The Crystal and Molecular Structure of Tetra-n-butylammonium

Electronic ground state of bis (maleonitrile-dithiolene)nickel monoanion. Sulfur-33 hyperfine interaction. Richard D. Schmitt , August H. Maki. Journa...
0 downloads 0 Views 1MB Size
Vol. 3 , No. 11, November, 1964

TETRA-~-BUTYLAMIVIONIUMCOPPER(III) BIS(MALEONITRILE DITHIOLATE)

1507

CONTRIBUTION FROM THE LAWRENCE RADIATION LABORATORY AND DEPARTNEST OF CHEMISTRY, UNIVERSITY OF CALIFORNIA, BERKELEY, CALIFORNIA

The Crystal and Molecular Structure of Tetra-n-butylammoniumcopper(II1) Bis(maleonitri1e dithiolate) and the Geometry of the Monovalent Copper(II1) Bis(maleonitri1e dithiolate) Ion1 BY J. D. FORRESTER, ALLAX ZALKIN,

AND

DAVID H. TEMPLETON

Received June 22, 1964 The crystal and molecular structure of tetra-n-butylammoniumcopper( 111) bis(maleonitri1e dithiolate) has been determined from an X-ray diffraction study of a single crystal specimen. The monoclinic unit cell, space group I2/c, with a = 15.69 =t 0.02, b = 13.83 & 0.01, c = 27.94 =t 0.03 A,, and p = 93 86 & 0.03”, contains eight formula units. Atomic parameters were refined by least-squares methods using three-dimensional data out to sin B/A = 0.482. The anion is closely planar with the sulfur atoms in a square arrangement around the copper atom. The symmetry of the anion is mmm to a very close degree. In contrast with the cobalt complex examined previously,othecopper atoms are not well separated in the structure and the shortest copper-copper distances are 4.026 and 4.431 A. All four of the n-butyl chains in the cation have the trans conformation. Positions of all 36 independent hydrogen atoms were determined from an electron density difference function.

Introduction In a previous paper2 we reported our work on the structure of ((n-C4H&N)2.Co(S2C4N2)2,a member of a series of compounds of general formula R’,(iU’S4C4R4)-’ where z = 0, 1, 2; M’ = Co, Ni, Cu, Pd, Pt, Zn, R h ; R = CN, CF3, CeHs, etc., and R’ = (n-C4H9)4Nf, (CH3)4N+, etc. We report in this paper a structure determination of another member of the series, viz., ( ~ - C ~ H ~ ) ~ N + C U ( S Z CWe ~ N ~were ) ~ - . encouraged to examine this material because i t was being used as a host crystal for paramagnetic resonance experiments. Maki, et u Z . , ~ have already used the results of this crystallographic study to identify the principal axes of the g-value tensor and the hyperfine tensor with the symmetry directions of the anion and to explain some other features of the resonance results. Experimental X-Ray Diffraction.-Dr. N. Edelstein of Harvard University kindly supplied us with some well-formed, needle-like, dark red crystals of the complex ( n-C4HS),~+Cu(S:C4N2)2-. The melting point, analysis, and preparation of these crystals are described in a paper by Davison, et aZ.4 X-Ray photographs obtained by the Weissenberg technique and copper radiation established the diffraction symmetry of the crystal. A single crystal, in the form of a long thin plate of approximate dimensions 0.27 X 0.11 X 0.07 mm. and mounted about a b* axis, was used for collecting the intensity data. Intensities were measured with a General Electric XRD-5 goniostat equipped with a scintillation counter and a pulse height discriminator. Mo Koc radiation y a s used and the unit cell dimensions are based on X = 0.70926 A. for M o Kal. The space group permits 2803 independent reflections in the sphere with sin @/A less than 0.482 (28 < 40°), and, of these, 1834 were measured with counting times of 10 sec. each. All reflections in the sphere were recorded up t o 28 = 30”. Above 30”, it was found that most of the intensities were quite weak and only (1) Work done under the auspices of the U. S. Atomic Energy Commission. (2) J. D. Forrester, A. Zalkin, and D, H. Templeton, I n o u g . Chew%.,3, 1500 (1964). (3) A. H. Rlaki, N. Edelstein, A. Davison, a n d R. H. Holm, J . A m . Chem. SOC.,8 6 , 4580 (1964). (4) A. Davison, X. Edelstein, K. H. Holm, and A. H. Maki, Inovg. Chein., 2, 1227 (1963).

the reflections that gave some ease and economy in setup were measured. Of the 1834 measured reflections, 396 were assigned zero intensity and the maximum count was 4100 counts/sec. for the 002 reflection. No corrections were made for either absorption or extinction. With p = 10.5 cm.-l for Mo radiation, p R is 0.14 or less, making absorption effects rather small. Calculations were made with an IBM 7094 computer using a full matrix least-squares refinement program written by P. K. Gantzel, R. A. Sparks, and K. N. Trueblood, with minor modifications, and Fourier and distance programs written by Zalkin (all unpublished). We minimized the function Zw( F,/ - Fc1)2/ ZwFo2,where F,,and F, are the observed and calculated structure factors, respectively, and w is the weighting factor. Atomic scattering factors were taken as the values given by Iberss for neutral Cu, S, N, C, and H. Dispersion correctionss of 0.3 and 0.1 electron were added to the Cu and S scattering factors, respectively. The imaginary part of the dispersion correction was ignored.

I

1

Results Unit Cell and Space Group.-A body centered unit cell contains eight formula units (n-CdH&NCu(S2C4Nz)z and is monoclinic with dimensions: a = 15.59 0.02, b = 13.83 0.01, c = 27.94 f 0.03 A,, /? = 93.86 =t 0.03’, I/ = 6010.5 A.3. Reflections are absent unless h x? 1 = 2n and h0Z reflections are absent unless 1 = 2n. This is consistent with either the centric space group I2/c (Czh6)or the noncentric space group IC(Cs4). The success of our structure determination confirms our choice of the former. With eight formula units of (n-C4H9)dNCu(S2CdPIIT2)2 in the unit cell, the density calculated from the X-ray data is 1.30 g./cc. This compares with the value of 1.30 g./cc. found by a flotation method using a mixture of benzene and carbon tetrachloride. Determination of the Structure.-When all the data had been collected, the observed intensities were corrected for Lorentz and polarization effects, and a threedimensional Patterson function was calculated using

+ +

( 5 ) J. A. Ibers in “International Tables for X - R a y Crystallography,” Kynoch Press, Birmingham, England, 1962, Vol. 111, p. 202. (6) D. H. Templeton, zbid., p. 215.

ALLANZALKIN,AND DAVIDH. TEMPLETON 1508 J. D. FORRESTER, FINAL COORDINATES X

a

0.1366 0.1412 0.1366 0.0916 0.1780 0.2477 0.1830 0.0375 0,0979 0.3307 0.1719 0.1903 0.2217 0,1799 0.1043 0.0864 0.0584 0.1011 0.3670 0,3306 0.3730 0.3343 0.3531 0.4456 0.4466 0,5316 0.3748 0.3412 0.3944 0,3717 0.2335 0.1982 0,1004 0.0611 Treated anisotropically-see

AND ISOTROPIC

4%) 0.0001 0.0003 0.0003 0.0003 0.0003 0.0009 0.0009 0,0009 0.0008 0.0006 0,0008 0,0008 0 0010 0.0010 0.0008 0.0008 0.0010 0.0010 0.0008 0,0009 0.0009 0.0010 0.0009 0.0010 0,0013 0,0020 0,0008 0.0011 0.0010 0.0012 0.0008 0.0009 0.0011 0.0011b Table I11

Inorganic Chemistry

TABLE I THERMAL PARAMETERS, TOGETHER WITH THEIR STANDARD DEVIATIONS, FOR ALL ATOMSEXCEPT HYDROGEN

z U(Y) dz) Y 0.0001 0.0001 0 1851 0.2326 0.0003 0.0001 0.2201 0 3401 0.0001 0.0003 0.2451 0 0302 0.0001 0.0003 0.3031 0 2160 0.0001 0.0003 0.1621 0 1534 0.0010 0 2738 0.0006 0.0545 0.0005 0.0011 0 5132 0.1239 0.0005 0.0010 0,4136 0 0986 0.0005 0.0010 0,3385 0 8519 0.0007 0.0003 0.9111 0 3446 0.0010 0.0005 0.1618 0 3466 0.0010 0.0005 0,1392 0 2659 0.0007 0.0012 0.0928 0 2701 0.0006 0,1412 0 4402 0.0013 0.0005 0.0010 0.3035 0 0247 0.0010 0.0005 0.3274 0 1029 0.0007 0.0012 0,3752 0 0973 0.0012 0.0005 0.3235 0 9287 0.0009 0.0004 0,9327 0 4373 0,0005 0,9789 0.0010 0 4681 0.0005 0.0011 0.9966 0 5634 0.0006 0.0012 0.0392 0 6019 0.0005 0.0010 0.9436 0 2592 0,0006 0.0012 0.9582 0 2435 0.0007 0 1561 0,0013 0.9935 0.0010 0,0021 0.0195 0 1486 0.0005 0.0009 0.8637 0 3331 0.0006 0.0013 0.8349 0 2454 0.0006 0.0012 0.7873 0 2409 0,0006 0.0013 0,7598 0 1512 0.0009 0.0004 0.9031 0 3475 0.0005 0.0010 0,8725 0 4306 0.0012 0.0006 0 4318 0.8731 0 . OOOBb 0.0012b 0,8431 0 5162 Not actually calculated, but estimated from similar atoms.

the 1143 terms whose intensities were measured as 2 counts/sec. or more. With eight molecules in the unit cell, i t was probable that all atoms would be in general positions, so that little assistance was obtained from the symmetry of the space group and the use of special positions in locating the positions of the copper atoms. However, plausible positions for the copper atom and the four independent sulfur atoms, all in general positions, 8(f) (0,0, 0 ; l/z, I / d f (x,y, z; x, yj '/z z ) , were found from the Patterson function by inspection of the highest peaks around the origin and using our knowledge of the geometry of the anion as found in the cobalt compound. A three-dimensional electron density Fourier was calculated with phases based on the copper and the four sulfur atoms. This function readily revealed the locations of the other 29 heavier atoms, all in general 8(f) positions. A least-squares refinement with all 34 of these atoms, each having an isotropic temperature factor of the form exp(--BX-2 sin2e), and using the 1143 terms, each with unit weight, resulted in a conventional unreliability factor R = Z llFol - ~ F c ~ ~ /ofZ ~ 0.11 F oafter ~ three cycles of refinement. The end two carbon atoms of one of the butyl chains (C(15) and C(16)) were found to be merging, so an electron density map of the immediate

+

BC

dBIC

a

...

a a

c

In

...

a

... ...

a 8.8 8.5 8.2 7.3 3.8 4.3 4.7 7.3 6.4 4.2 4.2 6.9 6.1 4.0 5.5 5.7 7.6 5.0 7.1 9.0 17.4 4.5 7.9 7.6 8.9 4.4 5.3 7.2 10.7

0.4 0.4 0.4 0.3 0.2 0.3 0.3 0.4 0.4 0.3 0.3 0.4 0.4 0.3 0.4 0.4 0.4 0.3 0.4 0.5 1.o 0.3 0.4 0.4 0.5 0.3 0.3 0.4 0.4b

. .

b.2.

vicinity of these two atoms was calculated using the results of this least-squares refinement. It was then evident that C(16) had been wrongly located. Three further cycles of least-squares refinement using the correct location for C(16) resulted in a drop of R to 0.092 for all the heavy atoms. The copper and the sulfur atoms were given anisotropic temperature factors of the form exp(-&h2 Pzzk2 - p3&2 - 2Plzhk - 2&hl - 2&kl), with 4p,, = a,*a,*Bii, a,* being the length of the ith reciprocal axis. Three cycles of refinement including these anisotropic temperature factors resulted in a value of R of 0.079. An electron density difference function with all the atoms except hydrogen subtracted out was calculated using the results of this last refinement and using all 1143 terms. Possible locations for 28 hydrogen atoms were found in this difference function and all these positions were used in three cycles of least-squares refinement. At this stage we had 62 atoms in the calculation and this resulted in a total of parameters greater than the capacity of our program and computer. Therefore, in this calculation, we refined only the positions of the 28 hydrogen atoms (each with an isotropic temperature factor) and held the parameters of the other 34 atoms fixed. Of the hydrogen atom positions, 22 appeared

1/02.

3, No. 11, November, 1964

TETRA-~-BUTYLAMMONIUMCOPPER(III) BIS(MALEONITRILE DITHIOLATE)

TABLE I1 FINAL COORDINATES AND ISOTROPIC THERMAL PARAMETERS FOR Atom

Y

X

B , .k.z

2

THE

Atom

HYDROGEN ATOMS

0.44

0.35 0.3P 0.34O 0.38u 0.47 0.32a 0.40a O.3ln 0 22 0.21 0.21 0.22 0.08 0.10 0.08 0.000.05a but not

B,

2

Y

X

H(1) C(9) 0.37 0.49 0.91 2.3 H ( l ) C(l7) 0.43 0.43 0.95 9.2 H(2) W2) H(1) C(10) 0.32 0.42 0.00 4.7 E ( ] )C(18) 0.29 0.48 0.97 7.8 H(2) H(2) 0.43 0.54 0.01 4.2 H(1) C(19) H(1) C(11) 0.38 0.61 0.97 10.2 H(2) H(2) 0.36 0.65 0.04 4.6 H(1) C(20) H(1) (312) 0.03 6.9 H(2) H(2) 0.27 0.58 0.56 0.07 8.9 H(3) 0.34 H(3) 5.5 H(1) C(21) 0.20 0.92 ~ ( 1 ~) ( 1 3 ) 0.33 1.5 H(2) 0.97 0.27 0.32 H(2) 8.OU H(1) '-322) 0.93a 0.2@ H(1) C(14) 0.48" 6.3 H(2) 0.28 0.97 H(2) 0.45 H(1) ( 3 2 3 ) 0 03 -4.3 0.15 H(1) C(15) 0.43 5.9 H(2) 0.12 0.97 H(2) 0.45 5 .o a H(1) C(24) O.lOa 0.04a H(1) C(l6) 0.49" 5 .0a H(2) 0.9ga 0.54O O.lla H(2) 5.0% H(3) 0.19a 0.03a H(3) 0.57" Parameters chosen from a difference function and used in the least-squares refinement,

1509

0.32 0.38 0.25 0.20 0.29" 0.24 0.18 0.lOa 0.11 0 29 0.35 0.49 0.43 0.38 0.46 0.57 0.53 0.49 refined.

A2

0 5 2 3 5 8 1 6 5 5 4.9 9.6 12.1 19.1 2.7 -2 0 1 3 4 8 3 1 5 9 4 6 10 7 8 6

0 88 0 85

0 82 0 85

0.7ya 0.80 0 74 0 77 0 76 0 88 0 93 0 89 0 84 0 86 0 90 0 86 0 87 0 81

TABLE I11 FINALANISOTROPIC THERMAL PARAXETERS, TOGETHER WITH THEIRSTANDARD DEVIATIONS, FOR THE COPPER AND THE FOUR SULFUR ATOMS Biz

a

cu S(1) S(2) S(3) S(4) AII in

4.7 7.9 8.6 6.3 10.7

0.1 0.3 0.3 0.2 0.3

4.0 4.0 3.8 4.3 3.9

0.1 0.2 0.2 0.2 0.2

4.4 4.5 5.6 4 9 4.9

-0.1 0.3 0.0 0.5 -0.2

0.1 0.2 0.2 0.2 0.2

U(BIZ)

B13

0.1 0.2 0.2 0.2 0.2

0.2 1.9 1.5 0.9 2.3

U(BIS)

0.1 0.2 0.2 0.2 0.2

U(B23)'

B23

0 0 0 0 0

-0.2 -0.2 0.1

0.3 -0.7

1 2 2 2 2

A.2.

satisfactory, with the remaining 6 either unsuitably located or with very high temperature factors. Several errors in the data, due to mis-setting of the goniostat or mispunching of a data card, were corrected and all the measured data included in the calculation. As there were so many weak intensities, a considerable number of them were recounted but little variation from previous measurements was found. Terms with intensity less than 2 counts/sec. were given '/4 weight and all the rest given unit weight, making 1834 terms in all. Three cycles of least squares were calculated using these new data and only the 34 heavy atoms, with the copper and the four sulfur atoms having anisotropic temperature factors, and these gave a value of R of 0.12. Another electron density difference function was calculated using the results of this latest refinement and including only the terms for which sin B/h < 0.36. In addition to the previous 22 hydrogen atom locations, 11new sites were found with only the three around C(16) missing. The 33 hydrogen atoms were included in two cycles of least-squares refinement where only the heavy atoms were refined, followed by two cycles where the heavy atoms were held fixed and the hydrogen atom positions were refined. R fell to 0.106 after these four cycles of refinement and all but 9 of the 33 hydrogen atoms were satisfactorily located. A card punching error resulted in the incorrect location of one of the nine and this was corrected in the next refinement. The remaining eight were rather imprecisely located in extended areas of

b

i

7'

h 21

I

0 -'

0

J

--s-

C

Fig. 1.-A projection down the a axis showing the stacking of the Cu(MKT)z- anions as viewed down a stack. The copper atoms labeled 1, 2, 3, and 4 have x coordinates of 1.14, 0.86, 0.64, and 0.36, respectively.

electron density in the difference function and the leastsquares refinement had moved them, through admittedly small distances, to unsuitable locations. Yet another difference function, calculated after two further cycles of refinement of the heavy atoms only, showed no better locations for the eight doubtful hydrogen atoms, but did show possible locations for the three hydrogen atoms around C(16). These last eleven hydrogen atoms were included in subsequent least-squares calculations with an average temperature factor, but were never allowed to refine. Two cycles with all 70 atoms included, but only the 34 heavy atoms allowed to refine, resulted in R = 0.104. A4sin the cobalt crystal2 the dispersion corrections to

1510 J. D. FORRESTER, ALLANZALKIN,AND DAVIDH. TEMPLETON

Inorganic Chemistry

TABLE IV OBSERVED STRUCTURE FACTOR MAGNITUDES (FOBS) AND CALCULATED STRUCTURE FACTORS (FCAL) 0, 0 L FOB FCA 2 418-379 4 1 1 9 113 6 0 13 8 172 174 10 2 0 3 - 1 9 8 12 111 1 0 5 14 25 14 16 4 3 -42 18 2 9 31 zo 2 2 22 30 32 24 0 6 26 18 2 1 H,K=

-2i

HIK=,Ol 1 L FOB FCA

L 363-326 3 380 368 5 6 6 -48 7 63 60 9 0 -5 1 1 22 21 13 0 0 15 45 -53 17 4 0 4 6 19 3 6 - 4 0 2 1 22 20 23 24 -28 25 56 54

1 4 '11 3 16 103-105 I8 48 5 1 20 2 4 -29 22 0 3 H I K = 0. 7 L FUB FCA 1 223-223

3 289 279 5 194-184 7 38 4 1 9 112-113 1 1 M6 8 1 13 0 -10 I5 0 4 17 56 6 2 19 24 - 2 1 21 0 -I H + K = 0, 8 L FOB FCA 0 85 -85 2 9 8 110 4 99-103 6

12 14 16

L 0 2 4 6

8 10 I2 14 16

18 20 22 24 26

FUR FCA 281-261 167 159 151-133 16 7 1 190 179 15 5 59 55 59 -60 121 121 68 - 7 0 0 5 53 - 5 6 44 45 3 3 -40

HIK0. 3 L FOB FCA

1 3 5 7 9

I1 13 15 17 1Y 21 23 25

44 36 47 52 4 1 39 25 - 3 3 31 -33 115 7 6 54 - 4 6 0 -R 4 1 45 0

-8

23 - 2 1 42 31 3 6 -40

4 L FOB FCA

H t K = 0. 0

2 4

6 8

LO 12 14 16

18 20 22 24

0

-8

23 -29 71 69 80 - 1 0 55 -46 0 4 117-109 30 - 2 5 120 1 2 1 86 -88 75 12 LO -25 18 -19

H , K = 0. 5 L FOB FCA

I

j

3 5 1 9

I1 13 15 11 19 21 23

96

95 48 - 5 1 16 24 141 133 35 4 1 0 -7 4 3 -44 46 51 138-135 1 6 6 158 38 - 4 7 0 -16 0, 6 FOB FCA 177 168 263-260 150 146 93 - 9 0 1 5 8 148 53 - 5 1 107 105

H.K=

L 0 2 4 6 8 10

12

20

27 34 23 0 36

-10 -34 -17 -12 40

0, 9 L FOB FCA 1 2 0 25 3 0 -8 5 18 75 1 15 -33 9 2 2 -14 1 1 39 36 I3 0 -10 15 0 21 17 0 -16 19 0 16 H,K=

L FUR FCA -19 0 13 -11 5 3 - 5 3 -15 15 14 -13 17 -29 -11 0 16 -9 82 78 -1 199-'190 -5 119-148 - 3 206-203 -1 2 8 0 272 1 48 - 3 9 3 5 7 54 5 239-230 7 9 8 97 9 39 31 11 76 7 2 13 149-142 15 1 8 3 1 8 2 1 1 137-130 19 2 1 1 1 H.K=

L -18 -16 -14 -12 -10 -8 -6 -4 -2 0 2 4 6

8 LO 12 14 16

18 HIK0,lO L FOR FCA

0 2 4 6 8

10 12 14 16

97 12 27 50 0 23 48 30 40

H,K=

11 2

HIK-

83

M 108-103 10 0 LM

18

0, 2

HIK=

81

65 -10 15 3 1

18 20

-90 -21 40

-43 9 31 -42 -24 41

0,ll

L FOB FCA 1 52 -54 3 0 9 5 52 - 5 1 7 24 3 1 9 0 22 11 0 7 13 0 -15 15 5 8 59

I.

3 FCA -40 87 -69

FOB 42 90 64 46 48 56 64 11 7 1 90 93 236 235 65 65 9 1 -87 195 193 210 203 139-134 2 6 -24 63 65 52 - 5 6 81 8 0 34 -42 2 1 25

H,K=

11

-3 -1 1

50

43

-9 -7 -5

-8 -51 53 -69

3 199-192 5 9 9 102 7 LO4 104 9 0 :IO 11 1 3 9 - 1 3 4 1 3 111 105 15 7 4 - 7 3 17 6 3 6 2

1, 5 L FOB FCA -16 6 9 -66 0 54 5 5 -14 1 2 4 1 1 9 2 0. - 2 . - 1 2 Y4 -91 4 I 7 -29 -10 6 4 55 6 0 5 -8 41 3 6 M 0 10 -6 23 -21 LO 0 -20 - 4 155 150 -2 195-184 H,K= 0113 0 67 74 L FOB FCA 2 151-148 I 31 -41 4 176 166 3 51 41 6 140-132 5 3 1 -39 8 1 4 74 10 8 6 -84 H,K= I . 1 12 5 4 5 6 L FOB FCA 14 138-138 -20 0 -4 16 1 2 1 1 2 4 -18 0 21 -16 19 9 H , K = 11 6 -14 3 1 34 L FOB FCA -10 0 1 -15 52 51 -n 8 3 -91 -13 9 0 -97 - 6 120-119 -11 64 67 - 4 202 187 -9 84 - 9 8 -2 59 -50 -7 0 7 0 256 235 -5 0 9 87 2 122-107 - 3 159-162 4 0 0 - 1 217 212 6 24 -24 1 75 - I 5 8 30 - 3 4 3 164 156 l o 4 3 -38 5 89 -97 12 160 1 5 6 7 108 9 9 I 4 159-156 9 103-104 I 6 69 70 11 0 13

-3 -1

I 3 5 7 9

11 13 15 17 19

-20 -18 -16 -14 -I2 -10 -8 -6 -4 -2

71

I, 9 L FOB FCA -8 26 -40 -6 0 21 -4 0 3 -2 96-105 0 0 8 2 80 81 4 0 3 6 0 12 8 43 - 4 1 H,K-

FOB FCA 0 -6 56 -52 195 193 197-209 284 285 230-217 68 -74 76 - 7 4 1 5 2 138 0 -18 106 104 76 6 4 8 9 -88 23 18 38 - 4 4 I O 6 104 249-245 223 217 151-154 64 59

H , K = 2, 2 L FOB FC,A

0 2 4 6 8

HtK=

-3

-11

64

L -19 -17 -15 -17 -11 -9 -7 -5

1, 8

L FUR FCA -11 64 -72 - Y 122 123 -1 9 2 - 9 0 28 2 1 -5 -3 19 P I -I 64 -63 1 27 27 3 82 8 9 5 48 - 5 4 7 0 -3 4' 0 -6

-1 1

-69 88 -56 25

11 7

L FOB FCA -14 0 -12 -12 72 80 -10 15M-15Y -8 77 76 -6 0 -10 - 4 106-105 - Z LOO 1 0 6 0 105 - 9 9 2 40 - 3 7 4 112-109 6 26 31 8 19 -20 10 2 0 3 3 12 36 -35 14 2 2 - 2 5

-15 -13

HIK-

HIK0,lZ L FOB FCA

H,K=

H I K = 1, 4 L FOB FCA -17 81 8 3

71 89 52 I6 0 48 58 76

86 - 8 3 95 YM

13 15

10

I2 14 16 18 20 24

H t K = 2, 3 L FUD FCP

1.10

L FOB FCA 22 -18 5M 5 0 1 5 -14 3 0 10 5 59 56 7 68 -56

1,11 L FOR FCA 0 33 26 2 33 -35 6 6 2 -60

H,K=

1.12 L FOB FCA 1 90 -83 5 43 - 4 2 7 LO6 1 0 1 H,K=

1.13 L FOR FCA 0 44 -44 2 36 36

0 LO 33 24 62 65 105-103 247 236 129-131 0 -17 120-123 0 3 210-266 BO 7 1 195) 2 0 4 233-225 23 25 83 - 7 6 3 9 40 83 - 7 8 120 125 133-142 4 7 52 22 -1I 25 24

-19 -17 -15 -13

-11 -9 -7 -5

-3 -I 1 3 5 1 9 11 13 15 17 19

53 -54 u 12 33 72 6 3 9 0 9 1 85 77 -7L 6 5 -64 2 6 1 257 55 -49 182-192 103 -99 225-221 0 3 2 8 36 2 4 -31 82 81 3 Y -45 2 9 25 44 -42

-I6

1 3 1 33 3 4 9 -54 5 306 293 7 221-215 9 81 -76 I 1 4 6 -45 13 48 53 15 86 -89 1 7 2 2 32 M t K = 21 h

L FOB FCA -20

24 -25

.

- 1. h . 41 -47 - 1 4 1 3 6 I50

-12

-LO -8 -6 -4 -2 0 2 4 6 8

10 12 14 16 20

122-124 114 I 2 3 100 -95 1 0 85 113-121 194 199 78 - 8 5 79 -73 165 1 5 3 0 -7 116 117 138-144 57 55 92 -98 116 117 54 47

H,K= 21 7 L FOB FC4 -13 145-147 - I 1 149 153 -9 90 - 9 1 -7 1 1 4 1 2 5 -5 117-114 -3 151 154 -1 72 - 7 1 1 0 8 3 58 62 5 136-130 7 114 1 0 9 9 66 -67 I 1 71 16 1 3 117-115 1 5 122 117

2, 8

HvK-

L FOB 46 68 R4 82 -M 96 -6 63 -4 52 -2 0 0 0 2 0

-18 -14 -I2 -10

0

4

6

FCA -53 -78 86 -85 95 -70 56 -14 13 -15

8

IO

HIK-

21 0 FO8 FCA 18 1 9 17 14 23 20 18 - 9 42 47 79 -89 325 3 1 9 427-417 4 2 4 411 224-218 313 324 1 4 9 153 241 230 198-176 160-158 135 1 2 6 62 -62 84 7 9 163-159 314 308 300-298 177 1 8 3 125-123 22 27 40 - 3 6 0 -3 0 12

H,K=

L -26 -24 -22 -20 -18 -16 -14 -12 -10 -8 -6 -4

-2 0 2 4

6

8 10 12 14 16

18 20 22 24 26

H,K=

21 I

2, 4 F O R FCA 2 4 -16 30 45 76 -80 2 1 -26 0 5 1 7 28 a, 15 - 2 1 1 8 1 165 54 -71 3 4 -35 139-135

HIK-

L -22 -18 -16 ~~

-14

-12 -10 -1 -

-6 -4 -2

0

"

2 4 136-134 6 78 69 8 153-153 1 0 1 7 -12 0 9 12 I4 0 13 16 0 -6 I 8 2 2 -18 22 0 -3

2. 5 FOR FCA 2 2 -9 65 -70 73 6 5 89 -94 18 - 2 6 8 1 -87 112 106 230-224 143 125

H.K=

L -17 -15

-13 -11 -9 -1 -5

-3 -1

2. 9 FOR FCA 58 5R h l -A7 50 2 9 25 0 -3 44 4 9 2 6 27

H,K=

L -9 -7 -5

-3 -1 1 3
n 23 -33 0 19 25 - 1 5

HIK=

L 3 13

15

H.K= 3.11 L FOB FCA 0 29 -25

2 4 6

31 17 0

31 11

-3

2i5 2ik

0 146-146

3,12 FOB FCA 36 - 4 9 66 6 8 4 3 -48 0 3

H,K=

L -1

-3

3 9

H , K = 3,13 L FU8 FCA

0

52

47

0 FOB FCA

H , K = 41 7 L FGR FC9 -17 51 44 -15 0 -14 -13 19 LO -11 J I 13 -9 96 -YU -7 50 27 -5 64 -b6 -3 44 - 5 7 -1 49 46 1 0 3 3 10 - 1 9 5 65 -64 7 hl b6 9 34 -38 1 1 36 - 9 9 13 2 1 36 15 2 9 - 3 4 17 0 2 19 0 5

21

u

I

23

0

10

HiK= 4,

6 L FOB FCA 0 I6 -15 9 6 102 -13 94-107 -11 7 4 80 -9 65 - 7 1 -7 9 8 Y7 -5 R L -80 -3 121 114 - I 161-155 I 1 1 5 118 3 149-142 5 114 1 1 3 7 136-134 9 19 I 7 1 1 4 9 50 1 3 6 3 -68 1 5 44 5 2 17 4 h - 5 0 19 0 13 2 1 1 8 -18 H t K = 31

-21

H . K = 3, 1 L FOB FCA -14 4 4 -46

-i2 -10

-8 -6 -4 -2

0 2 4 6 8

o

ii

0 0 63 50 52 0 19 185 77 28 50 95 80 28 45

8 -1 -65 54 -49

-11

-20 180 -74 -c4 47 -94 17 -22 39 0 -2

10 0 -LO 12 0 8 0 -8 14 75 8 5 16 18 117-111 -8 58 6 3 20 -6 46 59 - 4 151-144 HIK= 3, 8 -2 136 1 3 1 L FOB FCA 0 100 103 -11 4 3 4 4 2 I 0 7 - 9 7 .-9 59 -64 -7 21 24 4 24 -27 6 3 7 35 -5 25 -29 - 3 40 3 1 8 23 2 1 10 2 1 R -1 7 1 -11 I 2 36 - 3 7 1 24 21 3 20 18 14 0 -5 16 54 -56 5 20 -15 7 0 -I5 1 8 69 6 9 20 76 -70 9 43 51 22 54 5 4 I 1 118-113 24 25 - 2 1 13 5 3 6 0 15 66 -52 H t K = 3 . 'r 1 7 1 7 11 L FO8 FCA 1 9 18 -IO -17 15 2 4 -15 6 0 -63 H , K = 3, 9 - 1 3 LO4 108 L FOB FCA -18 2 5 - 2 9 -11 126-120 -0 5 6 55 5 9 91 - 1 2 -8 4 9 48 -7 36 -36 -5 22 -21 -6 3 1 -36 -4 15 23 -3 21 -21 -2 15 - 2 1 -1 1 3 1 1 2 3 0 55 5 / I 25 -28 3 88 82 2 0 I7 -18 -16 -14 -12 -10

4 6 12 14 I6 18

L -26 -24 -22 -20 -18 -16 -14 -12 -10

-8 -6 -4 -2

7 9 -h9

43 49 23 -23 35 31 4 2 -40 0 -3 155-148 11 1 4 202 205 148-13R 106 112 0 -7 66 69 675-713 88M 9 7 8 513-598 38 3 U

0 2 4 6 8 81 - 8 1 10 6 6 6 3 12 1 2 2 - 1 1 8 14 1 5 H2 16 20 -22 18 1 0 -11 20 1 9 32 22 11 - 8 24 0 4

H.K= 4 , 1 L FOB FCA -19 37 -30 -17 I4 36 -15 51 -58 -13 0 6 -11 123-111 -v 0 23 -7 84 R 3 -5 19 1 6 - 3 1 5 2 141 -1 0 10 1 3 5 7 332 3 490-512 5 2 3 4 ?La 7 126-137 9 65 58 11 1 7 - 2 3 I 3 32 36 15 0 1 11 3 6 - 2 9 19 2 7 3 0 21 0 -I7 23 25 2 2 25 I8 -24 H,K= 41 2 L FOB FCA -26 58 5 2 -22 41 57 -18 26 32 -16 9 0 -89 -14 8 1 84 -12 102-103 -10 37 - 4 7 -8 62 -67 -6 5 1 40 -4 31 -26 - 2 197-191 0 61 6 4 2 746-236 4 126 125 6 5 7 -40 8 4 3 42 10 3 4 4 3

H,K= 4 , 4 L k O R FCA -24 0 6 -10 o -15 -16 117-IL2 -14 111 1 1 5 -12 46 - 5 0 -10 116-LU9 -8 I 2 1 -6 0 10 -4 97 - 9 2 -2 31 28 2 0 0 -5 -2

4 6 n

10 12 14 I6 18

20 22 24

0 -15 S O 41 u 4 0 4 19 26 29 -42 0 -7

71

64

63 -06 74 b b 0 -6

H , K = 4, 5 L FUR FCA - 1 5 140 138 -13 114-111 -11 0 -6 -9 0 -11 -7 22 -90 -5 0 -11 -3 33 LY -1 62 65 I 97 -93 0 -16

3

5 I S5-13L 7 1 H -Le 9 59 29 0 u 11 13 15 - 1 7 117 5 30 2 15 56

L -13 -11 -9 -7 -5 -3 -1 1 3 5 1 9

I1 17 LY 21

H . KFOR L = 4F , C8I

-20 -16 -12 -10

-8 -6 -4 -2

0 2 4 6 R 10 I2 16 IR

4, 6

-1

L 3 5

118 - b l

-8

8

10 12 14 1M 20

.)o

5') - 5 9 62 >2 34 - 1 5 3s 40

LL

16 - 4 2

o 2 4

6

11

63 -59 2 9 28 0 -14 0 18

0

6

H , K = 5, 1 L FUB FCA -18 43 -51

-1s

-2

7 30 3 1 21 -30 81 83 85 -92 126 1 2 1 4 5 -4M 68 83 122-122 Y3 9 7 58 - 5 1 39 37 0 9 0 13

H , K = 4.12 L FOB FCA -8 0 -10 -4 0 8 0 0 -11 2 LR 21 4 0 0

-I2 -10 -R -6 -4

-8 2

0

4.10 L FOB FCA 56 67 -10 34 -35 -6 0 4 -2 45 4 3 0 16 2 1 2 23 -15

-14

20 33 34 44 114-116 H2 M I 54 - 5 Y 146 135 15di6i 233 219 142-156 1 R 1 172 95 - 9 1

0

H.K=

-16 -14 -12 -10

L FUB FCA

0

-14

0 -11 0 5

HIK=

-22

5 1 -47

HIK= 4 , 9 L FOB FC4 -5 37 3 9 -3 37 - 4 5 -1 1 5 2 1 L 40 - 3 5 3 0 16 5 22 - 1 6 17 0 13

8 14 1 1 3 - I U l 21 74 f9 23 26 -16

FOB FCA 38 43 21 21 57 - 5 7 88 Y7 104-114 123 117 235-239 1 6 8 I68 '211-206 213 210 117-113 65 6 9 14 -71 0 -3 35 26 0 -6

50 -53 61 -60 18 1 4 0

I

0 4 -6 57 - 5 9 -4 2 9 -27 -2 65 62 0 191-197 2 I 3 8 136 4 63 10 6 0 14 8 4 1 -58 10 22 11 12 19 -24 14 74 70 16 7 6 -80 22 0 20 24 0 -11 H , K = 5, 2 L FOB FCA -17 2 1 29

t i i K = 4, 7

I n the last cycle no coordinate changed more than 0.00005 and no thermal parameter more than 0.01 8.2.

The pqrameters resulting from these last cycles are listed in Tables I, 11, and 111. The observed and calculated structure factors before correction of the dispersion error are compared in Table IV. Standard deviations were estimated in the same way

TETRA-~-BUTYLAMMONIU>ICOPPER(III) BIS(MALEONITRILE DITHIOLATE) 151 1

Vol. 3, No. 11, November, 1964

TABLE IV (Continued) -15 -13

-11 -9

-7 -5 -3

-I 1 3 5 7 9

11 13 15

I7 21 23

7.2

-71 27 29 69 -16 0 4 0 13 107-103 21 49

0 92

17 91 112-10Y 1 2 1 117 6 8 -74 58 51 0 4 46 43 111-IO6 102 100 34 38 0 -16

HIK= 5 , 3 L FOR FCA -10 22 29 -1h 42 - 4 1 -14 52 59 -12 n4 - 7 5 -10 13 13 -a o 9 -6 0 -2 -4 I 6 -20 -2 83 77 o 27 2 n 2 111-118 4 70 64 6 0 13 r ..

10 I2 14 16 22

' ""

1 ~

29 -25 43 49 58 - 4 8 43 42 0 -17

H,K=

5,

4

L FCB FCA -17 -15 -13 -11 -9 -7 -5 -3

3 1 -26 47 52 77 -73 78 86 65 -13 1 7 25 17 27

o

-n

-1 1

43 34 59 -53 J 88 95 5 109-104 7 82 9 2 9 32 39 I 1 44 53 I J 52 - 5 4 15 74 77 21 17 - 1 8 23 36 37

HIK= 5 , 5 L FUB FC4 -20 41 29 -16 38 38 -14 59 -62 -12 108 106 -10 1 0 4 - 1 0 4 -8 29 30 -6 31 - 4 5 -4 I 8 -20 -2 92 97 0 121-I18 2 16 88 4 64 - 5 6 6 173 175 8 8 1 -74 10 56 61 12 41 - 3 8 14 53 59 LO 7 4 -73 41 22 41 H,K= 5, 6 L FOB FCA -13 52 50 -11 65 -12 -9

-7 -5 -3

-I 1 3 5 7

v 11 13 21

99

93

8 8 -85 33 39 31 45 147-136 1 0 4 107 102-102 89 81 68 -b9 73 73 21 - 3 4 62 52 51 51

H.K=

5,

7

L FOB FCA -12 22 - 2 2 -10 67 63 - 8 118-115 -6 90 1 0 4 0 8 -4 -2 14 - 2 0 0 110 1 0 8 2 83 -86 4 20 I7 6 41 -43 8 39 38 10 2 2 - 2 1 H,K=

5,

8

L FOB FCA -9 53 - 5 8 -7 90 89 -5 81 -88 -3 0 19 -1 21 15 1 101-108 J 0 -3 5 47 39 7 31 -28 9 0 -4 H,K= 5 , 9 L FOB FCA 17 -4 0 -2 22 25 0 31 - 3 3 2 31 27 22 16 6 0 -10 10 4 4 - 3 9 H,K= 5 , l O L FOB FCA -15 36 36 -5 0 -3 -1 51 - 4 7 1 40 46 3 0 -10 5 33 - 3 4 7 34 34 Y 45 - 4 1 H,K= 5 , 1 1 L FUB FCA 0 -1 0 L 0 17 4 42 -42 6 0 I9 10 68 58 H,K= 5 . 1 2 L FOB FCA -I 31 - 2 3 1 44 49 J 40 - 4 0 5 36 35 H,K= 6 , 0 L FOB FC4 -24 0 -0 -22 2 0 -19 -20 19 - 6 -18 42 -46 -16 0 13 -14 99 -94 - 1 2 332 2 9 6 - 1 0 345-341 - 8 389 385 - 6 186-188 -4 91 89 -2 88 -90 0 111 126 23 2 22 2R 4 33 0 7 6 8 87 - 7 9 10 13 8 12 1 2 0 - 1 0 9 1 4 131 136 16 158-146 1 8 128 123 81 -76 20 22 31 37 ~

~~

H,K= 6 , 1 , L FO3 FCA -17 0 -6 -15 35 - 4 0 -13 113 119 -11 172-175 - 9 2 6 1 265 - 7 181-184 -5 62 65 -I 54 - 6 4 57 -1 66 I 98 - 9 1 J 139 147 5 I 4 4 139 I 24 -20 ~~

9 18 18 11 30 -35 13 1 2 69 I 5 141-146 H,K= 6 , 2 L F O B FCA -24 I 8 21 -LO 40 33 -16 0 -1 -14 17 18 -12 140-138 -10 156 150 -8 106-103 -6 44 45 -4 6 3 -51 -2 36 49 0 0 IO 2 72 80 4 117 121 6 7 7 -76 8 67 73 10 13 - 2 9 I2 0 13 14 46 -49 16 84 88 20 48 46 H,K= 6 . 3 L F O R FCA -21 54 44 -17 0 -11 -15 0 14 -13 0 -13 -11 19 28 -9 32 - 3 4 -7 63 66 -5 3 4 -32 -3 24 -23 -1 LO3 1 1 3 I 0 -13 3 24 -30 5 0 17 7 0 -17 V 5 6 55 11 65 69 13 0 -16 15 37 41 2 1 35 -27 H.K= 6 , 4 L FUB FCA -22 0 -3 -18 0 -18 -16 85 81 -14 47 -55 -12 20 24 -10 0 18 -8 19 17 -6 0 1 -4 0 -13 -2 96 95 0 6 3 -60 2 0 -12 4 42 -54 6 0 1 8 139 135 10 "4 - 8 2 I2 0 16 14 0 6 18 0 5 22 0 5 HIK= 6 ,

5

1 FUB FCA -15 -13

31 -42 37 - 3 6 83 -11 86 -9 39 - 4 8 -7 19 22 -5 19 - 2 1 -3 68 63 -1 1 3 2 - 1 2 9 1 102 99 3 26 28 5 57 -59 7 173 161 70 -65 9 30 34 I1 I3 34 - 2 7 H,K= 6 . 6 L F 0 8 FCA -20 25 29 -ia o 8 -16 23 18 - 1 2 109 1 0 9 -10 1 1 6 - L l 7 - 8 110 1 0 9 -6 84 -87 -4 93 93 -2 112-121 0 138 128 2 82 -84 4 24 -29 ~

~~

~~

6

11

LO 1L 16 18 20

32 62 74 44 79 49 77

38 -73 86 -47

-3

-1 1 3 5 7 9

-70 47 -73

11

7 L FOR FC4 -11 1 4 1 - 1 4 4 H,K=

-9 -7 -5 -3 -1

1 3 5 7 9

11

6,

132 100 114 95 105 88 0 46 47 53 16

135 -95 110 -87 103 -90 20 54 -54 53 -24

6, 8 L FOB F C A H,K= -18 -14 -10 -6 -4 -2

0 2 4 6 8 10

IL 14

36 14 96 92 61 60 30 0 15 0 22 65 56 55

38 3Y 80 83 -64 67 -29 1 -14 -8

26 -54 23 -53

HIK= 6 , 9 L FOB FCA -15 36 32 -9 33 -2Y -3 32 27 -1 0 -0 1 22 - 3 4 J 39 35 5 0 IO 9 34 - 2 6 11 30 31 I > 36 JL! HIK= 6,10 L F U B FCA -12 o 0 I5 . . .. -4 24 36 0 57 - 5 6 2 41 40 4 0 I2 6 42 - 4 3 n 49 36 12 26 - 2 7

-n

-"

H,K= 6 . 1 1 L FOB F L U -1 43 - 4 2 1 65 64 J 25 - 2 2 5 66 - 7 0 H,K= 6 , 1 2 L FOR FCA -2 26 - 4 0 0 32 38 2 0 -12

13

iin-112 17 15 0 4 144 145 LO1 - 9 6 63 64 27 -32 60 60 0 -7

H I K = 7, 3 L FUR FCA -14 0 10 -I2 0 -16 -10 83 R2 -8 59 -59 -6 84 80 0 5 -4 -2 66 -75 0 0 -9 2 18 19 4 51 - 4 9 6 40 41 8 27 -38 IO 20 -29 I2 15 - 1 4 14 0 -6 H , K = 7, 4 L F O R FCA -13 26 -27 -11 81 84 -9 8 1 -82 - 7 1 0 1 103 -5 0 -20 -3 0 -1 -1 0 -9 I 90 95 3 32 -39 5 74 74 7 L 4 -19 9 40 4 9 11 0 -8 13 0 -11 ~~

ion

2

0

HIK=

7.

5

L FOS FCA -12

107 105 -10 103-102 -8 92 91 -6 48 -48 -4 77 85 -2 63 -64 0 124 113 2 109-116 4 52 49 6 128-128 8 82 YO 10 48 -48 0 5 14 H,K= 7, 6 L F d B FCA -11 90 -89 -9 79 83 -7 46 -40 -5 79 81 -3 57 - 5 4 -1 94 86 1 9B -97 3 83 96 5 65 -50 7 117 121 9 61 -56 H.K= L FOB -14 I7 0 -8 -6 0 -4 30 -2 30 0 36 2 0 4 37 6 65 8 44 10 2 8 14 68

r1

7 FCA 18

-2 6 -30 36 -33 4 -36 59 -45 31 -66

7

4 136 138 6 139-134 8 62 60 1u 0 5 12 0 6 14 0 -20 H,K= 7 , 2 L FO8 FCA -15 47 - 5 2 - 1 3 113 113 -11 85 - 8 6 -V 136 136 -7 R l -7V -5 70 61

14

-5 30

HIK7,10 L FU8 FCA -1 17 - 2 4 1 0 4 3 0 -5 5 0 -6 7 25 36

H s K = 7, 8 L FOB FCA -1 22 32 1 22 -28 3 47 56 5 0 7 7 32 -34 H,K=

H+K= 7 , l l L FOR FCA -2 75 -70 0 36 29 4 25 25 6 0 5

4 6 8

0 4 33 - 2 0 0 3

0 2 4 6 8

IO 16 20

.

L . F O 8 FCA -22 -20

-18 -I6 -14 -12 -10

-a

-6 -4 -2

o

2 4 6 8 10 I2 14 16 18 20

73 65 2 0 -13 67 62 0 -12 74 70 25 -23 20 13 27 28 112-116 85 74 40 35 74 84 375-363 369 3 7 0 306-297 62 62 5 4 -54 62 61 49 -42 52 55 17 - 9 0 2

H,K=

1

8,

-15 -13 -11 -9

-7 -5 -3 -1

0 19 30 -22 90 92 39 -47 0 -0

17

I8

26 -29 84 87

I

0

-0 3 184 171 5 328-329 7 141 137 9 8 3 -93 11 4 4 49 13 22 -21 HqKi

8,

2

L FOB FCA -22 51 - 5 6 -18 33 - 3 1 -14 43 - 4 5 -12 80 81 6 -10 0 0 -7 -8 -6 33 -32 -4 26 27 -2 18 20 0 66 -62 2 80 86 4 53 - 5 3 6 116 118 R 65 - 6 4 .~ LO 0 18 0 4 12 14 0 -1 -1 16 0 18 2 4 - 3 4 ~

H,K= 8, 3 L FOB FC4 -13 0 -16 41 48 -11 -9 57 62 -7 44 -40 -5 0 11 -3 62 -65 -1 19 - 2 6 1 38 36 3 19 -26 5 14 27 7 28 -24 9 41 48 11 1 5 - 2 3 H,K= R I 4 L F O B FCA -20 0 -7 -16 33 38 -12 86 R8 -10 0 -13

0 -19 34 36 24 29 31 -22 24 24 0 16 0 -11 35 -37 25 -32 0 -14 0 16 0 -7 18 22

H.K=

8.

5

L C O B FCA -11 90 -87 -9

8, 0

HIK=

7, 9

L F O B FCA 23 18 0 40 -48

-2

-8 -6 -4 -2

I2

as for the cobalt crystal,2 and we give the same estimate (0.1 to 0.2 for the standard deviations of hydrogen atom coordinates. Description of the Structure.-The stacking of the Cu(MNT)2- ions is shown in a projection down the a axis in Fig. 1, and the arrangement of the tetra-nbutylammonium ions is shown in a similar projection in Fig. 2 . An over-all picture of the projection is directly obtainable by inserting the contents of Fig. 1 into the

x.)

0 18

1 FOB FCA

~~~

H,K= 7 ? I L FO8 FCA -16 30 37 -14 0 -8 -12 i o 4 -10 155-146 -8 139 1 3 9 -6 30 - 2 2 -4 29 - 3 3 -2 0 -16 0 149 1 4 3

10

-7 -5 -3 -1 1 3 5 7 9

30 29 0 25 14 28 35 46 30 22

36 44 -19 21 30 38

-38 56 -28 -31

H.K= 8, 6 L FOB FCA -18 25 - 2 4 -14 n8 8 8 31 22 -10 -8 0 7 -6 48 -52 -4 49 51 -2 5Y - 6 5 0 79 68 2 129-132 4 67 70 6 106-106 8 133 133 10 79 -72 14 7 3 -6Y 16 25 14 I8 0 -5

H,K= 8, 7 L FOB FCA -5 -3 -1

1 3 5 7

62 59 62 -b8 92 88 113-108 142 130 100-105 118 119

H,K= R , a L FOB FCA -16 0 18 -12 0 9 -8 17 6 -6 23 16 -4 2 3 -31 -2 36 32 0 72 -81 2 56 62 4 6 9 -70 b 52 50 73 -71 8 66 10 64 12 56 -45 H,K= 8 , 1 L FOB FCA -1 0 -15 5 0 4 7 24 - 2 9 HIK= 8.10 L FUR FCA -10 0 -17 -6 0 22 -2 4 9 -40 0 0 14 2 18 13 4 18 24 6 0 I 8 31 LJ H I K = 8.11 L F O R FCA -1 0 17 HIK= 9 , I L FOB FCA -12 21 -19 -10 0 -2 -n 20 -26 -6 56 68 -4 0 -11 -2 14 -20 0 14 I6 2 67 -74 4 52 51

6 8

10 18

16 0 5 0 -11 25 -27

H,K= 9 . 2 L FUB FCA -13 0 -I -11 64 66 58 -65 -9 -7 0 -13 -5 0 10 -3 0 I4 -1 19 30 1 0 -15 3 0 21 5 R5 - 8 7 7 33 35 9 43 -46 H.K=

9,

3 L FOH FCA -1H -12 -10 -8 -6 -4 -2 0 2 4 6

4 9 -311 44 4b 21 -24

8

LO

48 -53 47 51

I2

0 -15

18

I1

0

35 - 4 6 0 -8 0 -10 20 21 14 21 8 1 -84 0 -13

2s

25

V,K=

9,

-I

I 3 5 7 9

77 do 55 - 6 2 0 3 0 -3 20 - 2 3 0 -1 25 - 2 9 TO 68 96-106 0 2

H.K= 9 . 5 L FOR FCA -8 69 -10 -6 30 38 -4 42 -47 -2 0 11 0 39 45 2 63 -61 4 37 44 6 4V - 4 2 8 RO 75 17 2 0 12 H,K= 9 , b L FOI! FCA -15 24 23 -9 56 - 5 6 -5 85 - 7 1 -3 3 1 35 -1 0 8 I b2 -56 3 82 78 5 42 -48 Y 70 - 7 J 15 0 29 HIK= 9 , 7 L FOB FCA -2 23 -19 0 1 6 -1Y i 49 -49 6 66 66 8 0 -8 12 25 - J 4 9, 8 L FUB F C 4 3 75 -70 5 0 8 . . H,K=

9

0

0

-3

H,K=LO.

15

0

L FOB FCA 0 -19

2 4 6

-20 -18 -I6

13

13

0 _ . "-

-1

'.

8 10

118-112 167 162 166-161 241 239 177-176 n. - 1.. 0 77 -82 0 6 6 6 -72 26 25 15 20 12 - 1 1 28 L5 17 -11 70 66 90 -85

12

-I'

-12

-10 -8

-6 -4

-

--7

0 2 4 6

8 10 12 14 16 18

H,K=10. 1 L FOB F C 4 -11 27 36 -9 164-149 -7 185 177

..

-07

- 6~,'9

-3 -1 1

3 5

76 79 67 -73 20 24 69 - 7 4 0 I2

7

0

8

15

60

55

H,K=lO,

2

L FU8 F C 4 -20 0 -13 -16 0 -16 -12 0 0 -10 YO - 8 8 -8 68 72 -6 76 -71 -4 51 49 0 -17 -2 0 41 4R 2 0 13 0 -17 4 6 15 15 8 38 - 3 6 10 2 8 27 I2 16 - 2 0 4 14 0 16 0 -16 50 18 45 HIK=IO, 3 L FOB FCA - 9. n. - 1.. 2 34 -46 -7 -5 40 37 -3 42 - 4 7 -I 2 1 -2Y 1 47 49 3 0 1 3 0 -37 5 7 22 -30 15 25 -25 H,K=lO, 4 L F U B FCA -18 44 -3b -14 53 61 -10 0 I I -6 0 -11 -4 0 5 -9 -2 0 0 30 2 7 2 J7 -42 15 -0 4 6 0 -7 8 0 2M 93 97 10 12 38 - 3 8 0 5 14 H,K=IO,

5

L FOB FCA H,K= 9 , 9 L F O R FCA 2b -12 26 -6 0 16 -2 0 1 0 0 2 4 17 23 b 0 -9 8 0 -11

-15 -5 -3 -1 3

5 15

35 31 0 6 22 -20 JV 38 44 41 3 9 -42 0 -1h

H,K=lOI

6

L F y B FCA H,K= 9 , l D L FOB FCA 3 26 23

-4 -2

0

4

L FUH F C 4 -9 -1 -5 -3

5

0

- 1.~ 6 0 .

-12 -8

-0 54 -54 90 - 8 7

14

60 56 75 I02 23 0 17 69 35

-71 56 -70 19 -14 2 -13 -b5 41 1 8 -LO

7 1 CUB FCA H.K=lO,

-3 5

47 17

H,K=lOl

48 19 8

L CbH fLA -13 4 4 -35 -6 6 5~. -57 -2 69 -b2 0 0 25 ~

2 4 6

24 -24 17 21

M

0 -11 0 L2

10

0

-3

HIK=lO, 9 L Fun FLA -3 7 5 -LM 5 26 24

-2 0 2 4 6 8

10 12

14

0

0 28 33 41 48 49 0 0

1 -3 -22 28 -45 52 -42 16 -16

HlK=lZl 3 L FOB FCA -15 0 6 -9 0 -3 -3 33 29 3 33 35 9 25 - 2 9 H.K=12, 4 L FOB FCA -12 56 -52 -8 0 -7 -4 01 -2 0 -10 n. n- - 4 . 2 0 12 4 24 25 6 0 13 8 0 2 10 0 -R 12 0 -3 HtK=12, 5

H,K=llr I L F l i J FcA -6 44 51 -4 0 -I1 21 -2 I5 0 37 - 5 2 2 22 I6 4 0 -z2

H,h=lll 2 L t311 FCA -5 hb -68 31 J5 -? 31 -36 -1 1 27 J5 I 1 34 -42 ti,K=ll, 3 L3 : F FCb 0 0 -L4 H,K=ll, 4 L F O O FCA 11 30 L l

H,n=ll, 5 L P U B FC4 0 40 -34 H,K=lI, 6 1 FUB F - 4 I 1 J6 - 3 0 H,K=Il, 7 1 FO11 t c 4 13 4 ' ) 41 H,i=ll. 0 L FOB F L 4 0 37 26 Hvh.121 0 L FOB F C 4 -16 18 I3 -14 44 - 3 7 -12 14 59 -10 17 -15 -8 1 3 -12 0 -3 -6 -4 26 - L b -? 0 I0 0 23 -L2 57 58 2 4 110 -i)8 b 148 I 5 6 8 ILS-IL4 10 57 54 12 33 - 3 8 14 0 -1 H,U=lZ, I 1 FUB +LA b2 07 16 7 32 - 6 0 ') 94 65

-9 -3 3

H,K.IZ, 2 L flld FLAl -14 18 19 -IC 0 IJ -b 16 LO

L FOB FCA 55 -55

-9 -3 3 9

0 0 18

3 6 6

H.K=12. 6 L FOB FCA -12 52 54 36 - 4 0 -10 -6. n. - 1. 0. - 20 2 4 6 8

b3 50 - 1599 25 31 11 - 6 7 36 JB 51 -49

H.K=IZ,

7

1 F O B FCA -9 -3

3

0

26 25 29 54 -53

H,K=L3. 1 L FOB FCA 0 0 2 HIK=13r 3 L F O B FCA

0

0

6

H,K=13. 5 01 FOB 0 FCA 6

H,K=l4. 0 L FOB FCA .LO 4 8 -46 -8 59 57 -6 -4 -2

106-105

2 0 4 6

230 1 - 1225 31 32 21 -26

109 IC0 75 - 7 1

H,K=l4.

1

L FOH FCA 7 0 12 H,K=14,

2

L FOB FCA -8 31 - 2 1 -4 -2 0 2 4 6

Jb -41 31 29 25 -26 0 5 0 1 0 2

H.K=14, 4 L F O B FCA -6 0 -6 -4 0 -7 -2 0 8

0 2

0 0

-I 10

almost unoccupied central rectangle in Fig. 2. The two figures illustrate the nature of the molecular arrangement in the structure. The anions are stacked in columns whose axes are parallel to a and these columns are surrounded by a latticework of cations making the two parts of the structure quite independent, with very little overlap in the bc plane. This arrangement is very different from that found in both ( ( C ~ H ~ ) ~ N ) Z C O (SZC~NZ)~ b y Forrester, et u Z . , ~ and in ((CH3)qN)zNi-

1512 J. D. FORRESTER, ALLANZALKIN,AND DAVIDH. TEMPLETON

Inorganic Chemistry

Fig. 2.-A projection down the a axis showing the latticework arrangement of the tetra-n-butylammonium ions. The small black circles are representative of each type of hydrogen atom. The stacked anions shown in Fig. 1 fit exactly into the almost unoccupied rectangle in the center of this figure.

(SzC4Nz)z by Eisenberg, et a l l 7where the metal atoms are separated by about 10 A. A side view of the column of stacked anions is shown in Fig. 3. The four copper atoms per unit cell per stack are almost exactly above each other in the a direction while the anions are rotated in such a way as to give the stack mm symmetry in the bc projection. The Cu(MNT),- Ion.-The dimensions of the anion are illustrated in Fig. 4 and compaied in Table V with those found for the doubly charged anion in ( ( C ~ H ~ ) ~ N ) Z C O ( S ~ CDespite ~ N & . the difference in the oxidation state, there is no significant difference in the molecular dimensions of the two anions, with standard deviations of about 0.02 A. The anion is approximately planar, but deviations from planarity are considerably greater than in the Co(MNT)z2- ion. T o assess the planarity, the distances of the atoms in the ion from a plane constructed to pass through the three points defined as: point 1, the mean (7) R. Eisenberg, J. A. Ibers, R. J. H. Clark, and A B. Gray, J. Am. Chem. Soc., 86, 113 (1964).

position of atoms N(1), N(2), C(3), and C(4) ; point 2, the mean position of atoms C(7) and N(3) ; point 3, the mean position of atoms C(8) and N(4), were calculated, and these are listed in Table VI. The ion appears to be bent slightly into a crescent shape with only atom S ( l ) deviating substantially from this shape. Deviations range from 0.05 A. on one side of the plane to 0.11 A. on the other. The four sulfur atoms are twisted from square-planar in an irregular way. The S-Cu-S angles in the rings are 92', in close agreement with 91 and 92' found in previous studies2J of the divalent anion. The chemically equivalent but crystallographically nonequivalent bonds in the anion, viz., Cu-S(l), Cu-S (21, Cu-S(3), and CuS(4) ; C(1)-S(l), C(2)-S(4), C(5)S(2), and C(6)-S(3); C(l)-C(2) and C(5)-C(6) ; C(2)C(3), C(l)-C(4), C(5)-C(8), and C(6)-C(7); C(3)N(1), C(4)-N(2), C(7)-N(3), and C(8)-N(4), differ by less than two standard deviations. Crystallographically the ion is not required to have any symmetry] but its geometry is such that i t does not differ very much from mmm ( D 2 h ) symmetry. The only deviations from

VOJ. 3, l ! O . 11, November, 1964

T E T R A - ~ - B U T Y L A M M O N I U h l C O P P E R ( I I I ) BIS(NALEONITRILE DITHIOLATE)

1513

a

I

0

I

2A

u

M ‘ , 3 4

641

0 0 Fig. 3.-A

projection down the c axis showing the stacking of the C U ( M X T ) ~anions from the side. The figures beside some of the atoms are the z coordinates ( X100).

this symmetry which are statistically significant are the deviations from planarity, and these are considerably less than the amplitudes of thermal motion. Thus we prefer not to assign them any chemical significance. Neither our data nor our computing facilities justify anisotropic analysis of the motion of the carbon and nitrogen atoms. In the absence of such analysis, we will not belabor the thermal motion of the sulfur atoms except to point out that the large values of B11 correspond to large out-of-plane amplitudes. In sharp contrast with the cobalt chelate,2 where the closest distance of approach of the metal atoms is 9.81 B.,the copper atoms in this structure have nearest copper neighbors a t 4.026 =t0.005and 4.431 =t 0.006k . These near neighbors give an explanation of decreased

anisotropy in the e.s.r. properties found by Maki, et aZ.,3 for the isomorphous nickel crystal. No atom from the cation except hydrogen (nearest a t 4.74 B.)approaches closer than 5.0 A. to the copper atom, although some 14 different atoms from adjacent anions are a t distances between 3.6 and 5.0 A. from the copper. The Tetra-n-b~tylammoniumIon.-The configuration of this ion can be seen in Fig. 2 and the important dimensions are listed in Table VII. All the butyl chains adopt the trans conformation, and the dihedral angles of these chains are listed in Table VIII. With the exception of the chain involving C(16) these angles are very small showing that the chains are very nearly planar. The four C-N bonds are equal within the experi-

1514 J. D. FORRESTER, ALLANZALKIN,AND DAVID€3. TEMPLETON TABLE V A COMPARISON OF THE INTERATOMIC DISTANCES A N D ANGLES, TOGETHER WITH THEIR ESTIMATED STANDARD DEVIATIONS, IN THE C U ~ M N T )ASD ~ - THE C O ( M N T ) ~IONS -~

Inorganic Chemistry

TABLE VI DISTANCES OF THE VARIOUSATOMSIN THE Cu(MNT)g- ION FROM THE PLANE THROUGH THE MEANATOMS{ N( l ) , N(2), C(3), AND C(4)), {C(7)AND N(3)), A N D ( C ( 8 ) AND N(4))

( A ) Distances E.s.d.,

A.

A.

A.

A.

2.174 2.170 2.177 2.158

0.004 0.004 0.004 0.005

2.163

0.003

2.159

0.003

1.73 1.74 1.71 1.70

0.010

1.731

0.007

0.010 0.010 0.010

1.715

0.007

1.32 1.31

0.020 0.020

1.34

0.010

1.42 1.43 1.44 1.44

0.020 0.020 0.020 0.020

1.40 1.40

0.010 0.010

1.17 1.12 1.14 1.15

0.020 0.020 0.020 0.020

1.15 1.16

0.010 0.010

--Co(MNT)*-h Distance, E.s.d.,

Atoms

S(l)-Cu/Co-S(3)

E.s.d., deg.

-Co(MNT)a-Angles,“ deg.

E.s.d.,

88,6” 91.4‘~

0.1 0.1

deg.

88.2 92.2 92.5 87.1

0.2 0.2 0.2 0.2

102.5 101.4 101.9 101.9

0.5 0.5 0.5 0.5

103.7

cu/co-S( 2)-C( 5) CU/CO-S(3)-C( 6) cu/co-S( 4)-c(2)

103.8

0.3

S(l)-C(l)-C(2) S(2)-C( 5)-C(6) S(3)-C( 6)-C( 5) S(4)-C(Z)-C( 1)

119.2 121.6 122.5 123.9

1.1 1.1 1.1 1.1

120.0

0.6

121.1

0.5

S(l)-C(l)-c(4) S(2)-c(5)-c( 8)

1.1 1.0 1.1 1.1

117.2

0.6

S(3)-C(6)-C(7) S(4)-c(2)-c(3)

117.7 115.1 116.3 115.9

118.1

0.5

C( 1)-C(2)-C(3) C(2)-C( 1)-c(4) C(5)-C(6)-C( 7) C(6)-C( 5)-C(8)

120.1 123.0 121.1 123.2

1.3 1.3 1.3 1.3

120.8 122.8

0.7 0.7

S( 1)-Cu/Co-S(4) S(2)-CU/Co-S( 3) S(2)-CU/CO-S( 4)

cu/co-S( 1)-C( 1)

(A,) from Atom

plane

-0.064 $0.032 -0.094 -0,065 -0.114 -0.030 -0.036 +0.011 -0.011 -0.051 -0.030 -0.019 -0.008 +O ,053 -0.053 +o ,019 +o I008

0.002 0.004 0.004 0.004 0.005 0.014 0.014 0.016 0.016 0.014 0.014 0.016 0.016 0.015 0.015 0.015 0.014

TABLE VI1 DISTANCES AND ANGLESINVOLVING THE CARBON ASD NITROGEN ATOMSI N THE TETRA-a-BUTYLAMMONIUM I O N

( B ) Angles -Cu(MNT)a-Angles, deg.

E.s.d. the atomic position

(A.) of

Distance

-Cu(MNT)z-Distance,

Distance,a Atoms

A.

Atoms

N(5)-C(9) N(5)-C( 13) N( 5)-C( 17) N(5)-C(21)

1 510 1,517 1.544 1.520

C(9)-N(5)-C( 13) C(9)-N( 5)-C( 17) C(9)-N( 5)-C(21) C( 13)-N( 5)-C( 17) C(13)-N(5)-C(21) C(17)-N(5)-C(21)

0.3

111.o 104 6 112.4 109.6 107.2 112 1 Mean C-N-C angle 109.5

Mean C-N dist. 1.523

C( 1)-C(4)-N(2) 177.1 1.7 178.7 1.0 179.8 0.8 C(2)-C(3)-N( 1) 1.7 178.2 C( 5)-C(8)-N(4) 178.5 1.6 C( 6)-C( 7)-N( 3) 175.9 1.7 Because of the higher symmetry of the C O ( M N T ) ~ ion -~ there are two symmetrically equivalent values of each of these distances and angles. b Not independent angles.

mental accuracy and have an average value of 1.52 f 0.01 A. The six tetrahedral angles a t the nitrogen atom (C-N-C) average 109.5’ with a spread of k 5 O . Both these results are in excellent agreement with the values found in the cobalt compound. In the butyl chains, the mean C-C distance is 1.523 A. Applying a thermal correction assuming that each carbon atom ‘rides” on its neighbor nearer to the central

Atoms

C(9)-C(.lO) C(lO)-C(ll) C(l1)-C(12) C( 13)-C( 14) C( 14)-C( 15) C( 15)-C( 16) C( 17)-C( 18) C( 18)-C( 19) C( 19)-C(20) C(21)-C(22) C(22)-C(23) C(23)-C(24)

Dis-

Distance,‘

A.

A.

Atoms

1.52 1.54 1.49 1.51 1.58 1.55 1.56

K(5)-C(9)-C( 10) C(9)-C( lO)-C( 11) C(l0)-C( 11)-C( 12) N( 5)-C( 13)-C( 14) C( 13)-C( 14)-C(15) C( 14)-C( 15)-C( 16) N(5)-C( 17)-C( 18) C( 17)-c( 18)-C( 19) C( 18)-C( 19)-C(20) N(5)-C(2l)-C(22) C(21)-C(22)-C( 23) C(22)-C( 23)-c( 24)

1.51 1.54 1.47 1.49 1.56 1 .4gd 1.53 1.62 1.49 1.51 1.53 1.54

Angles? deg.

... 1.50 1.52 1.54 1.57

--

Angle, E.s.d. deg. deg.

115.3 109.6 112.2 117.2 104.6 109.6 112.0 106.6 109.8 115.1 109.0 111.3

1.0 1.1 1.2 1.1 1.3 1.7 1.1 1.3 1.4 1.0 7.2 1.3

Mean angle 111.0 Mean C-C 1.523 1.535 dist. E.s.d. all =I=O.9’. E.s.d. all ScO.02 a E.s.d. all f 0 . 0 1 6 A. A. d E.s.d. k0.035 f i . e Distance corrected for thermal motion assuming that atom C ( n 1) “rides” on atom C(n).

+

TABLE VI11 THE FOUR BUTYLCHAINS IN

THEDIHEDRAL ANGLESFOR

THE

TETRA-TZ-BUTYLAMMONIUM I O N Plane (1) defined by atoms

C(9) C(13) C(17) C(2l)

C(10) C(l1) C(14) C(15) C(18) C(19) C(22) C(23)

Plane (2) defined by atoms

Dihedral angle, deg.

C(10) C(11) C(l2)

5.3

C(14) C(15) C(16) C(18) c(19) c(20) C(22) C(23) C(24)

13.9 6.0 0.9

VoZ. 3, No. 11, November, 1964

TETRA-~-BUTYLAMMONIUMCOPPER(III) BIS(MALEONITRILE DITHIOLATE)

nitrogen atom increases the distance by 0.012 8.and somewhat reduces the spread of the values. This assumption is reasonable as the temperature factors increase progressively along each carbon chain (see Table I) with the exception of C(18) and C(19). The mean value of the 12 N-C-C and C-C-C angles in the four chains is l l l . O o , somewhat smaller than that found in the cobalt compound, although the four N-C-C angles all have higher than average values as found previously. All the atoms in the tetra-n-butylammonium ion were located easily from an electron density Fourier with the exception of C(16) a t the end of one of the butyl chains. This atom appears poorly resolved and has a high temperature factor in the least-squares refinement. However, a careful examination shows no better position available for this atom, and the bond angles and distances are very reasonable. We can only assume that this atom either has a high thermal vibration at the end of the chain or else there is a certain amount of disorder in this region. Needless to say, this effect makes it rather difficult to locate hydrogen atoms associated with this carbon atom, although density does appear in the appropriate region in the electron density difference function. Little reliability should therefore be placed on the exact location of these particular hydrogen atoms. As described earlier, 24 of the hydrogen atoms were located from the difference Fourier in very suitable locations and their parameters refined by least-squares methods. The remaining 12 hydrogen atoms were also located from the difference Fourier. However, their parameters were not refined but merely used in the least-squares analysis to calculate structure factors.

Fig. 4.-The

1515

molecular dimensions of the Cu(MNT)z- anion.

The carbon-hydrogen distances range from 0.6 to 1.2 A. The mean C-H bond length (36 values) is 0.94 A,, somewhat smaller than the value of 1.09 A. usually taken as the standard interatomic separation. With the exception of the hydrogen atoms associated with the end carbon atoms, together with those associated with C(15) and C(23), all of the hydrogen bond angles are within 20' of the tetrahedral angle. This is consistent with the estimated standard deviations of the hydrogen atom positional parameters. Acknowledgment.-We thank Prof. A. H. Maki and Dr. N. Edelstein for providing us with excellent crystals of the material and for their cooperation and helpful discussion of the problem.