e s u l t s . C u r r e n t l y , we a r e u s i n g o d o r l e s s m i n e r a l s p i r i t s , w h i c h i s s u p p l i e d by Amsco and h a s a f l a s h p o i n t o f 5 2 ° C , a s p e c i f i c g r a v i t y o f 0 . 7 5 0 , and a b o i l i n g range o f 1 4 4 - 2 0 8 ° C . A l l o f t h e s e d i l u e n t s have been s a t i s f a c t o r y , and no e f f o r t h a s b e e n made t o s y s t e m a t i c a l l y e v a l u a t e them f o r o u r a p p l i c a t i o n s . We g e n e r a l l y p r e t r e a t t h e d i l u e n t by p a s s i n g i t s u c c e s s i v e l y t h r o u g h a p a c k e d c o l u m n o f s i l i c a g e l and a l u m i n a t o remove t r a c e s o f s u r f a c e - a c t i v e a g e n t s t h a t might l a t e r c o n t r i b u t e to the formation of s t a b l e emulsions. Equipment The e q u i p m e n t t y p i c a l l y u s e d a t TRU f o r c a r r y i n g o u t t h e C l e a n e x p r o c e s s b a t c h w i s e i s i l l u s t r a t e d s c h e m a t i c a l l y i n F i g u r e 1. The o p e r a t i n g t e c h n i q u e and d e s i g n c o n s i d e r a t i o n s f o r some o f t h e i t e m s i n F i g u r e 1 h a v e b e e n more f u l l y d e s c r i b e d by C h a t t i n (3). The f e e d i s a d j u s t e d , and t h e e x t r a c t i o n i s c a r r i e d o u t b a t c h w i s e i n a t a n t a l u m - l i n e d evaporator w i t h a c a p a c i t y of 60-70 l i t e r s . P h a s e c o n t a c t i s a c c o m p l i s h e d by a i r - s p a r g i n g . A vacuum t r a n s f e r s y s t e m i s u s e d t o r a i s e t h e aqueous p h a s e f r o m t h e b o t t o m o f t h e t a n t a l u m e v a p o r a t o r , through a phase s e p a r a t o r (or b u l l ' s - e y e ) , and i n t o a vacuum t r a n s f e r t a n k . R e p l a c i n g t h e vacuum s o u r c e w i t h a l o w - p r e s s u r e a i r l i n e , and o p e r a t i n g a v a l v e , p e r m i t s d i s c h a r g e o f t h e a c c u m u l a t e d aqueous p h a s e f r o m t h e vacuum t r a n s f e r tank i n t o e i t h e r a waste r e c e i v e r o r a product r e c e i v e r t a n k . The r a f f i n â t e s ( i n c l u d i n g s c r u b s ) a r e e v e n t u a l l y t r a n s f e r r e d t o

Navratil and Schulz; Actinide Separations ACS Symposium Series; American Chemical Society: Washington, DC, 1980.

Navratil and Schulz; Actinide Separations ACS Symposium Series; American Chemical Society: Washington, DC, 1980. FILTER

Figure 1.

FEED ADJUSTMENT AND EXTRACTION TANK

AIR-,

SOLUTION ADDITION-i

-VACUUM

PRODUCT COLLECTION AND EVAPORATION

X _ _ VACUUM TRANSFER TANK

ΙΓ

TO WASTE OR 2 n d . - S T A G E EXTRACTION

FLOW ADIVERTER VALVE

Equipment arrangement for Cleanex process

CONDENSATE COLLECTION TANK

PHASE SEPARATOR

AIR-

Downloaded by UNIV OF TEXAS AT DALLAS on April 25, 2017 | http://pubs.acs.org Publication Date: April 16, 1980 | doi: 10.1021/bk-1980-0117.ch011

11.

B i G E L O w E T AL.

The "Cleanex"

151

Process

a waste storage t a n k . The p r o d u c t r e c e i v e r i s u s u a l l y a n o t h e r t a n t a l u m - l i n e d e v a p o r a t o r so t h a t s u c c e s s i v e v o l u m e s o f s t r i p a c i d c a n be c o m b i n e d and c o n c e n t r a t e d p r i o r t o t h e i r i n t r o d u c t i o n i n t o the next step i n the o v e r a l l process.

Downloaded by UNIV OF TEXAS AT DALLAS on April 25, 2017 | http://pubs.acs.org Publication Date: April 16, 1980 | doi: 10.1021/bk-1980-0117.ch011

Processing Steps Feed Adjustment. The p r o d u c t f r o m a s t e p p r i o r t o C l e a n e x i s t r a n s f e r r e d and f l u s h e d i n t o t h e t a n t a l u m - l i n e d e v a p o r a t o r . Most o f the excess a c i d c o n t a i n e d i n t h e composited C l e a n e x f e e d i s removed by e v a p o r a t i o n e i t h e r t o a f i n a l volume o f 2 l i t e r s o r , i f the s a l t content i s h i g h , to a f i n a l b o i l i n g temperature of 130°C, whichever occurs f i r s t . I f the feed i s a n i t r a t e s o l u ­ t i o n , h y d r o l y s i s o f some e l e m e n t s ( e . g . , z i r c o n i u m ) may h a v e o c ­ c u r r e d d u r i n g t h e e v a p o r a t i o n ; t h e r e f o r e , a b o u t 1 l i t e r o f 12 M HC1 i s added a n d t h e f e e d s o l u t i o n i s r e h e a t e d t o 1 2 0 ° C t o r e d i s s o l v e any h y d r o l y z e d m a t e r i a l s . The f e e d i s t h e n d i l u t e d w i t h w a t e r t o make a t o t a l volume o f 12 l i t e r s and i s m i x e d a n d sampled. An a d d i t i o n o f a c i d o r NaOH i s made ( i f n e c e s s a r y ) t o a d j u s t t h e s o l u t i o n a c i d i t y i n t o t h e r a n g e o f 0 . 1 t o 0 . 4 N. An o x i d a n t s o l u t i o n ( 1 . 5 M L i O C l ) i s a d d e d t o make t h e f e e d 0 . 1 M L i O C l , and t h e f e e d s o l u t i o n i s t h e n h e a t e d t o 80°C a n d d i g e s t e d f o r 20 m i n u t e s t o remove any g a s e o u s r e a c t i o n p r o d u c t s . This o x i d a t i o n p r o c e d u r e i s c a r r i e d o u t t o e n s u r e t h a t a l l molybdenum i n t h e f e e d i s o x i d i z e d t o t h e e x t r a c t a b l e Mo(VI) f o r m (£) . O t h e r w i s e , u n e x t r a c t a b l e molybdenum may h y d r o l y z e u n d e r t h e r e l a ­ t i v e l y l o w - a c i d c o n d i t i o n s achieved l a t e r i n the e x t r a c t i o n step and r e s u l t i n s e v e r e e m u l s i o n p r o b l e m s . Extraction. A b o u t 30 l i t e r s o f t h e p r e v i o u s l y p r e p a r e d o r ­ g a n i c e x t r a c t a n t i s added. Adequate m i x i n g o f the phases i s a c h i e v e d by a i r s p a r g i n g a t a s u p e r f i c i a l a i r v e l o c i t y o f 1 . 3 mm/sec ( 0 . 2 5 f t / m i n ) ; t h i s i s t h e same v e l o c i t y u s e d t o m i x a s i n g l e p h a s e p r i o r t o s a m p l i n g . A f t e r m i x i n g i s b e g u n , NaOH i s a d d e d t o f u r t h e r r e d u c e t h e aqueous p h a s e a c i d i t y and t h e r e b y i n c r e a s e the e x t r a c t a b i l i t y of the t r i v a l e n t a c t i n i d e s . The amount o f NaOH added i s c a l c u l a t e d t o r e d u c e t h e a c i d i t y t o 0 . 0 3 N , a l i m i t c h o s e n t o m i n i m i z e t h e l i k e l i h o o d o f h y d r o l y s i s and p r e ­ c i p i t a t i o n o f u n e x t r a c t e d f e e d components, w h i c h might r e s u l t i n emulsification. The m i x i n g i s i n t e r r u p t e d a f t e r 3 0 - 6 0 m i n u t e s and t h e p h a s e s a l l o w e d t o s e t t l e . The aqueous p h a s e i s s a m p l e d and a n a l y z e d f o r f r e e a c i d and f o r g r o s s a l p h a ( p r i m a r i l y Cm) . The f r e e a c i d i s a l m o s t a l w a y s h i g h e r t h a n 0 . 0 3 Ν b e c a u s e a c i d i s t r a n s f e r r e d t o t h e aqueous p h a s e i n exchange f o r t h e m e t a l l i c c a t i o n s w h i c h were e x t r a c t e d i n t o t h e o r g a n i c p h a s e . A new NaOH a d d i t i o n i s c a l c u l a t e d , b a s e d on t h e a c i d r e s u l t s , and t h e c y c l e o f a c i d a d j u s t m e n t and s p a r g i n g i s r e p e a t e d u n t i l t h e amount o f u n e x t r a c t e d c u r i u m r e m a i n i n g i n t h e aqueous p h a s e i s l e s s t h a n the s p e c i f i e d l i m i t . On some o c c a s i o n s , i t may be n e c e s s a r y t o terminate the e x t r a c t i o n step short of the g o a l i f s u c c e s s i v e 21+lf

Navratil and Schulz; Actinide Separations ACS Symposium Series; American Chemical Society: Washington, DC, 1980.

152

ACTINIDE SEPARATIONS

Downloaded by UNIV OF TEXAS AT DALLAS on April 25, 2017 | http://pubs.acs.org Publication Date: April 16, 1980 | doi: 10.1021/bk-1980-0117.ch011

a n a l y s e s show t h e amount o f u n e x t r a c t e d c u r i u m h a s begun t o i n ­ crease. T h i s l a t t e r phenomenon i s b e l i e v e d t o be due t o d i s ­ p l a c e m e n t o f t h e c u r i u m by a l u m i n u m r e s u l t i n g f r o m a s l o w , i r ­ r e v e r s i b l e e x t r a c t i o n o f a l u m i n u m w h i c h consumes t h e r e a g e n t , HDEHP. The t o t a l t i m e t y p i c a l l y consumed i n t h e e x t r a c t i o n s t e p o f t h e p r o c e s s i s on t h e o r d e r o f 2 s h i f t s , o r 16 h o u r s . Follow­ i n g e x t r a c t i o n , t h e aqueous r a f f i n a t e i s t r a n s f e r r e d t o a s e p a r a t e t a n k a n d t h e p r e g n a n t o r g a n i c p h a s e i s s u b s e q u e n t l y s c r u b b e d and s t r i p p e d i n t h e same v e s s e l . Scrubbing. S i n c e a r e l a t i v e l y l a r g e amount o f NaOH i s added d u r i n g a Cleanex e x t r a c t i o n t o n e u t r a l i z e excess a c i d i t y , sodium i s u s u a l l y the predominant m e t a l l i c i m p u r i t y . A very small por­ t i o n o f t h e s o d i u m i s e x t r a c t e d by t h e HDEHP; t h i s amount c a n be reduced by s c r u b b i n g t h e p r e g n a n t o r g a n i c w i t h 0 . 0 3 Ν a c i d . A s e c o n d f u n c t i o n o f t h e s c r u b s , and p r o b a b l y t h e most i m p o r t a n t f u n c t i o n , i s t o f l u s h the r e s i d u a l , u n e x t r a c t e d i m p u r i t i e s from t h e aqueous h e e l u n d e r l y i n g t h e p r e g n a n t o r g a n i c l a y e r . The p r e g n a n t o r g a n i c p h a s e i s u s u a l l y s c r u b b e d t w i c e w i t h 0 . 0 3 Ν HC1 ( t h e f i r s t s c r u b i s 0 . 0 3 Ν H N 0 i f t h e f e e d s o l u t i o n had been i n t h e n i t r a t e f o r m ) . The v o l u m e o f e a c h s c r u b i s o n e t h i r d of the o r g a n i c - p h a s e volume. Each s c r u b i s mixed w i t h the o r g a n i c p h a s e b y a i r - s p a r g i n g a t l e a s t 30 m i n u t e s . The s c r u b r a f f i n â t e s a r e u s u a l l y combined w i t h the e x t r a c t i o n r a f f i n a t e t o provide a composite feed f o r a second-stage e x t r a c t i o n . 3

O r g a n i c P h a s e M o d i f i c a t i o n and S t r i p p i n g . Iron i s frequently a s i g n i f i c a n t i m p u r i t y i n C l e a n e x feeds and, i f p r e s e n t , w i l l have b e e n o x i d i z e d t o F e ( I I I ) by r a d i o l y s i s a n d by t h e L i O C l t h a t was added t o t h e f e e d . The F e ( I I I ) w o u l d t e n d t o f o l l o w t h e t r a n s p l u t o n i u m e l e m e n t s t h r o u g h t h e e x t r a c t i o n and s t r i p p i n g s t e p s . In o r d e r t o r e t a i n t h e F e ( I I I ) i n the o r g a n i c phase w h i l e the t r a n s p l u t o n i u m e l e m e n t s a r e s t r i p p e d , a s o l u t i o n o f 1.6 M Adogen 364-HP (a s t r a i g h t - c h a i n t e r t i a r y amine o b t a i n e d f r o m A r c h e r D a n i e l s M i d l a n d C o . ) i n d i e t h y l b e n z e n e (DEB) i s added t o t h e p r e g n a n t Cleanex o r g a n i c phase j u s t b e f o r e s t r i p p i n g . The amount o f Adogen added i s enough t o make t h e o r g a n i c p h a s e 0 . 2 M i n a m i n e . F o l l o w i n g t h i s m o d i f i c a t i o n of the organic phase, the t r a n s plutonium elements are s t r i p p e d w i t h 6 M H C 1 — 0 . 5 M H 0 . The h y d r o g e n p e r o x i d e i n t h i s s t r i p s o l u t i o n overcomes t h e t r a n s i e n t o x i d i z i n g e f f e c t c a u s e d by i o n i z i n g r a d i a t i o n a c t i n g on t h e H C l medium, t h e r e b y p r e v e n t i n g o x i d a t i o n o f b e r k e l i u m t o t h e h i g h l y extractable tetravalent state. I t i s always necessary to s t r i p the o r g a n i c phase w i t h s e v e r a l batches o f s t r i p s o l u t i o n i n order to e f f e c t t r a n s f e r of a l l of the t r a n s p l u t o n i u m elements to the c o l l e c t i o n tank. S t r i p p i n g c o e f f i c i e n t s f o r the transcurium e l e m e n t s a r e l o w e r t h a n f o r c u r i u m ; t h u s , t h e amounts o f c a l i f o r n i u m r e m a i n i n g i n t h e o r g a n i c p h a s e and i n t h e aqueous h e e l s o l u t i o n (as i n d i c a t e d by g r o s s n e u t r o n c o u n t s ) a r e m o n i t o r e d t o confirm the completeness of the s t r i p p i n g o p e r a t i o n s . 2

2

Navratil and Schulz; Actinide Separations ACS Symposium Series; American Chemical Society: Washington, DC, 1980.

11.

B i G E L O w E T AL.

A d d i t i o n a l Operating

The "Cleanex" Process

153

Considerations

Exposure of the Organic E x t r a c t a n t to R a d i a t i o n . Radiolytic damage t o t h e o r g a n i c e x t r a c t a n t i s q u i t e l i k e l y t o o c c u r s i n c e Cm (2.83 watts/g) i s p r e s e n t i n the o r g a n i c phase f o r a s i g n i ­ f i c a n t time. A t TRU we g e n e r a l l y t r y t o h o l d p l a n n e d e x p o s u r e s b e l o w 150 w a t t - h o u r s / l i t e r (6 χ 1 0 r a d ) . Thus, i n the case of a f e e d c o n t a i n i n g enough Cm to generate 5 w a t t s / l i t e r ( i n the o r g a n i c p h a s e ) , t h e e x t r a c t i o n and s c r u b b i n g must be c o m p l e t e d a n d s t r i p p i n g begun w i t h i n 30 h o u r s . We have n o t e x p e r i e n c e d any o p e r a t i n g d i f f i c u l t i e s w i t h C l e a n e x r u n s made u n d e r t h e s e c o n d i ­ t i o n s , b u t s e v e r a l samples o f c u r i u m o x i d e p r o d u c t have been f o u n d t h a t c o n t a i n e d 5 t o 8% p h o s p h o r u s , p r e s u m a b l y f r o m r a d i o ­ l y t i c d e c o m p o s i t i o n o f t h e HDEHP. P o t e n t i a l l y , the process of d e c o m p o s i t i o n can form e x t r a c t a n t s p e c i e s t h a t behave q u i t e d i f ­ f e r e n t l y f r o m HDEHP and c a u s e a v a r i e t y o f d e l e t e r i o u s e f f e c t s . I n c r e a s i n g d i f f i c u l t y i n s t r i p p i n g h a s b e e n o b s e r v e d on o c c a s i o n s when t h e e x p o s u r e a p p r o a c h e d 200 w a t t - h o u r s / l i t e r . 2l+l+

7

Downloaded by UNIV OF TEXAS AT DALLAS on April 25, 2017 | http://pubs.acs.org Publication Date: April 16, 1980 | doi: 10.1021/bk-1980-0117.ch011

2I+l+

O r g a n i c P h a s e E n t r a i n m e n t D u r i n g Aqueous P h a s e T r a n s f e r s . One a d v a n t a g e o f b a t c h s o l v e n t e x t r a c t i o n p r o c e s s e s i s t h a t a d e ­ q u a t e t i m e c a n be a l l o w e d f o r t h e o r g a n i c and aqueous p h a s e s t o s e t t l e and s e p a r a t e . The aqueous (bottom) p h a s e c a n t h e n be t r a n s f e r r e d to a separate tank using a s p e c i a l phase-separator vessel. Although the p h a s e - s e p a r a t o r i s very e f f e c t i v e i n p r e ­ v e n t i n g b u l k t r a n s f e r o f t h e wrong p h a s e , a s m a l l amount o f t h e o r g a n i c phase i s f r e q u e n t l y e n t r a i n e d i n t h e aqueous p h a s e . If the next p r o c e s s i n g step r e q u i r e s evaporation of the Cleanex p r o d u c t s o l u t i o n t o a s m a l l v o l u m e , t h e e n t r a i n e d HDEHP c o u l d be decomposed t o a t a r w h i c h c o u l d s o r b a s i g n i f i c a n t amount o f t h e a c t i n i d e elements. When t h i s p o s s i b i l i t y e x i s t s , t h e t r a n s f e r o f C l e a n e x p r o d u c t s o l u t i o n t o t h e e v a p o r a t o r i s made v i a a t a n k c o n t a i n i n g a few l i t e r s o f o r g a n i c d i l u e n t (DEB o r Amsco) so t h a t a s e c o n d , c l e a n e r p h a s e s e p a r a t i o n c a n be made. Possible entrain­ ment o f t h e p u r e d i l u e n t i n t o t h e p r o d u c t i s o f l i t t l e c o n s e q u e n c e s i n c e the d i l u e n t w i l l s t e a m - d i s t i l l out of the r e c e i v i n g tank d u r i n g e v a p o r a t i o n o f t h e aqueous p r o d u c t . Results T y p i c a l r e s u l t s o f t h e C l e a n e x p r o c e s s , as a p p l i e d t o a HFIR t a r g e t p r o c e s s i n g c a m p a i g n , a r e shown i n T a b l e I. P a r t A shows the q u a n t i t i e s o f the t r a n s p l u t o n i u m elements found i n a t y p i c a l t a r g e t c a m p a i g n , and t h e i r b e h a v i o r i n t h e p r o c e s s . P a r t Β shows t h e b e h a v i o r o f m a j o r f i s s i o n p r o d u c t s , w h i l e P a r t C shows t h e p u r i f i c a t i o n t h a t c a n be o b t a i n e d f r o m common m a c r o s c o p i c c o n ­ taminant i o n s . Note t h a t the s o l u t e i o n s found i n the second s t a g e o r g a n i c phase a r e u s u a l l y s t r i p p e d and a c c u m u l a t e d as a r e w o r k f r a c t i o n t o be r e c y c l e d t o s u b s e q u e n t c a m p a i g n s . The f i r s t s t a g e o r g a n i c p h a s e and t h e s e c o n d s t a g e aqueous r a f f i n a t e are d i s c a r d e d .

Navratil and Schulz; Actinide Separations ACS Symposium Series; American Chemical Society: Washington, DC, 1980.

154

ACTINIDE SEPARATIONS

T a b l e I . T y p i c a l C o m p o s i t i o n o f C l e a n e x F e e d S o l u t i o n s When P r o c e s s i n g T r a n s p l u t o n i u m E l e m e n t s D u r i n g a HFIR T a r g e t Campaign

% Distribution to Exit Amounts m Feed S o l u t i o n

Component

P a r t A; 243

Am

Downloaded by UNIV OF TEXAS AT DALLAS on April 25, 2017 | http://pubs.acs.org Publication Date: April 16, 1980 | doi: 10.1021/bk-1980-0117.ch011

244

Cm 249, Bk 252 Cf 253. Es 257. Fm

( T o t a l Cm)

Transplutonium