The Future Is Blue (LEDs): Why Chemistry Is the ... - ACS Publications

Jul 16, 2019 - in bulk perovskite (CH3NH3PbI3) films is low (6−50. meV),47,48 ...... stability of the QDs.217 There are four types of QLED device st...
0 downloads 0 Views 5MB Size
Subscriber access provided by UNIV OF SOUTHERN INDIANA

Perspective

The future is blue (LEDs): why chemistry is the key to perovskite displays C-H. Angus Li, Zhicong Zhou, Parth Vashishtha, and Jonathan E. Halpert Chem. Mater., Just Accepted Manuscript • DOI: 10.1021/acs.chemmater.9b01650 • Publication Date (Web): 16 Jul 2019 Downloaded from pubs.acs.org on July 17, 2019

Just Accepted “Just Accepted” manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides “Just Accepted” as a service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. “Just Accepted” manuscripts appear in full in PDF format accompanied by an HTML abstract. “Just Accepted” manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are citable by the Digital Object Identifier (DOI®). “Just Accepted” is an optional service offered to authors. Therefore, the “Just Accepted” Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the “Just Accepted” Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these “Just Accepted” manuscripts.

is published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036 Published by American Chemical Society. Copyright © American Chemical Society. However, no copyright claim is made to original U.S. Government works, or works produced by employees of any Commonwealth realm Crown government in the course of their duties.

Page 1 of 70 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Chemistry of Materials

The future is blue (LEDs): why chemistry is the key to perovskite displays C-H. Angus Li1, Zhicong Zhou1, Parth Vashishtha2, Jonathan E. Halpert*1 Affiliation: Department of Chemistry, Hong Kong University of Science and Technology (HKUST), Clear Water Bay Rd, Kowloon, Hong Kong 999077, China S.A.R. 1

School of Materials Science and Engineering, Nanyang Technological University (NTU), 50 Nanyang Avenue, Singapore 639798, Republic of Singapore 2

Abstract: In this perspective, we review the recent work on metal halide perovskite light-emitting devices (peLEDs) with a focus on current challenges and the prospect of commercialization of perovskite displays. Metal halide perovskites have shown remarkable hole and electron mobilities, high photoluminescence quantum yield and color tunable, thin linewidth emission peaks making them ideal materials for the emissive layer in LEDs. Red and green emitting perovskites have already achieved very high external quantum efficiencies of greater than 20 % in the last year and may be ready to begin the commercialization process. However, blue peLEDs still lag behind in efficiency and stability. After reviewing recent attempts to improve the blue peLED efficiency, we then list the current challenges in the field and suggest possible avenues of future research, including improvements in materials chemistry and device architecture. In particular, we find that advancements are needed in color stability and lifetime, by using doping and nanostructured materials to avoid ion migration effects, and in the synthesis of novel compounds. We then compare the current state of the art in peLEDs with the competitive landscape and conclude that fixing the blue peLEDs is the key to building micro-pixel LEDs from perovskites. Without blue emitting perovskites, high PLQY perovskite films can still be useful for down-conversion color filters but may have difficulty displacing existing technologies. Thus, for perovskites, the future is indeed blue (LEDs).

ACS Paragon Plus Environment

Chemistry of Materials 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

1.0 Introduction Metal halide perovskites have gained significant attention in recent years as the active layer in solar cells, transistors, LEDs, lasers and other optoelectronic devices.1-6 These materials, in particular CsPbX3 and MAPbX3, (X = Cl, Br, I) possess excellent properties for light emitting devices (LEDs), having very bright emission, with a high photoluminescence quantum yield, a thin linewidth of emission and high mobility for holes and electrons. In addition, these can be made emission tunable across the visible spectrum by changes in both composition and crystal size.7-10 Generally, metal halide perovskites have an ABX3 crystal structure where the A group is a monovalent cation, which consist of cesium (Cs), methylammonium (MA) or formamidinium (FA), the B metal group is a divalent cation, generally Pb or Sn, and the X are the halides Cl, Br, and I or mixtures thereof.6, 11, 12 LEDs made from these materials can use a bulk crystalline thin film or a nanostructured thin film, where the edges of individual nanocrystalline sheets or cubes are passivated with surface ligands.13-15 Thin films of bulk, nanostructured and nanocrystalline materials can all be produced via solution processing techniques.16 This suggests the possibility of inkjet, screen printing or roll-to-roll processing to cheaply fabricate large area displays with a full color palette, high brightness and contrast and high resolution. Very recently, nanostructured films of lead-based halide perovskites, using CsPbBr3 and CsPbI3 have been used to make high efficiency LEDs with greater than 20 % external quantum efficiency (EQE) for both green and red emitting devices.14, 17 However, three colors are needed to create displays with electroluminescence (EL) peaks in the red (630 - 650 nm), green (520 - 530 nm)18, 19 and blue (460 - 480 nm)20, 21. These colors (RGB) provide optimal points for constructing the largest possible CIE color triangle. While most of the recent research has focused on red and green LEDs, with several attempts at sky-blue (480 nm – 500 nm)22-25, pure blue emitting perovskite LEDs have so far lagged in efficiency, as was true for previous LED technologies, where red and green emitting devices tend to be easier to produce.26-29 For this reason, earlier technologies, such as quantum dot (QD) displays, use red and green QDs in a down conversion filter layer rather than in the active layer in an LED pixel.30, 31 Here we will review the recent progress in peLEDs with a view towards the eventual commercial goal of building micropixel displays. More so than other color peLEDs, blue peLEDs tend to have issues with difficult charge injection from charge transport layers, energy down-conversion, trapping and non-radiative recombination, low quantum yield, poor stability and lifetimes, as well as suffering from ion migration effects.9, 32-34 While most reported blue peLEDs displayed less than 2 % EQE, the recent publication of >2 % blue and sky-blue peLEDs (480 nm - 500 nm)22, 23 indicates that significant improvements are still possible.8, 22, 35 However, ion migration, leading to spectral instability and short lifetimes, is still a leading issue for these devices. Additionally, lead is a toxic metal and may hinder development of perovskite displays in some markets. Regardless of the challenges, achieving the potential of perovskites as solution processable micro-pixel displays will require developing high efficiency blue LEDs. If higher EQEs cannot be achieved with improvements to layer materials and device architecture then metal halide perovskites, as a class of material, may be relegated to becoming yet another down-conversion, filter layer. If so, it may fail to supplant the current existing, and soon-to-be-realized, competitive display technologies. After reviewing progress in red and green LEDs, we will contrast the recent progress blue peLEDs, then list the many challenges specific to blue peLEDs and suggest chemical strategies for further improvement of the active layer materials. Finally, we can compare perovskite LEDs to state-of-the-art and expected future LED technologies to predict the future of peLEDs, with and without blue as an effective EL device.

2.0 Perovskite LEDs: A Brief History of Red and Green peLEDs Here we briefly review the successful history of red and green perovskites. These color peLEDs showed EQE, lifetime and color purity that suggest they are much closer to the metrics needed to consider commercialization. The less successful blue peLEDs are covered in a later section although there are many parallels in their development. [FIGURE 1] Figure 1. A timeline summarizing key events in the peLED field for efficiency improvement, updated until late 2018. The events are categorized according to color: NIR (> 700 nm), red (630 - 650 nm), green (520 - 530 nm), sky-blue (480 - 500 nm) and pure blue (460 - 480 nm).

2.1 First Report and Current Record

ACS Paragon Plus Environment

Page 2 of 70

Page 3 of 70 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Chemistry of Materials

Back in the 1990s, halide perovskite materials had already been reported in devices displaying electroluminescence, however only under cryogenic conditions.36, 37 Since 2009, when the first efficient halide perovskite photovoltaic (PV) was reported by the Miyasaka group,4 the power conversion efficiency (PCE %) has surged from 3.8 % to over 22 %.38, 39 It was noticed at that time that the high photoluminescence quantum yield (PLQY) of perovskite halide thin films40 indicate that the primary recombination pathway is radiative.41, 42 It had been suggested, in the case of organic solar cells, that for a solar cell to approach the Shockley-Queisser limit all recombination should be radiative and in the absence of charge extraction layers, the luminescence should be maximized.43, 44 By that reasoning, lead halide perovskites should also be ideal candidates for light emitting devices.43 The first efficient room temperature halide peLED was reported by the Optoelectronics Group at the University of Cambridge in 2014 using a 3D halide perovskite material (Figure 2).5 The group successfully demonstrated infrared colored peLED of EQE 0.76 % using a thin layer emissive layer of CH3NH3PbI3-xClx, sandwiched between titanium oxide (TiO2) and poly(9,9’-dioctylfluorene) (F8) and a green colored peLED using CH3NH3PbBr3 as emissive layer with EQE 0.1 %.5 As a result, once perovskite solar cells began approaching the single junction efficiency limit, many groups pivoted from working on perovskite

[FIGURE 2]

Figure 2. First efficient room temperature peLED as proof-of-concept. The resulting device showed EQE 0.76% at infrared and 0.1% at green region. (a) Device architecture of the infrared CH3NH3PbI3xClx peLED. (b) Energy-level diagram of different layers of materials in the infrared PeLED, showing conduction and valence band levels with respect to vacuum. (c) Absorption spectrum (black) showing that onset occurs at 780 nm. Electroluminescence (green) occurs at 754 nm and photoluminescence (red) at 773  nm. Adapted with permission from ref 5. Copyright 2014 Nature Publishing Group.

solar cells to focus on perovskite LEDs instead. This shift explains the rapid rise of the field today, with most of the significant improvements having occurred in just the last three years. 2.2 Structural Classes of Lead Halide Perovskites With the rapid development in the peLED field, four classes of perovskite materials have evolved based on their structure at the nanoscale: 3D perovskites, nanostructured 3D perovskites using additives and ligands, 2D and quasi-2D perovskites (Ruddlesden-Popper phase perovskites), and 0D perovskite nanocrystals (including quantum dots and quasi-0D nanocubes). 3D bulk film perovskites have shown a long carrier lifetime45 and high charge mobility46. From spectroscopic studies it is known that exciton binding energy in bulk perovskite (CH3NH3PbI3) film is low (6-50 meV)47, 48, indicating the charge carriers are free instead of existing in a tightly-bound excitonic state,49 and the dominant non-radiative recombination pathway in 3D perovskites is trap-assisted recombination.50 These properties make bulk perovskites perfect candidates for photovoltaics. However, the increased exciton binding energy (EB) and spatial confinement of excitons in quasi-2D nanostructured perovskites, 2D nanosheets or 0D nanocrystals, appear to be needed to improve the rates of radiative recombination, as required for LEDs. 2.2.1 Bulk 3D perovskites: Since the demonstration of the first room temperature peLED,5 multiple groups have reported improvements upon those devices. Kumawat et al. reported the first blue-green peLEDs based on a 3D perovskite produced by tuning the chloride content in MAPb(BrxCl1-x)3 perovskites.10 Wang et al. refined the 3D green peLED performance to EQE 3.5 % with MAPbBr3 as the emissive layer by improving the interface between the charge transporting layer and the perovskite film.51 High quality perovskite films formed on hydrophilic polyethyleneimine (PEI) modified ZnO, were found to facilitate efficient charge injection.51 To further increase device efficiency, improvements must be made on thin-film quality, where defect sites are inevitable formed during solution processes, as well as effective recombination of charge carrier at the perovskite layer. Options have been explored, ligands and bulky cations are added to promote film quality, reduce surface roughness and decrease defect density, prompting the development of nanostructure 3D perovskites (Section 2.2.2) and quasi-2D perovskites (Section 2.2.4). Meanwhile, to effectively confine excitons, 0D nanocrystal perovskites (Section 2.2.3) are attempted given the successful experience in inorganic quantum dots such as CdSe and

ACS Paragon Plus Environment

Chemistry of Materials 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

[FIGURE 3]

Figure 3. Efficient peLED with nanocrystal pinning method (NCP). With excess MABr added, metallic Pb-atoms are removed and solvent-based NCP method (S-NCP) promoted nano-sized grains, resulting in stronger confinement of excitons. SEM images of MAPbBr3 layers of (a) normal MABr:PbBr2 = 1:1 without NCP. (b) 1.05:1 with S-NCP, (c) XRD patterns of MAPbBr3 nanograin layers with MABr:PbBr2 = 1:1.05, 1:1, and 1.05:1. (d) Luminance of PeLEDs based on S-NCP and MAPbBr3 nanograin emission layers with varying molar ratio of MABr:PbBr2. Adapted with permission from ref 52. Copyright 2015 The American Association for the Advancement of Science.

InP. Quasi-2D perovskites are also proven to be another pathway for effective exciton confinement. 2.2.2 Nanostructured 3D perovskites via ligands or additives: Notable advancement came from Cho et al., who, in 2015, reported a device based on “nanocrystal-pinning (NCP) method” in which excess methylammonium bromide (MABr) is added during the spin-coating process (Figure 3). The resulting device gave an EQE of 8.53 %.52 They reported that that excess MABr could prevent the formation of photoluminescence (PL) quenching by metallic lead (Pb) atoms which arise from either the unintended loss of Br atoms or an incomplete reaction between MABr and PbBr2.53 They also suggested that the NCP process which anti-solvent is added during spin-coating could change the morphology of the MAPbBr3 from scattered microscale grains to tightly-packed nano-grains, and that this helps confine excitons within the nanosized grains.52 More recently, Xiao et al. in 2017, reported the incorporation of bulk n-butylammonium halide cations (BAX, X = I, Br), thus also forcing the 3D MAPbX3 perovskite films to form nanosized-grains with improved film roughness.54 The addition of BAX improved the iodide-based peLED from EQE 1.0 % to 10.4 % while the bromide-based peLED improved from an EQE of 0.03 % to 9.3 %. Additionally this group reported an increased shelf life of 8 months storage under nitrogen without degradation.54 In October 2018, more milestone devices were reported in the green and NIR regions, respectively,

[FIGURE 4]

Figure 4. Efficient green peLED with MABr/CsPbBr3 quasi-core/shell structure. An EQE of 20.31% was achieved at green region (525nm). The bottom-layer MABr are suggested to passivate grain boundaries of perovskites while upper-layer MABr are suggested to balance charge injections. a) Schematic illustrations of single-layered CsPbBr3 (top), bi-layered CsPbBr3/MABr (middle), and quasi-core/shell CsPbBr3/MABr structures (bottom), all fabricated on ITO substrates. b) Photographs of the three asprepared perovskite films under ultraviolet light. c) EQE-L curve. Adapted with permission from ref 14. Copyright 2018 Nature Publishing Group.

using one-step processing methods.14, 55 Most notably, Lin et al. achieved an EQE of 20.3 % at green (525 nm) while using a CsPbBr3/MABr quasi-core/shell structure and poly(methyl methacrylate) (PMMA) as a charge balancing layer between the perovskite and electron transporting layer (ETL) (Figure 4).14 In their work, they suggested that the bottom-layer of MABr could passivate grain boundaries of CsPbBr3 while the top-layer of MABr could balance charge injection after a onestep deposition.14 Similarly, Cao et al. reported peLEDs with EQE 20.7 %, in the NIR spectral region, also making use of spontaneous formed nanostructures with the addition of a bulky amino acid, 5-aminovaleric acid (5AVA).55 There, it was observed that an organic layer was formed and had filled the gaps between the perovskite nanoplatelets (Figure 5). They suggested this was from a dehydration reaction which occurred during annealing of the 5AVA, which could prevent LED leakage current.55 The effect of 5AVA was also reported to be surface passivating and to promote emission quality.55 Recently, Zhao et al. reported a high performing NIR peLED with a peak EQE of 20.1 % using a novel structure, a perovskite-polymer bulk hetero-structure (PPBH) shown in Figure 6.42 The emissive layer was composed of a mixture of 3D/quasi-2D (NMAI:FAPbI3) perovskites with a wide bandgap polymer, poly(2-hydroxyethyl methacrylate) (poly-HEMA).42 It was suggested that both the 3D and quasi-2D phases were present in the emissive layer from the absorption spectrum and high-resolution transmission electron microscope (HR-TEM) images, and that the perovskite crystallites are isotropically dispersed among the polymer.42 Most recently, Xu et al. reported highly efficient NIR peLED with most optimized passivation agent 2,2’-[oxybis(ethylenoxy)] diethylamine (ODEA) with perovskites, the champion device showed a record EQE of 21.6% with stable performance at high current desity.56

ACS Paragon Plus Environment

Page 4 of 70

Page 5 of 70 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Chemistry of Materials

[FIGURE 5]

Figure 5. Efficient NIR peLED with spontaneous self-formed sub-micrometer structure. Bulky amino acid (5AVA) was added to promote spontaneous formed nanostructured as showed. The adding of 5AVA promoted surface passivation and emission quality was improved. (a) Device structure, rays A, B and C, which represent light trapped in devices with a continuous emitting layer, can be extracted by the sub-micrometre structure. (b) Cross-section HAADF-STEM tomography image at high magnification. The scale bar represents 100 nm. (c) SEM image of the perovskite. The scale bar represents 1 μm. Adapted with permission from ref 55. Copyright 2018 Nature Publishing Group.

The selection of ligands and additives has been evolved from excess precursor material,52 to long and bulky alkyl chains,54 to more complex ligand materials, such as 5AVA.55 With improvement of the surface morphology induced by well-packed nanograins, the efficiencies of nanostructured perovskites have surged from ~3 % EQE of early devices to more than 20%. The high performance peLEDs in this material class has set the bench mark for peLED performance.

ACS Paragon Plus Environment

Chemistry of Materials 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

[FIGURE 6]

Figure 6. High efficiency NIR perovskite-polymer bulk-heterojunction (PPBH) LED. (a) Cross-sectional scanning electron microscopy (SEM) image of the LED structure. Inset: Structure of poly(2-hydroxyethyl methacrylate) (poly-HEMA). (b) GIWAXS patterns of a PPBH layer deposited on silicon. It was suggested that the perovskite crystallites are isotropically dispersed among the polymer (c) Current-voltage (black curve) and radiance-voltage (red curve) characteristics. (d) Absorbance (black curve) and photoluminescence (PL, red curve) spectra of a PPBH film on fused silica. The emissive layer composited of a mixture of 3D/quasi-2D (NMAI:FAPbI3) perovskites with a wide bandgap polymer, poly(2-hydroxyethyl methacrylate) (polyHEMA). Adapted with permission from ref 42. Copyright 2018 Nature Publishing Group.

ACS Paragon Plus Environment

Page 6 of 70

Page 7 of 70 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Chemistry of Materials

2.2.3 Zero Dimensional (0D) Nanocrystal (NC) Perovskite LEDs: 0D nanocrystals, often called quantum dots (QDs), have been very well studied for a wide variety of materials and a full description of their properties is beyond the scope of this review.16, 57 To be 0D, a nanocrystal must be small enough to approach the bulk Bohr radius of the exciton. Two effects are then observed: 1) a quantization of the near band-edge states, instead of a continuous density of states, and 2) the confinement effect, whereby when an excited state is formed, the hole and electron are forced, by the small dimensions of the material, into very close proximity.58 The increased interaction energy increases the energetic distance between the band edge states, similar to a particle in a box model. This increase the effective band gap, giving bluer first absorption and emission peaks than would be expected from the bulk material.59, 60 In 2015, Protesescu et al. was the first to report a colloidal synthesis of all-inorganic cesium lead halide perovskite nanocrystals through a hot-injection method (CsPbX3, X = Cl, Br, I, and mixed Cl/Br and Br/I) (Figure 7a - b). The assynthesized NCs demonstrated a PLQY up to 90 % with narrow emission line-widths of 12-42 nm and up to 140 % coverage of the NTSC color standard.61 Several optical studies have found that CsPbBr3 NCs possess 2-state degeneracy at the band edge, as well as displaying the onset of intermediate stage confinement for nanocubes with edge lengths of 50,000 hours operating lifetime.241 An emerging area for GaN-based blue and green LEDs is their use in micro-pixel displays.243-245 These displays can be applied to indoor/outdoor video walls and electronic products, such as smart phones, tablets, televisions, and smart watches. Inorganic μLEDs offer potential advantages compared to OLEDs and LCDs, including higher brightness, higher transparency, longer lifetimes, lower power consumption, and shorter response times. III-nitride based μLEDs exhibit a luminance of 105 cd m-2, which is much better than that of LCDs and OLEDs.243 Additionally, the response time of μLEDs is just nanosecond scale, which is much faster than that of LCDs and OLEDs.243 Companies like Apple and Google, have invested in μLEDs in recent years, which indicates that this emerging technology has attracted significant market interest.241 5.1.5 Comparisons of Key Metrics for Various Display Technologies: Although peLEDs have emerged as a promising technology for display and research has focused on increasing the performance of peLEDs in recent years, there is still a gap between peLEDs and other display technologies. One of the biggest concerns of peLEDs is their operational stability. The half-lifetime of peLEDs at an initial luminance of 100 cd m-2 is ~ 250 h246, which is far behind that reported for the other display technologies. Moreover, the device efficiency of blue peLEDs is relatively low (6.2 %) comparing to the red peLEDs (21.3 %) and green peLEDs (20.3 %). Additionally, lead content in perovskite is still a safety concern though it has already fulfilled the RoHS standards. Lead-free perovskites will need to be developed as alternative materials for peLEDs to meet a safer application. Despite of some of the deficiencies of the current peLEDs, their wide colour gamut, high colour purity and low cost of production look to make peLEDs a competitive display technology in the near future. Table 3 compares the key metrics for various display technologies.

Table 3. Comparisons of key metrics for various display technologies Type

LCDs

OLEDs

Technology

CFL backlight

Organic light-emitting material

70 % NTSC 247

> 100,000 h

>500,000 h (LT50 @ 1000 cd m-2)

249

250

3-5 % efficiency252

>20 % (no enhanced outcoupling)

Color gamut Lifetime

EQE

peLEDs Perovskite light-emitting material 140 % NTSC

QD-enhanced backlight

110 % NTSC

QLEDs Quantum dots light-emitting material 140 % NTSC

248

27

55

247

2,300 h (LT95 @1000 cd m-2)

>250 h (LT50 @ 100 cd m-2)

>30,000 h (commercial)

251

246

221, 228

>20 %

>20 %

254-256

14, 17, 55

6-8 % efficiency (LCD / NREF)

100, 214, 253

5.2 Current Industry

ACS Paragon Plus Environment

QLCDs

110 % NTSC

252

Page 29 of 70 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Chemistry of Materials

Since the National Television System Committee (NTSC) agreed on one of the first broadcast standards for color TV – the NTSC 1953 color standard, researchers have been working on improving display technology while consumers demand for ever higher quality displays has increased. The color gamut evaluation standard developed from sRGB (widely used in general high-definition Televisions) to NTSC, and now is expected to eventually conform to the Rec. 2020 standard which is twice wider than that of the sRGB (Figure 22).257, 258 To achieve this standard, superior RGB emitters are needed to replace older organic dyes and phosphors.

[FIGURE 22]

Figure 22. Commission Internationale de l’Eclairage (CIE) chromaticity coordinates. (a) CIE chromaticity coordinates showing color gamut of different color standards. (b) CIE chromaticity coordinates showing color gamut of different display technologies. (b) Adapted with permission from ref 27. Copyright 2017 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim.

Sony introduced the first quantum dot TV Sony Triluminos with QD Vision’s Color IQ technology using Cd-based QDs in 2013.225 Since then Sony, TCL, Samsung, and LG have successively listed quantum dot products, such as TVs, tablets, monitors and mobile phones.221 Continued research of quantum dots in display technology mainly includes two aspects: 1) QD backlight-based QD photoluminescence properties for quantum dot backlight unit (QD⁃BLU); 2) QLED-based QD electroluminescence properties.27 Photoluminescence down-conversion QLED display technology has already entered the commercial stage. Nanosys cooperates with QD-film manufacturing company, like 3M, LMS, Hitachi, and Nitto Denko to commercialize the QD-films, which contributes to the development of QLED TVs.259 From 2015, many TV manufacturer, like TCL, Philips, Thomson and Hisense, launched 55-inch QLED TV using CdSe QD edge optic technology, with over 100 % NTSC color gamut and over 400 nits luminance.227 Since launching its first InP-based QLED TVs in 2015, Samsung had been making progress in brightness and wider color gamut of its TV products, with most recent products which comprise InP QD color converting films and blue LEDs, showing 800 nits luminance and over 100 % color volume.259 Even though CdSe and InP QDs and their enhanced films have been successfully used in commercial products. However, there are still some disadvantages of these technologies, including the complicated manufacturing process, relatively high cost of production, and the limitations of the use of cadmium content. In recent years, perovskite QDs have emerged as a competitive and promising material for high quality display technologies. In 2016, Zhong et al. reported a method of in-situ fabrication of MAPbX3 NCs embedded in a PVDF composite film.260 The preparation of the QD-embedded film was greatly simplified, and the dispersion of perovskite QDs in the polymer was significantly improved. In addition, perovskite QDs films-based (PQDF-based) BLU applied in a LCD TV prototype was achieved by TCL in 2018.261 This green PQDF-based LCD can achieve 101 % of the NTSC color gamut and high brightness (up to 500 nits) by combining blue LED chips and a red K2SiF6: Mn4+ (KSF) phosphor. The greatest assets of QD-LEDs as electroluminescent light sources are their low cost, high efficiency production compatibility, flexible and versatile form factors, and the capacity to be a light source spread over a large area than a point light source.262 In 2017, some panel manufacturers such as BoE and TCL, started producing full-color active-matrix QLED (AMQLED) panels.263 The product uses the inkjet printing process to prepare quantum dot light-emitting devices, eliminating the need for a backlight, enabling full-color display, significantly improving the display color gamut.263 Due to the new standard Rec. 2020, QLEDs have a promising future because quantum dot display is the only one among other technologies, such as LCDs and OLEDs, that can satisfy Rec. 2020 without any optical compensation. Therefore, more and more companies are working on quantum dot research, such as Nanjing Tech, BoE and TCL in China, Samsung and LG in South Korea, Nanosys, QD vision and Apple in US, and Nanoco in the UK.27

6.0 Conclusions Although there have been significant improvements on peLED over the few years, with suitable optical engineering to enhance out-coupling efficiency194 the maximum EQE% of peLED could even reach an impressive value 28.2% very recently195, yet the overall performance of peLEDs is still inferior to established technologies such as OLED or QLCD which OLED has lifetime > 80,000 hours264-266 for LT50 @ 1000 cd m-2 and QLED has lifetime > 2,300 hours251 for LT90 @1000 cd m-2 compared to most stable peLED ever reported. In order for perovskites to become commercially developed, improved

ACS Paragon Plus Environment

Chemistry of Materials 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

operational stability and spectral stability are of equal importance. Ion-migration induced spectral instability remains an issue for mixed halide perovskites and other methods of color tuning are still being developed. At this time layered perovskites (quasi-2D peLED) with phase purity control (n), showing optimal confinement effects (nano-structured and nanocrystals) for color tuning, carrier conduction and PLQY have shown superior performance as the emitting layer in peLEDs, particularly in blue peLEDs. If peLEDs with an emissive active layer can be engineered with stable, high EQE, that, plus the benefit in contrast for micropixel LEDs in general, should make them an attractive replacement to existing down-conversion LCD technologies. This suggests a few possible outcomes. If the color purity can match that of quantum dots but are much better active layer materials, they could supplant QD and OLED in future micro-pixel displays. If they can be made with high brightness and more cheaply than GaN LEDs and diode lasers, then they could supplant solid state micro-pixels or at least precede them. LCDs are also likely to remain a popular technology in the future and serious attempts at down-conversion LCD filters are promising but have yet to prove superior in any comparison to QLEDs. As we have seen, perovskites may be able to overcome some of the shortcomings of existing displays technologies. However, there are many contingencies here, including questions about micropixel technology, decreasing LCD costs and market place demand, in addition to the technical issues described in this perspective. But the first hurdle for the adoption of perovskite EL devices is whether blue peLEDs can be made which match the EQE and processability of red and green perovskites, while attaining industry standards for resolution, brightness, lifetime.

Acknowledgements: C-H.A.L., Z.Z. and J.E.H. acknowledge funding from the Hong Kong University of Science and Technology (HKUST) School of Science (SSCI) and Department of Chemistry via project funds IGN17SC05 and R9398. P.V. would like to acknowledge the Presidential Postdoctoral Fellowship, NTU via grant M408070000.

ACS Paragon Plus Environment

Page 30 of 70

Page 31 of 70 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Chemistry of Materials

References 1. 2. 3. 4. 5. 6. 7. 8. 9.

10. 11. 12. 13. 14. 15. 16. 17. 18. 19.

Snaith, H. J. Perovskites: The Emergence of a New Era for Low-Cost, High-Efficiency Solar Cells. J. Phys. Chem. Lett. 2013, 4, 3623-3630. Zhu, H.; Fu, Y.; Meng, F.; Wu, X.; Gong, Z.; Ding, Q.; Gustafsson, M. V.; Trinh, M. T.; Jin, S.; Zhu, X. Y. Lead Halide Perovskite Nanowire Lasers with Low Lasing Thresholds and High Quality Factors. Nat. Mater. 2015, 14, 636-642. Chen, J.; Zhou, S.; Jin, S.; Li, H.; Zhai, T. Crystal Organometal Halide Perovskites with Promising Optoelectronic Applications. J. Mater. Chem. C 2016, 4, 11-27. Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T. Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells. J. Am. Chem. Soc. 2009, 131, 6050-6051. Tan, Z.-K.; Moghaddam, R. S.; Lai, M. L.; Docampo, P.; Higler, R.; Deschler, F.; Price, M.; Sadhanala, A.; Pazos, L. M.; Credgington, D.; Hanusch, F.; Bein, T.; Snaith, H. J.; Friend, R. H. Bright LightEmitting Diodes Based on Organometal Halide Perovskite. Nat. Nanotechnol. 2014, 9, 687-692. Zhang, W.; Eperon, G. E.; Snaith, H. J. Metal Halide Perovskites for Energy Applications. Nat. Energy 2016, 1, 16048. Song, J.; Li, J.; Li, X.; Xu, L.; Dong, Y.; Zeng, H. Quantum Dot Light-Emitting Diodes Based on Inorganic Perovskite Cesium Lead Halides (CsPbX3 ). Adv. Mater. 2015, 27, 7162-7167. Vashishtha, P.; Ng, M.; Shivarudraiah, S. B.; Halpert, J. E. High Efficiency Blue and Green LightEmitting Diodes Using Ruddlesden–Popper Inorganic Mixed Halide Perovskites with Butylammonium Interlayers. Chem. Mater. 2019, 31, 83-89. Sadhanala, A.; Ahmad, S.; Zhao, B.; Giesbrecht, N.; Pearce, P. M.; Deschler, F.; Hoye, R. L.; Godel, K. C.; Bein, T.; Docampo, P.; Dutton, S. E.; De Volder, M. F.; Friend, R. H. Blue-Green Color Tunable Solution Processable Organolead Chloride-Bromide Mixed Halide Perovskites for Optoelectronic Applications. Nano Lett. 2015, 15, 6095-6101. Kumawat, N. K.; Dey, A.; Kumar, A.; Gopinathan, S. P.; Narasimhan, K. L.; Kabra, D. Band Gap Tuning of CH3NH3Pb(Br(1-x)Clx)3 Hybrid Perovskite for Blue Electroluminescence. ACS Appl. Mater. Interfaces 2015, 7, 13119-13124. Rajagopal, A.; Yao, K.; Jen, A. K. Toward Perovskite Solar Cell Commercialization: A Perspective and Research Roadmap Based on Interfacial Engineering. Adv. Mater. 2018, 30, 1800455 Park, N.-G. Perovskite Solar Cells: An Emerging Photovoltaic Technology. Mater. Today 2015, 18, 65-72. Yang, X.; Zhang, X.; Deng, J.; Chu, Z.; Jiang, Q.; Meng, J.; Wang, P.; Zhang, L.; Yin, Z.; You, J. Efficient Green Light-Emitting Diodes Based on Quasi-Two-Dimensional Composition and Phase Engineered Perovskite with Surface Passivation. Nat. Commun. 2018, 9, 570. Lin, K.; Xing, J.; Quan, L. N.; de Arquer, F. P. G.; Gong, X.; Lu, J.; Xie, L.; Zhao, W.; Zhang, D.; Yan, C.; Li, W.; Liu, X.; Lu, Y.; Kirman, J.; Sargent, E. H.; Xiong, Q.; Wei, Z. Perovskite Light-Emitting Diodes with External Quantum Efficiency Exceeding 20 Per Cent. Nature 2018, 562, 245-248. Song, J.; Fang, T.; Li, J.; Xu, L.; Zhang, F.; Han, B.; Shan, Q.; Zeng, H. Organic-Inorganic Hybrid Passivation Enables Perovskite QLEDs with an EQE of 16.48. Adv. Mater. 2018, 30, 1805409. Sutherland, B. R.; Sargent, E. H. Perovskite Photonic Sources. Nat. Photonics 2016, 10, 295-302 Chiba, T.; Hayashi, Y.; Ebe, H.; Hoshi, K.; Sato, J.; Sato, S.; Pu, Y.-J.; Ohisa, S.; Kido, J. AnionExchange Red Perovskite Quantum Dots with Ammonium Iodine Salts for Highly Efficient LightEmitting Devices. Nat. Photonics 2018, 12, 681-687. Farinola, G. M.; Ragni, R. Electroluminescent Materials for White Organic Light Emitting Diodes. Chem. Soc. Rev. 2011, 40, 3467-3482. Geffroy, B.; Le Roy, P.; Prat, C. Organic Light-Emitting Diode (OLED) Technology: Materials, Devices and Display Technologies. Polym. Int. 2006, 55, 572-582.

ACS Paragon Plus Environment

Chemistry of Materials 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

20. 21. 22. 23. 24. 25. 26. 27. 28. 29. 30. 31. 32. 33. 34. 35. 36. 37. 38. 39.

Wu, Y.; Li, X.; Zeng, H. Highly Luminescent and Stable Halide Perovskite Nanocrystals. ACS Energy Lett. 2019, 4, 673-681. Jiang, Y.; Qin, C.; Cui, M.; He, T.; Liu, K.; Huang, Y.; Luo, M.; Zhang, L.; Xu, H.; Li, S.; Wei, J.; Liu, Z.; Wang, H.; Kim, G. H.; Yuan, M.; Chen, J. Spectra Stable Blue Perovskite Light-Emitting Diodes. Nat. Commun. 2019, 10, 1868. Xing, J.; Zhao, Y.; Askerka, M.; Quan, L. N.; Gong, X.; Zhao, W.; Zhao, J.; Tan, H.; Long, G.; Gao, L.; Yang, Z.; Voznyy, O.; Tang, J.; Lu, Z.-H.; Xiong, Q.; Sargent, E. H. Color-Stable Highly Luminescent Sky-Blue Perovskite Light-Emitting Diodes. Nat. Commun. 2018, 9, 3541. Wang, Q.; Ren, J.; Peng, X. F.; Ji, X. X.; Yang, X. H. Efficient Sky-Blue Perovskite Light-Emitting Devices Based on Ethylammonium Bromide Induced Layered Perovskites. ACS Appl. Mater. Interfaces 2017, 9, 29901-29906. Li, Z.; Chen, Z.; Yang, Y.; Xue, Q.; Yip, H. L.; Cao, Y. Modulation of Recombination Zone Position for Quasi Two-Dimensional Blue Perovskite Light-Emitting Diodes with Efficiency Exceeding 5. Nat. Commun. 2019, 10, 1027. Wang, K.-H.; Peng, Y.; Ge, J.; Jiang, S.; Zhu, B.-S.; Yao, J.; Yin, Y.-C.; Yang, J.-N.; Zhang, Q.; Yao, H.-B. Efficient and Color-Tunable Quasi-2D CsPbBrxCl3–x Perovskite Blue Light-Emitting Diodes. ACS Photonics 2019, 6, 667-676. Shirasaki, Y.; Supran, G. J.; Bawendi, M. G.; Bulović, V. Emergence of Colloidal Quantum-Dot LightEmitting Technologies. Nat. Photonics 2013, 7, 13-23. Dai, X.; Deng, Y.; Peng, X.; Jin, Y. Quantum-Dot Light-Emitting Diodes for Large-Area Displays: Towards the Dawn of Commercialization. Adv. Mater. 2017, 29, 1607022. Pietryga, J. M.; Park, Y.-S.; Lim, J.; Fidler, A. F.; Bae, W. K.; Brovelli, S.; Klimov, V. I. Spectroscopic and Device Aspects of Nanocrystal Quantum Dots. Chem. Rev. 2016, 116, 10513-10622. Pust, P.; Schmidt, P. J.; Schnick, W. A Revolution in Lighting. Nat. Mater. 2015, 14, 454. Steckel, J. S.; Ho, J.; Hamilton, C.; Xi, J.; Breen, C.; Liu, W.; Allen, P.; Coe-Sullivan, S. Quantum Dots: The Ultimate Down-Conversion Material for LCD Displays. J. Soc. Inf. Disp. 2015, 23, 294-305. Wood, V.; Bulović, V. Colloidal Quantum Dot Light-Emitting Devices. Nano. Rev. 2010, 1, 5202. Kumar, S.; Jagielski, J.; Yakunin, S.; Rice, P.; Chiu, Y. C.; Wang, M.; Nedelcu, G.; Kim, Y.; Lin, S.; Santos, E. J.; Kovalenko, M. V.; Shih, C. J. Efficient Blue Electroluminescence Using QuantumConfined Two-Dimensional Perovskites. ACS Nano 2016, 10, 9720-9729. Kim, H. P.; Kim, J.; Kim, B. S.; Kim, H.-M.; Kim, J.; Yusoff, A. R. b. M.; Jang, J.; Nazeeruddin, M. K. High-Efficiency, Blue, Green, and Near-Infrared Light-Emitting Diodes Based on Triple Cation Perovskite. Adv. Opt. Mater. 2017, 5, 1600920. Kumawat, N. K.; Liu, X.-K.; Kabra, D.; Gao, F. Blue Perovskite Light-Emitting Diodes: Progress, Challenges and Future Directions. Nanoscale 2019, 11, 2109–2120. Wang, K.-H.; Zhu, B.-S.; Yao, J.-S.; Yao, H.-B. Chemical Regulation of Metal Halide Perovskite Nanomaterials for Efficient Light-Emitting Diodes. Sci. China Chem. 2018, 61, 1047-1061. Hong, X.; Ishihara, T.; Nurmikko, A. V. Photoconductivity and Electroluminescence in Lead Iodide Based Natural Quantum Well Structures. Solid State Commun. 1992, 84, 657-661. Chondroudis, K.; Mitzi, D. B. Electroluminescence from an Organic-Inorganic Perovskite Incorporating a Quaterthiophene Dye within Lead Halide Perovskite Layers. Chem. Mater. 1999, 11, 3028-3030. Yang, W. S.; Park, B.-W.; Jung, E. H.; Jeon, N. J.; Kim, Y. C.; Lee, D. U.; Shin, S. S.; Seo, J.; Kim, E. K.; Noh, J. H.; Seok, S. I. Iodide Management in Formamidinium-Lead-Halide–Based Perovskite Layers for Efficient Solar Cells. Science 2017, 356, 1376-1379. Son, D.-Y.; Lee, J.-W.; Choi, Y. J.; Jang, I.-H.; Lee, S.; Yoo, P. J.; Shin, H.; Ahn, N.; Choi, M.; Kim, D.; Park, N.-G. Self-Formed Grain Boundary Healing Layer for Highly Efficient CH3NH3PbI3 Perovskite Solar Cells. Nat. Energy 2016, 1, 16081.

ACS Paragon Plus Environment

Page 32 of 70

Page 33 of 70 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Chemistry of Materials

40.

41. 42.

43. 44.

45. 46. 47. 48.

49. 50. 51. 52. 53.

Deschler, F.; Price, M.; Pathak, S.; Klintberg, L. E.; Jarausch, D. D.; Higler, R.; Huttner, S.; Leijtens, T.; Stranks, S. D.; Snaith, H. J.; Atature, M.; Phillips, R. T.; Friend, R. H. High Photoluminescence Efficiency and Optically Pumped Lasing in Solution-Processed Mixed Halide Perovskite Semiconductors. J. Phys. Chem. Lett. 2014, 5, 1421-1426. Sadhanala, A.; Kumar, A.; Pathak, S.; Rao, A.; Steiner, U.; Greenham, N. C.; Snaith, H. J.; Friend, R. H. Electroluminescence from Organometallic Lead Halide Perovskite-Conjugated Polymer Diodes. Adv. Electron. Mater. 2015, 1, 1500008. Zhao, B.; Bai, S.; Kim, V.; Lamboll, R.; Shivanna, R.; Auras, F.; Richter, J. M.; Yang, L.; Dai, L.; Alsari, M.; She, X.-J.; Liang, L.; Zhang, J.; Lilliu, S.; Gao, P.; Snaith, H. J.; Wang, J.; Greenham, N. C.; Friend, R. H.; Di, D. High-Efficiency Perovskite–Polymer Bulk Heterostructure Light-Emitting Diodes. Nat. Photonics 2018, 12, 783-789. Miller, O. D.; Yablonovitch, E.; Kurtz, S. R. Strong Internal and External Luminescence as Solar Cells Approach the Shockley–Queisser Limit. IEEE J. Photovolt. 2012, 2, 303-311. Abdi-Jalebi, M.; Andaji-Garmaroudi, Z.; Cacovich, S.; Stavrakas, C.; Philippe, B.; Richter, J. M.; Alsari, M.; Booker, E. P.; Hutter, E. M.; Pearson, A. J.; Lilliu, S.; Savenije, T. J.; Rensmo, H.; Divitini, G.; Ducati, C.; Friend, R. H.; Stranks, S. D. Maximizing and Stabilizing Luminescence from Halide Perovskites with Potassium Passivation. Nature 2018, 555, 497-501. Noel, N. K.; Abate, A.; Stranks, S. D.; Parrott, E. S.; Burlakov, V. M.; Goriely, A.; Snaith, H.J. Enhanced Photoluminescence and Solar Cell Performance via Lewis Base Passivation of Organic Inorganic Lead Halide Perovskites. ACS Nano 2014, 8, 9815-9821. Yan, F.; Xing, J.; Xing, G.; Quan, L.; Tan, S. T.; Zhao, J.; Su, R.; Zhang, L.; Chen, S.; Zhao, Y.; Huan, A.; Sargent, E. H.; Xiong, Q.; Demir, H. V. Highly Efficient Visible Colloidal Lead-Halide Perovskite Nanocrystal Light-Emitting Diodes. Nano Lett. 2018, 18, 3157-3164. Yang, Y.; Ostrowski, D. P.; France, R. M.; Zhu, K.; van de Lagemaat, J.; Luther, J. M.; Beard, M. C. Observation of a Hot-Phonon Bottleneck in Lead-Iodide Perovskites. Nat. Photonics 2015, 10, 5359. Savenije, T. J.; Ponseca, C. S., Jr.; Kunneman, L.; Abdellah, M.; Zheng, K.; Tian, Y.; Zhu, Q.; Canton, S. E.; Scheblykin, I. G.; Pullerits, T.; Yartsev, A.; Sundstrom, V. Thermally Activated Exciton Dissociation and Recombination Control the Carrier Dynamics in Organometal Halide Perovskite. J. Phys. Chem. Lett. 2014, 5, 2189-2194. Yuan, M.; Li Na, Q.; Comin, R.; Walters, G.; Sabatini, R.; Voznyy, O.; Hoogland, S.; Zhao, Y.; Beauregard, E. M.; Kanjanaboos, P.; Lu, Z.; Kim, D. H.; Sargent, E. H. Perovskite Energy Funnels for Efficient Light-Emitting Diodes. Nat. Nanotechnol. 2016, 11, 872-877. Stranks, S. D.; Burlakov, V. M.; Leijtens, T.; Ball, J. M.; Goriely, A.; Snaith, H. J. Recombination Kinetics in Organic-Inorganic Perovskites: Excitons, Free Charge, and Subgap States. Phys. Rev. Appl. 2014, 2, 034007. Wang, J.; Wang, N.; Jin, Y.; Si, J.; Tan, Z.-K.; Du, H.; Cheng, L.; Dai, X.; Bai, S.; He, H.; Ye, Z.; Lai, M. L.; Friend, R. H.; Huang, W. Interfacial Control Toward Efficient and Low-Voltage Perovskite LightEmitting Diodes. Adv. Mater. 2015, 27, 2311-2316. Cho, H.; Jeong, S.-H.; Park, M.-H.; Kim, Y.-H.; Wolf, C.; Lee, C.-L.; Heo, J. H.; Sadhanala, A.; Myoung, N.; Yoo, S.; Im, S. H.; Friend, R. H.; Lee, T.-W. Overcoming the Electroluminescence Efficiency Limitations of Perovskite Light-Emitting Diodes. Science 2015, 350, 1222-1225. Lindblad, R.; Jena, N. K.; Philippe, B.; Oscarsson, J.; Bi, D.; Lindblad, A.; Mandal, S.; Pal, B.; Sarma, D. D.; Karis, O.; Siegbahn, H.; Johansson, E. M. J.; Odelius, M.; Rensmo, H. Electronic Structure of CH3NH3PbX3 Perovskites: Dependence on the Halide Moiety. J. Phys. Chem. C 2015, 119, 18181825.

ACS Paragon Plus Environment

Chemistry of Materials 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

54. 55.

56.

57. 58. 59. 60. 61.

62. 63. 64. 65. 66. 67. 68. 69.

Xiao, Z.; Kerner, R. A.; Zhao, L.; Tran, N. L.; Lee, K. M.; Koh, T.-W.; Scholes, G. D.; Rand, B. P. Efficient Perovskite Light-Emitting Diodes Featuring Nanometre-Sized Crystallites. Nat. Photonics 2017, 11, 108-115. Cao, Y.; Wang, N.; Tian, H.; Guo, J.; Wei, Y.; Chen, H.; Miao, Y.; Zou, W.; Pan, K.; He, Y.; Cao, H.; Ke, Y.; Xu, M.; Wang, Y.; Yang, M.; Du, K.; Fu, Z.; Kong, D.; Dai, D.; Jin, Y.; Li, G.; Li, H.; Peng, Q.; Wang, J.; Huang, W. Perovskite Light-Emitting Diodes Based on Spontaneously Formed SubmicrometreScale Structures. Nature 2018, 562, 249-253. Xu, W.; Hu, Q.; Bai, S.; Bao, C.; Miao, Y.; Yuan, Z.; Borzda, T.; Barker, A. J.; Tyukalova, E.; Hu, Z.; Kawecki, M.; Wang, H.; Yan, Z.; Liu, X.; Shi, X.; Uvdal, K.; Fahlman, M.; Zhang, W.; Duchamp, M.; Liu, J.-M.; Petrozza, A.; Wang, J.; Liu, L.-M.; Huang, W.; Gao, F. Rational Molecular Passivation for High-Performance Perovskite Light-Emitting Diodes. Nat. Photonics 2019, 13, 418-424 Yang, Z.; Gao, M.; Wu, W.; Yang, X.; Sun, X. W.; Zhang, J.; Wang, H.-C.; Liu, R.-S.; Han, C.-Y.; Yang, H.; Li, W. Recent Advances in Quantum Dot-Based Light-Emitting Devices: Challenges and Possible Solutions. Mater. Today 2018, 24, 69-93. Bawendi, M. G.; Steigerwald, M. L.; Brus, L. E. The Quantum Mechanics of Larger Semiconductor Clusters (" Quantum Dots"). Annu. Rev. Phys. Chem. 1990, 41, 477-496. Efros, A. L.; Rosen, M.; Kuno, M.; Nirmal, M.; Norris, D. J.; Bawendi, M. Band-Edge Exciton in Quantum Dots of Semiconductors with a Degenerate Valence Band: Dark and Bright Exciton States. Phys. Rev. B 1996, 54, 4843. Bennett, C.; Güven, K.; Tanatar, B. Confined-Phonon Effects in the Band-Gap Renormalization of Semiconductor Quantum Wires. Phys. Rev. B 1998, 57, 3994. Protesescu, L.; Yakunin, S.; Bodnarchuk, M. I.; Krieg, F.; Caputo, R.; Hendon, C. H.; Yang, R. X.; Walsh, A.; Kovalenko, M. V. Nanocrystals of Cesium Lead Halide Perovskites (CsPbX3, X = Cl, Br, and I): Novel Optoelectronic Materials Showing Bright Emission with Wide Color Gamut. Nano Lett. 2015, 15, 3692-3696. Butkus, J.; Vashishtha, P.; Chen, K.; Gallaher, J. K.; Prasad, S. K.; Metin, D. Z.; Laufersky, G.; Gaston, N.; Halpert, J. E.; Hodgkiss, J. M. The Evolution of Quantum Confinement in CsPbBr3 Perovskite Nanocrystals. Chem. Mater. 2017, 29, 3644-3652. Makarov, N. S.; Guo, S.; Isaienko, O.; Liu, W.; Robel, I.; Klimov, V. I. Spectral and Dynamical Properties of Single Excitons, Biexcitons, and Trions in Cesium–Lead-Halide Perovskite Quantum Dots. Nano Lett. 2016, 16, 2349-2362. Castañeda, J. A.; Nagamine, G.; Yassitepe, E.; Bonato, L. G.; Voznyy, O.; Hoogland, S.; Nogueira, A. F.; Sargent, E. H.; Cruz, C. H. B.; Padilha, L. A. Efficient Biexciton Interaction in Perovskite Quantum Dots under Weak and Strong confinement. ACS Nano 2016, 10, 8603-8609. Zhang, F.; Zhong, H. Z.; Chen, C.; Wu, X.-G.; Hu, X.; Huang, H.; Han, J.; Zou, B.; Dong, Y. Brightly Luminescent and Color-Tunable Colloidal CH3NH3PbX3 (X = Br, I, Cl) Quantum Dots: Potential Alternatives for Display Technology. ACS Nano 2015, 9, 4533-4542. Huang, H.; Zhao, F.; Liu, L.; Zhang, F.; Wu, X. G.; Shi, L.; Zou, B.; Pei, Q.; Zhong, H. Emulsion Synthesis of Size-Tunable CH3NH3PbBr3 Quantum Dots: An Alternative Route toward Efficient Light-Emitting Diodes. ACS Appl. Mater. Interfaces 2015, 7, 28128-28133. Schmidt, L. C.; Pertegas, A.; Gonzalez-Carrero, S.; Malinkiewicz, O.; Agouram, S.; Minguez Espallargas, G.; Bolink, H. J.; Galian, R. E.; Perez-Prieto, J. Nontemplate Synthesis of CH3NH3PbBr3 Perovskite Nanoparticles. J. Am. Chem. Soc. 2014, 136, 850-853. Hassan, Y.; Song, Y.; Pensack, R. D.; Abdelrahman, A. I.; Kobayashi, Y.; Winnik, M. A.; Scholes, G. D. Structure-Tuned Lead Halide Perovskite Nanocrystals. Adv. Mater. 2016, 28, 566-573. Gonzalez-Carrero, S.; Galian, R. E.; Pérez-Prieto, J. Maximizing the Emissive Properties of CH3NH3PbBr3 Perovskite Nanoparticles. J. Mater. Chem. A 2015, 3, 9187-9193.

ACS Paragon Plus Environment

Page 34 of 70

Page 35 of 70 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Chemistry of Materials

70.

71. 72.

73. 74. 75.

76. 77.

78. 79.

80. 81. 82. 83. 84.

Ning, Z.; Voznyy, O.; Pan, J.; Hoogland, S.; Adinolfi, V.; Xu, J.; Li, M.; Kirmani, A. R.; Sun, J. P.; Minor, J.; Kemp, K. W.; Dong, H.; Rollny, L.; Labelle, A.; Carey, G.; Sutherland, B.; Hill, I.; Amassian, A.; Liu, H.; Tang, J.; Bakr, O. M.; Sargent, E. H. Air-Stable n-Type Colloidal Quantum Dot Solids. Nat. Mater. 2014, 13, 822-828. Tang, J.; Kemp, K. W.; Hoogland, S.; Jeong, K. S.; Liu, H.; Levina, L.; Furukawa, M.; Wang, X.; Debnath, R.; Cha, D.; Chou, K. W.; Fischer, A.; Amassian, A.; Asbury, J. B.; Sargent, E. H. ColloidalQuantum-Dot Photovoltaics Using Atomic-Ligand Passivation. Nat. Mater. 2011, 10, 765-771. Pan, J.; Quan, L. N.; Zhao, Y.; Peng, W.; Murali, B.; Sarmah, S. P.; Yuan, M.; Sinatra, L.; Alyami, N. M.; Liu, J.; Yassitepe, E.; Yang, Z.; Voznyy, O.; Comin, R.; Hedhili, M. N.; Mohammed, O. F.; Lu, Z. H.; Kim, D. H.; Sargent, E. H.; Bakr, O. M. Highly Efficient Perovskite-Quantum-Dot Light-Emitting Diodes by Surface Engineering. Adv. Mater. 2016, 28, 8718-8725. Li, J.; Xu, L.; Wang, T.; Song, J.; Chen, J.; Xue, J.; Dong, Y.; Cai, B.; Shan, Q.; Han, B.; Zeng, H. 50-Fold EQE Improvement up to 6.27% of Solution-Processed All-Inorganic Perovskite CsPbBr3 QLEDs via Surface Ligand Density Control. Adv. Mater. 2017, 29, 1603885 Song, J.; Li, J.; Xu, L.; Li, J.; Zhang, F.; Han, B.; Shan, Q.; Zeng, H. Room-Temperature Triple-Ligand Surface Engineering Synergistically Boosts Ink Stability, Recombination Dynamics, and Charge Injection toward EQE-11.6% Perovskite QLEDs. Adv. Mater. 2018, 30, 1800764 Lu, M.; Zhang, X.; Bai, X.; Wu, H.; Shen, X.; Zhang, Y.; Zhang, W.; Zheng, W.; Song, H.; Yu, W. W.; Rogach, A. L. Spontaneous Silver Doping and Surface Passivation of CsPbl3 Perovskite Active Layer Enable Light-Emitting Devices with an External Quantum Efficiency of 11.2%. ACS Energy Lett. 2018, 3, 1571-1577. Zhao, L.; Yeh, Y.-W.; Tran, N. L.; Wu, F.; Xiao, Z.; Kerner, R. A.; Lin, Y. L.; Scholes, G. D.; Yao, N.; Rand, B. P. In Situ Preparation of Metal Halide Perovskite Nanocrystal Thin Films for Improved Light-Emitting Devices. ACS Nano 2017, 11, 3957-3964. Han, D.; Imran, M.; Zhang, M.; Chang, S.; Wu, X. G.; Zhang, X.; Tang, J.; Wang, M.; Ali, S.; Li, X.; Yu, G.; Han, J.; Wang, L.; Zou, B.; Zhong, H. Efficient Light-Emitting Diodes Based on in Situ Fabricated FAPbBr3 Nanocrystals: The Enhancing Role of the Ligand-Assisted Reprecipitation Process. ACS Nano 2018, 12, 8808-8816. Chang, S.; Bai, Z.; Zhong, H. In Situ Fabricated Perovskite Nanocrystals: A Revolution in Optical Materials. Adv. Opt. Mater. 2018, 6, 1800380. Wang, N.; Cheng, L.; Ge, R.; Zhang, S.; Miao, Y.; Zou, W.; Yi, C.; Sun, Y.; Cao, Y.; Yang, R.; Wei, Y.; Guo, Q.; Ke, Y.; Yu, M.; Jin, Y.; Liu, Y.; Ding, Q.; Di, D.; Yang, L.; Xing, G.; Tian, H.; Jin, C.; Gao, F.; Friend, R. H.; Wang, J.; Huang, W. Perovskite Light-Emitting Diodes Based on Solution-Processed Self-Organized Multiple Quantum Wells. Nat. Photonics 2016, 10, 699-704. Gelvez-Rueda, M. C.; Hutter, E. M.; Cao, D. H.; Renaud, N.; Stoumpos, C. C.; Hupp, J. T.; Savenije, T. J.; Kanatzidis, M. G.; Grozema, F. C. Interconversion between Free Charges and Bound Excitons in 2D Hybrid Lead Halide Perovskites. J. Phys. Chem. C 2017, 121, 26566-26574. Liu, J.; Leng, J.; Wu, K.; Zhang, J.; Jin, S. Observation of Internal Photoinduced Electron and Hole Separation in Hybrid Two-Dimentional Perovskite Films. J. Am. Chem. Soc. 2017, 139, 1432-1435. Hong, X.; Ishihara, T.; Nurmikko, A. V. Dielectric Confinement Effect on Excitons in PbI4-Based Layered Semiconductors. Phys. Rev. B 1992, 45, 6961-6964. Hu, H.; Salim, T.; Chen, B.; Lam, Y. M. Molecularly Engineered Organic-Inorganic Hybrid Perovskite with Multiple Quantum Well Structure for Multicolored Light-Emitting Diodes. Sci. Rep. 2016, 6, 33546. Smith, I. C.; Hoke, E. T.; Solis-Ibarra, D.; McGehee, M. D.; Karunadasa, H. I. A Layered Hybrid Perovskite Solar-Cell Absorber with Enhanced Moisture Stability. Angew. Chem. Int. Ed. 2014, 53, 11232-11235.

ACS Paragon Plus Environment

Chemistry of Materials 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

85.

Kenichiro Tanaka, T. K. Bandgap and Exciton Binding Energies in Lead-Iodide-Based Natural Quantum-Well Crystals. Sci. Technol. Adv. Mater. 2003, 4, 599-604. 86. Zou, Y.; Ban, M.; Yang, Y.; Bai, S.; Wu, C.; Han, Y.; Wu, T.; Tan, Y.; Huang, Q.; Gao, X.; Song, T.; Zhang, Q.; Sun, B. Boosting Perovskite Light-Emitting Diode Performance via Tailoring Interfacial Contact. ACS Appl. Mater. Interfaces 2018, 10, 24320-24326. 87. Ban, M.; Zou, Y.; Rivett, J. P. H.; Yang, Y.; Thomas, T. H.; Tan, Y.; Song, T.; Gao, X.; Credgington, D.; Deschler, F.; Sirringhaus, H.; Sun, B. Solution-Processed Perovskite Light Emitting Diodes with Efficiency Exceeding 15% through Additive-Controlled Nanostructure Tailoring. Nat. Commun. 2018, 9, 3892. 88. Tan, Z.; Li, J.; Zhang, C.; Li, Z.; Hu, Q.; Xiao, Z.; Kamiya, T.; Hosono, H.; Niu, G.; Lifshitz, E.; Cheng, Y.; Tang, J. Highly Efficient Blue-Emitting Bi-Doped Cs2SnCl6 Perovskite Variant: Photoluminescence Induced by Impurity Doping. Adv. Funct. Mater. 2018, 28, 1801131. 89. Hou, S.; Gangishetty, M. K.; Quan, Q.; Congreve, D. N. Efficient Blue and White Perovskite LightEmitting Diodes via Manganese Doping. Joule 2018, 2, 2421-2433. 90. Chen, Z.; Zhang, C.; Jiang, X. F.; Liu, M.; Xia, R.; Shi, T.; Chen, D.; Xue, Q.; Zhao, Y. J.; Su, S.; Yip, H. L.; Cao, Y. High-Performance Color-Tunable Perovskite Light Emitting Devices through Structural Modulation from Bulk to Layered Film. Adv. Mater. 2017, 29, 1603157. 91. Vashishtha, P.; Halpert, J. E. Field-Driven Ion Migration and Color Instability in Red-Emitting Mixed Halide Perovskite Nanocrystal Light-Emitting Diodes. Chem. Mater. 2017, 29, 5965-5973. 92. Kwak, J.; Bae, W. K.; Lee, D.; Park, I.; Lim, J.; Park, M.; Cho, H.; Woo, H.; Yoon, D. Y.; Char, K.; Lee, S.; Lee, C. Bright and Efficient Full-Color Colloidal Quantum Dot Light-Emitting Diodes Using an Inverted Device Structure. Nano Lett. 2012, 12, 2362-2366. 93. Gangishetty, M. K.; Hou, S.; Quan, Q.; Congreve, D. N., Reducing Architecture Limitations for Efficient Blue Perovskite Light-Emitting Diodes. Adv. Mater. 2018, 30, 1706226. 94. Stranks, S. D. Nonradiative Losses in Metal Halide Perovskites. ACS Energy Lett. 2017, 2, 15151525. 95. Liang, D.; Peng, Y.; Fu, Y.; Shearer, M. J.; Zhang, J.; Zhai, J.; Zhang, Y.; Hamers, R. J.; Andrew, T. L.; Jin, S. Color-Pure Violet-Light-Emitting Diodes Based on Layered Lead Halide Perovskite Nanoplates. ACS Nano 2016, 10, 6897-6904. 96. Ni, L.; Huynh, U.; Cheminal, A.; Thomas, T. H.; Shivanna, R.; Hinrichsen, T. F.; Ahmad, S.; Sadhanala, A.; Rao, A. Real-Time Observation of Exciton-Phonon Coupling Dynamics in SelfAssembled Hybrid Perovskite Quantum Wells. ACS Nano 2017, 11, 10834-10843. 97. Era, M.; Morimoto, S.; Tsutsui, T.; Saito, S. Organic-Inorganic Heterostructure Electroluminescent Device Using a Layered Perovskite Semiconductor (C6H5C2H4NH3)2PbI4. Appl. Phys. Lett. 1994, 65, 676. 98. Dou, L.; Wong, A. B.; Yu, Y.; Lai, M.; Kornienko, N.; Eaton, S. W.; Fu, A.; Bischak, C. G.; Ma, J.; Ding, M.; Ginsberg, N. S.; Wang, L.-W.; Alivisators, A. P.; Yang, P. Atomically Thin Two-Dimensional Organic-Inorganic Hybrid Perovskites. Science 2015, 349, 1518-1521. 99. Zhang, L.; Yang, X.; Jiang, Q.; Wang, P.; Yin, Z.; Zhang, X.; Tan, H.; Yang, Y. M.; Wei, M.; Sutherland, B. R.; Sargent, E. H.; You, J. Ultra-Bright and Highly Efficient Inorganic Based Perovskite LightEmitting Diodes. Nat. Commun. 2017, 8, 15640. 100. Si, J.; Liu, Y.; He, Z.; Du, H.; Du, K.; Chen, D.; Li, J.; Xu, M.; Tian, H.; He, H.; Di, D.; Ling, C.; Cheng, Y.; Wang, J.; Jin, Y. Efficient and High-Color-Purity Light-Emitting Diodes Based on In Situ Grown Films of CsPbX3 (X = Br, I) Nanoplates with Controlled Thicknesses. ACS Nano 2017, 11, 11100-11107. 101. Chin, X. Y.; Perumal, A.; Bruno, A.; Yantara, N.; Veldhuis, S. A.; Martínez-Sarti, L.; Chandran, B.; Chirvony, V.; Lo, A. S.-Z.; So, J.; Soci, C.; Grätzel, M.; Bolink, H. J.; Mathews, N.; Mhaisalkar, S. G. Self-Assembled Hierarchical Nanostructured Perovskites Enable Highly Efficient LEDs via an Energy Cascade. Energy Environ. Sci. 2018, 11, 1770-1778.

ACS Paragon Plus Environment

Page 36 of 70

Page 37 of 70 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Chemistry of Materials

102. Xu, B.; Wang, W.; Zhang, X.; Cao, W.; Wu, D.; Liu, S.; Dai, H.; Chen, S.; Wang, K.; Sun, X. Bright and Efficient Light-Emitting Diodes Based on MA/Cs Double Cation Perovskite Nanocrystals. J. Mater. Chem. C 2017, 5, 6123-6128. 103. Han, B.; Cai, B.; Shan, Q.; Song, J.; Li, J.; Zhang, F.; Chen, J.; Fang, T.; Ji, Q.; Xu, X.; Zeng, H. Stable, Efficient Red Perovskite Light-Emitting Diodes by (α, δ)-CsPbI3 Phase Engineering. Adv. Funct. Mater. 2018, 28, 1804285. 104. Tian, Y.; Zhou, C.; Worku, M.; Wang, X.; Ling, Y.; Gao, H.; Zhou, Y.; Miao, Y.; Guan, J.; Ma, B. Highly Efficient Spectrally Stable Red Perovskite Light-Emitting Diodes. Adv. Mater. 2018, 30, 1707093. 105. Chang, J.; Zhang, S.; Wang, N.; Sun, Y.; Wei, Y.; Li, R.; Yi, C.; Wang, J.; Huang, W. Enhanced Performance of Red Perovskite Light-Emitting Diodes through the Dimensional Tailoring of Perovskite Multiple Quantum Wells. J. Phys. Chem. Lett. 2018, 9, 881-886. 106. He, Z.; Liu, Y.; Yang, Z.; Li, J.; Cui, J.; Chen, D.; Fang, Z.; He, H.; Ye, Z.; Zhu, H.; Wang, N.; Wang, J.; Jin, Y. High-Efficiency Red Light-Emitting Diodes Based on Multiple Quantum Wells of Phenylbutylammonium-Cesium Lead Iodide Perovskites. ACS Photonics 2019, 6, 587-594. 107. Zhao, L.; Gao, J.; Lin, Y. L.; Yeh, Y.-W.; Lee, K. M.; Yao, N.; Loo, Y.-L.; Rand, B. P. Electrical Stress Influences the Efficiency of CH3NH3PbI3 Perovskite Light Emitting Devices. Adv. Mater. 2017, 29, 1605317. 108. Zhao, L.; Lee, K. M.; Roh, K.; Khan, S. U. Z.; Rand, B. P. Improved Outcoupling Efficiency and Stability of Perovskite Light-Emitting Diodes using Thin Emitting Layers. Adv. Mater. 2019, 31, 1805836. 109. Lin, C. C.; Liu, R.-S. Advances in Phosphors for Light-Emitting Diodes. J. Phys. Chem. Lett. 2011, 2, 1268-1277. 110. Lee, K.-H.; Lee, J.-H.; Song, W.-S.; Ko, H.; Lee, C.; Lee, J.-H.; Yang, H. Highly Efficient, Color-Pure, Color-Stable Blue Quantum Dot Light-Emitting Devices. ACS Nano 2013, 7, 7295-7302. 111. Eliseev, P. G.; Perlin, P.; Furioli, J.; Sartori, P.; Mu, J.; Osiński, M. Tunneling Current and Electroluminescence in InGaN: Zn, Si/AlGaN/GaN Blue Light Emitting Diodes. J. Electron. Mater. 1997, 26, 311-319. 112. Vashishtha, P.; Metin, D. Z.; Cryer, M. E.; Chen, K.; Hodgkiss, J. M.; Gaston, N.; Halpert, J. E. Shape-, Size-, and Composition-Controlled Thallium Lead Halide Perovskite Nanowires and Nanocrystals with Tunable Band Gaps. Chem. Mater. 2018, 30, 2973-2982. 113. Conley, H. J.; Wang, B.; Ziegler, J. I.; Haglund Jr, R. F.; Pantelides, S. T.; Bolotin, K. I. Bandgap engineering of strained monolayer and bilayer MoS2. Nano Lett. 2013, 13, 3626-3630. 114. Martil, I.; Redondo, E.; Ojeda, A. Influence of defects on the electrical and optical characteristics of blue light-emitting diodes based on III–V nitrides. J. Appl. Phys. 1997, 81, 2442-2444. 115. Vareli, I.; Vassilakopoulou, A.; Koutselas, I. Deep-Blue Light Emitting Diode Based on Defect Variations of a 2D Hybrid Organic-Inorganic Low Dimensional Perovskite Semiconductor. ACS Appl. Nano Mater. 2018, 1, 2129-2142. 116. Nakamura, S., The Roles of Structural Imperfections in InGaN-Based Blue Light-Emitting Diodes and Laser Diodes. Science 1998, 281, 956-961. 117. Lee, C. W.; Lee, J. Y. Above 30% External Quantum Efficiency in Blue Phosphorescent Organic Light-Emitting Diodes Using Pyrido [2, 3-b] Indole Derivatives as Host Materials. Adv. Mater. 2013, 25, 5450-5454. 118. Chiu, Y. C.; Hung, J. Y.; Chi, Y.; Chen, C. C.; Chang, C. H.; Wu, C. C.; Cheng, Y. M.; Yu, Y. C.; Lee, G. H.; Chou, P. T. En Route to High External Quantum Efficiency (∼ 12%), Organic True-Blue-Light-Emitting Diodes Employing Novel Design of Iridium (III) Phosphors. Adv. Mater. 2009, 21, 2221-2225.

ACS Paragon Plus Environment

Chemistry of Materials 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

119. Shi, Z.; Li, Y.; Zhang, Y.; Chen, Y.; Li, X.; Wu, D.; Xu, T.; Shan, C.; Du, G. High-Efficiency and AirStable Perovskite Quantum Dots Light-Emitting Diodes with an All-Inorganic Heterostructure. Nano Lett. 2017, 17, 313-321. 120. Boix, P. P.; Nonomura, K.; Mathews, N.; Mhaisalkar, S. G. Current Progress and Future Perspectives for Organic/Inorganic Perovskite Solar Cells. Mater. Today 2014, 17, 16-23. 121. Adjokatse, S.; Fang, H.-H.; Loi, M. A. Broadly Tunable Metal Halide Perovskites for Solid-State Light-Emission Applications. Mater. Today 2017, 20, 413-424. 122. Park, Y.-S.; Bae, W. K.; Baker, T.; Lim, J.; Klimov, V. I. Effect of Auger Recombination on Lasing in Heterostructured Quantum Dots with Engineered Core/shell Interfaces. Nano Lett. 2015, 15, 73197328. 123. Bae, W. K.; Padilha, L. A.; Park, Y.-S.; McDaniel, H.; Robel, I.; Pietryga, J. M.; Klimov, V. I. Controlled Alloying of the Core–Shell Interface in CdSe/CdS Quantum Dots for Suppression of Auger Recombination. ACS Nano 2013, 7, 3411-3419. 124. Bae, W. K.; Park, Y.-S.; Lim, J.; Lee, D.; Padilha, L. A.; McDaniel, H.; Robel, I.; Lee, C.; Pietryga, J. M.; Klimov, V. I. Controlling the Influence of Auger Recombination on the Performance of QuantumDot Light-Emitting Diodes. Nat. Commun. 2013, 4, 2661. 125. Bae, W. K.; Brovelli, S.; Klimov, V. I. Spectroscopic Insights into the Performance of Quantum Dot Light-Emitting Diodes. MRS Bull. 2013, 38, 721-730. 126. Caruge, J. M.; Halpert, J. E.; Wood, V.; Bulović, V.; Bawendi, M. Colloidal Quantum-Dot LightEmitting Diodes with Metal-Oxide Charge Transport Layers. Nat. Photonics 2008, 2, 247-250 127. Wood, V.; Panzer, M.; Halpert, J. E.; Caruge, J.-M.; Bawendi, M.; Bulovic, V. Selection of Metal Oxide Charge Transport Layers for Colloidal Quantum Dot LEDs. ACS Nano 2009, 3, 3581-3586. 128. Solak, S.; Blom, P. W.; Wetzelaer, G. Effect of Non-Ohmic Contacts on the Light-Intensity Dependence of the Open-Circuit Voltage in Organic Solar Cells. Appl. Phys. Lett. 2016, 109, 053302. 129. Förster, T., Zwischenmolekulare energiewanderung und fluoreszenz. Ann Phys-Berlin 1948, 437, 55-75. 130. Anikeeva, P.; Madigan, C.; Halpert, J.; Bawendi, M.; Bulović, V. Electronic and Excitonic Processes in Light-Emitting Devices Based on Organic Materials and Colloidal Quantum Dots. Phys. Rev. B 2008, 78, 085434. 131. Parobek, D.; Roman, B. J.; Dong, Y.; Jin, H.; Lee, E.; Sheldon, M.; Son, D. H. Exciton-to-Dopant Energy Transfer in Mn-Doped Cesium Lead Halide Perovskite Nanocrystals. Nano Lett. 2016, 16, 7376-7380. 132. Chou, K. F.; Dennis, A. M., Forster Resonance Energy Transfer between Quantum Dot Donors and Quantum Dot Acceptors. Sensors 2015, 15, 13288-13325. 133. Wen, X.; Feng, Y.; Huang, S.; Huang, F.; Cheng, Y.-B.; Green, M.; Ho-Baillie, A. Defect Trapping States and Charge Carrier Recombination in Organic–Inorganic Halide Perovskites. J. Mater. Chem. C 2016, 4, 793-800. 134. Ball, J. M.; Petrozza, A. Defects in Perovskite-Halides and Their Effects in Solar Cells. Nat. Energy 2016, 1, 16149 135. Kim, J.; Lee, S.-H.; Lee, J. H.; Hong, K.-H. The Role of Intrinsic Defects in Methylammonium Lead Iodide Perovskite. J. Phys. Chem. Lett. 2014, 5, 1312-1317. 136. Zhang, X.; Sun, C.; Zhang, Y.; Wu, H.; Ji, C.; Chuai, Y.; Wang, P.; Wen, S.; Zhang, C.; Yu, W. W. Bright Perovskite Nanocrystal Films for Efficient Light-Emitting Devices. J. Phys. Chem. Lett. 2016, 7, 4602-4610. 137. Yoon, S. J.; Kuno, M.; Kamat, P. V., Shift Happens. How Halide Ion Defects Influence Photoinduced Segregation in Mixed Halide Perovskites. ACS Energy Lett. 2017, 2, 1507-1514.

ACS Paragon Plus Environment

Page 38 of 70

Page 39 of 70 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Chemistry of Materials

138. Sutter-Fella, C. M.; Miller, D. W.; Ngo, Q. P.; Roe, E. T.; Toma, F. M.; Sharp, I. D.; Lonergan, M. C.; Javey, A., Band Tailing and Deep Defect States in CH3NH3Pb(I1–xBrx)3 Perovskites As Revealed by Sub-Bandgap Photocurrent. ACS Energy Lett. 2017, 2, 709-715. 139. Kim, T.-H.; Jun, S.; Cho, K.-S.; Choi, B. L.; Jang, E. Bright and Stable Quantum Dots and Their Applications in Full-Color Displays. MRS bull. 2013, 38, 712-720. 140. Liu, Y.; Lai, J.; Li, X.; Xiang, Y.; Li, J.; Zhou, J. A Quantum Dot Array for Enhanced Tricolor LiquidCrystal Display. IEEE Photon. J. 2017, 9, 1-7. 141. Ko, Y.-H.; Jalalah, M.; Lee, S.-J.; Park, J.-G. Super Ultra-High Resolution Liquid-Crystal-Display Using Perovskite Quantum-Dot Functional Color-Filters. Sci. Rep. 2018, 8, 12881. 142. Park, J. P.; Lee, J.-J.; Kim, S.-W. Highly Luminescent InP/GaP/ZnS QDs Emitting in the Entire Color Range via a Heating up Process. Sci. Rep. 2016, 6, 30094. 143. Zhang, X.; Liu, H.; Wang, W.; Zhang, J.; Xu, B.; Karen, K. L.; Zheng, Y.; Liu, S.; Chen, S.; Wang, K.; Sun, X. W. Hybrid Perovskite Light-Emitting Diodes Based on Perovskite Nanocrystals with OrganicInorganic Mixed Cations. Adv. Mater. 2017, 29, 1606405 144. Jeon, N. J.; Noh, J. H.; Yang, W. S.; Kim, Y. C.; Ryu, S.; Seo, J.; Seok, S. I. Compositional Engineering of Perovskite Materials for High-Performance Solar Cells. Nature 2015, 517, 476-480. 145. Kulbak, M.; Cahen, D.; Hodes, G. How Important Is the Organic Part of Lead Halide Perovskite Photovoltaic Cells? Efficient CsPbBr3 Cells. J. Phys. Chem. Lett. 2015, 6, 2452-2456. 146. Yan, J.; Qiu, W.; Wu, G.; Heremans, P.; Chen, H. Recent Progress in 2D/Quasi-2D Layered Metal Halide Perovskites for Solar Cells. J. Mater. Chem. A 2018, 6, 11063-11077. 147. Zou, S.; Liu, Y.; Li, J.; Liu, C.; Feng, R.; Jiang, F.; Li, Y.; Song, J.; Zeng, H.; Hong, M.; Chen, X. Stabilizing Cesium Lead Halide Perovskite Lattice through Mn(II) Substitution for Air-Stable LightEmitting Diodes. J. Am. Chem. Soc. 2017, 139, 11443-11450. 148. Shan, Q.; Li, J.; Song, J.; Zou, Y.; Xu, L.; Xue, J.; Dong, Y.; Huo, C.; Chen, J.; Han, B.; Zeng, H. AllInorganic Quantum-Dot Light-Emitting Diodes Based on Perovskite Emitters with Low Turn-On Voltage and High Humidity Stability. J. Mater. Chem. C 2017, 5, 4565-4570. 149. Dai, X.; Zhang, Z.; Jin, Y.; Niu, Y.; Cao, H.; Liang, X.; Chen, L.; Wang, J.; Peng, X. Solution-Processed, High-Performance Light-Emitting Diodes Based on Quantum Dots. Nature 2014, 515, 96-99. 150. Cui, J.; Meng, F.; Zhang, H.; Cao, K.; Yuan, H.; Cheng, Y.; Huang, F.; Wang, M. CH3NH3PbI3-Based Planar Solar Cells with Magnetron-Sputtered Nickel Oxide. ACS Appl. Mater. Interfaces 2014, 6, 22862-22870. 151. Lee, S.; Park, J. H.; Nam, Y. S.; Lee, B. R.; Zhao, B.; Di Nuzzo, D.; Jung, E. D.; Jeon, H.; Kim, J.-Y.; Jeong, H. Y.; Friend, R. H.; Song, M. H. Growth of Nanosized Single Crystals for Efficient Perovskite Light-Emitting Diodes. ACS Nano 2018, 12, 3417-3423. 152. Lee, S.; Park, J. H.; Lee, B. R.; Jung, E. D.; Yu, J. C.; Di Nuzzo, D.; Friend, R. H.; Song, M. H. AmineBased Passivating Materials for Enhanced Optical Properties and Performance of Organic Inorganic Perovskites in Light-Emitting Diodes. J. Phys. Chem. Lett. 2017, 8, 1784-1792. 153. Sutter-Fella, C. M.; Li, Y.; Amani, M.; Ager III, J. W.; Toma, F. M.; Yablonovitch, E.; Sharp, I. D.; Javey, A. High Photoluminescence Quantum Yield in Band Gap Tunable Bromide Containing Mixed Halide Perovskites. Nano Lett. 2015, 16, 800-806. 154. Li, G.; Rivarola, F. W. R.; Davis, N. J. L. K.; Bai, S.; Jellicoe, T. C.; de la Pena, F.; Hou, S.; Ducati, C.; Gao, F.; Friend, R. H.; Greenham, N. C.; Tan, Z.-K. Highly Efficient Perovskite Nanocrystal LightEmitting Diodes Enabled by a Universal Crosslinking Method. Adv. Mater. 2016, 28, 3528-3534. 155. Nedelcu, G.; Protesescu, L.; Yakunin, S.; Bodnarchuk, M. I.; Grotevent, M. J.; Kovalenko, M. V. Fast Anion-Exchange in Highly Luminescent Nanocrystals of Cesium Lead Halide Perovskites (CsPbX3, X= Cl, Br, I). Nano Lett. 2015, 15, 5635-5640. 156. Akkerman, Q. A.; Motti, S. G.; Srimath Kandada, A. R.; Mosconi, E.; D’Innocenzo, V.; Bertoni, G.; Marras, S.; Kamino, B. A.; Miranda, L.; De Angelis, F. Solution Synthesis Approach to Colloidal

ACS Paragon Plus Environment

Chemistry of Materials 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

157. 158. 159. 160. 161. 162. 163. 164. 165. 166. 167. 168. 169. 170. 171. 172. 173. 174.

Cesium Lead Halide Perovskite Nanoplatelets with Monolayer-Level Thickness Control. J. Am. Chem. Soc. 2016, 138, 1010-1016. Tyagi, P.; Arveson, S. M.; Tisdale, W. A. Colloidal Organohalide Perovskite Nanoplatelets Exhibiting Quantum Confinement. J. Phys. Chem. Lett. 2015, 6, 1911-1916. Chen, H.-W.; Lee, J.-H.; Lin, B.-Y.; Chen, S.; Wu, S.-T. Liquid Crystal Display and Organic LightEmitting Diode Display: Present Status and Future Perspectives. Light Sci. Appl. 2018, 7, 17168. Chen, Y.; Yu, S.; Sun, Y.; Liang, Z. Phase Engineering in Quasi-2D Ruddlesden–Popper Perovskites. J. Phys. Chem. Lett. 2018, 9, 2627-2631. Yu, Y.; Zhang, D.; Yang, P. Ruddlesden–Popper Phase in Two-Dimensional Inorganic Halide Perovskites: a Plausible Model and the Supporting Observations. Nano Lett. 2017, 17, 5489-5494. Byun, J.; Cho, H.; Wolf, C.; Jang, M.; Sadhanala, A.; Friend, R. H.; Yang, H.; Lee, T. W. Efficient Visible Quasi-2D Perovskite Light-Emitting Diodes. Adv. Mater. 2016, 28, 7515-7520. Yuan, Z.; Shu, Y.; Xin, Y.; Ma, B. Highly Luminescent Nanoscale Quasi-2D Layered Lead Bromide Perovskites with Tunable Emissions. Chem. Commun. 2016, 52, 3887-3890. Quan, L. N.; Zhao, Y.; García de Arquer, F. P.; Sabatini, R.; Walters, G.; Voznyy, O.; Comin, R.; Li, Y.; Fan, J. Z.; Tan, H. Tailoring the Energy Landscape in Quasi-2D Halide Perovskites Enables Efficient Green-light Emission. Nano Lett. 2017, 17, 3701-3709. Liu, M.; Zhong, G.; Yin, Y.; Miao, J.; Li, K.; Wang, C.; Xu, X.; Shen, C.; Meng, H. Aluminum-Doped Cesium Lead Bromide Perovskite Nanocrystals with Stable Blue Photoluminescence Used for Display Backlight. Adv. Sci. 2017, 4, 1700335. Hu, Q.; Li, Z.; Tan, Z.; Song, H.; Ge, C.; Niu, G.; Han, J.; Tang, J. Rare Earth Ion-Doped CsPbBr3 Nanocrystals. Adv. Opt. Mater. 2018, 6, 1700864. Mondal, N.; De, A.; Samanta, A. Achieving Near-Unity Photoluminescence Efficiency for BlueViolet-Emitting Perovskite Nanocrystals. ACS Energy Lett. 2018, 4, 32-39. Snaith, H. J.; Abate, A.; Ball, J. M.; Eperon, G. E.; Leijtens, T.; Noel, N. K.; Stranks, S. D.; Wang, J. T.W.; Wojciechowski, K.; Zhang, W. Anomalous Hysteresis in Perovskite Solar Cells. J. Phys. Chem. Lett. 2014, 5, 1511-1515. Huang, L.-y.; Lambrecht, W. R. L. Electronic Band Structure, Phonons, and Exciton Binding Energies of Halide Perovskites CsSnCl3, CsSnBr3, and CsSnI3. Phys. Rev. B 2013, 88, 165203. DeQuilettes, D. W.; Zhang, W.; Burlakov, V. M.; Graham, D. J.; Leijtens, T.; Osherov, A.; Bulovic, V.; Snaith, H. J.; Ginger, D. S.; Stranks, S. D. Photo-Induced Halide Redistribution in Organic-Inorganic Perovskite Films. Nat. Commun. 2016, 7, 11683. Hoke, E. T.; Slotcavage, D. J.; Dohner, E. R.; Bowring, A. R.; Karunadasa, H. I.; McGehee, M. D. Reversible Photo-Induced Trap Formation in Mixed-Halide Hybrid Perovskites for Photovoltaics. Chem. Sci. 2015, 6, 613-617. Walsh, A.; Stranks, S. D. Taking Control of Ion Transport in Halide Perovskite Solar Cells. ACS Energy Lett. 2018, 3, 1983-1990. Hwang, B.; Gu, C.; Lee, D.; Lee, J. S. Effect of Halide-Mixing on the Switching Behaviors of OrganicInorganic Hybrid Perovskite Memory. Sci. Rep. 2017, 7, 43794. Yoon, S. J.; Draguta, S.; Manser, J. S.; Sharia, O.; Schneider, W. F.; Kuno, M.; Kamat, P. V. Tracking Iodide and Bromide Ion Segregation in Mixed Halide Lead Perovskites During Photoirradiation. ACS Energy Lett. 2016, 1, 290-296. Barker, A. J.; Sadhanala, A.; Deschler, F.; Gandini, M.; Senanayak, S. P.; Pearce, P. M.; Mosconi, E.; Pearson, A. J.; Wu, Y.; Kandada, A. R. S.; Leijtens, T.; De Angelis, F.; Dutton, S. E.; Petrozza, A.; Friend, R. H. Defect-Assisted Photoinduced Halide Segregation in Mixed-Halide Perovskite Thin Films. ACS Energy Lett. 2017, 2, 1416-1424.

ACS Paragon Plus Environment

Page 40 of 70

Page 41 of 70 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Chemistry of Materials

175. McMeekin, D. P.; Sadoughi, G.; Rehman, W.; Eperon, G. E.; Saliba, M.; Horantner, M. T.; Haghighirad, A.; Sakai, N.; Korte, L.; Rech, B.; Johnston, M. B.; Herz, L. M.; Snaith, H. J. A MixedCation Lead Mixed-Halide Perovskite Absorber for Tandem Solar Cells. Science 2016, 351, 151-155. 176. Akkerman, Q. A.; D'Innocenzo, V.; Accornero, S.; Scarpellini, A.; Petrozza, A.; Prato, M.; Manna, L. Tuning the Optical Properties of Cesium Lead Halide Perovskite Nanocrystals by Anion Exchange Reactions. J. Am. Chem. Soc. 2015, 137, 10276-10281. 177. Lin, Y.; Bai, Y.; Fang, Y.; Wang, Q.; Deng, Y.; Huang, J. Suppressed Ion Migration in LowDimensional Perovskites. ACS Energy Lett. 2017, 2, 1571-1572. 178. Gualdrón-Reyes, A. F.; Yoon, S. J.; Mora-Seró, I. Recent Insights for Achieving Mixed Halide Perovskites without Halide Segregation. Curr. Opin. Electrochem 2018, 11, 84-90. 179. Tsai, H.; Nie, W.; Blancon, J.-C.; Stoumpos, C. C.; Soe, C. M. M.; Yoo, J.; Crochet, J.; Tretiak, S.; Even, J.; Sadhanala, A.; Azzellino, G.; Brenes, R.; Ajayan, P. M.; Bulovic, V.; Stranks, S. D.; Friend, R. H.; Kanatzidis, M. G.; Mohite, A. D. Stable Light-Emitting Diodes Using Phase-Pure RuddlesdenPopper Layered Perovskites. Adv. Mater. 2018, 30, 1704217. 180. Wong, A. B.; Bekenstein, Y.; Kang, J.; Kley, C. S.; Kim, D.; Gibson, N. A.; Zhang, D.; Yu, Y.; Leone, S. R.; Wang, L.-W.; Alivisatos, A. P.; Yang, P. Strongly Quantum Confined Colloidal Cesium Tin Iodide Perovskite Nanoplates: Lessons for Reducing Defect Density and Improving Stability. Nano Lett. 2018, 18, 2060-2066. 181. Zhao, X.-G.; Yang, D.; Sun, Y.; Li, T.; Zhang, L.; Yu, L.; Zunger, A. Cu–In Halide Perovskite Solar Absorbers. J. Am. Chem. Soc. 2017, 139, 6718-6725. 182. Chatterjee, S.; Pal, A. J. Influence of Metal Substitution on Hybrid Halide Perovskites: Towards Lead-Free Perovskite Solar Cells. J. Mater. Chem. A 2018, 6, 3793-3823. 183. Volonakis, G.; Filip, M. R.; Haghighirad, A. A.; Sakai, N.; Wenger, B.; Snaith, H. J.; Giustino, F. LeadFree Halide Double Perovskites via Heterovalent Substitution of Noble Metals. J. Phys. Chem. Lett. 2016, 7, 1254-1259. 184. Yang, P.; Liu, G.; Liu, B.; Liu, X.; Lou, Y.; Chen, J.; Zhao, Y. All-inorganic Cs2CuX4 (X = Cl, Br, and Br/I) Perovskite Quantum Dots with Blue-Green Luminescence. Chem. Commun. 2018, 54, 1163811641. 185. Jun, T.; Sim, K.; Iimura, S.; Sasase, M.; Kamioka, H.; Kim, J.; Hosono, H. Lead-Free Highly Efficient Blue-Emitting Cs3Cu2I5 with 0D Electronic Structure. Adv. Mater. 2018, 30, 1804547. 186. Zhang, J.; Yang, Y.; Deng, H.; Farooq, U.; Yang, X.; Khan, J.; Tang, J.; Song, H. High Quantum Yield Blue Emission from Lead-Free Inorganic Antimony Halide Perovskite Colloidal Quantum Dots. ACS Nano 2017, 11, 9294-9302. 187. Leng, M.; Yang, Y.; Zeng, K.; Chen, Z.; Tan, Z.; Li, S.; Li, J.; Xu, B.; Li, D.; Hautzinger, M. P.; Fu, Y.; Zhai, T.; Xu, L.; Niu, G.; Jin, S.; Tang, J. All-Inorganic Bismuth-Based Perovskite Quantum Dots with Bright Blue Photoluminescence and Excellent Stability. Adv. Funct. Mater. 2018, 28, 1704446. 188. Jellicoe, T. C.; Richter, J. M.; Glass, H. F. J.; Tabachnyk, M.; Brady, R.; Dutton, S. E.; Rao, A.; Friend, R. H.; Credgington, D.; Greenham, N. C.; Böhm, M. L. Synthesis and Optical Properties of Lead-Free Cesium Tin Halide Perovskite Nanocrystals. J. Am. Chem. Soc. 2016, 138, 2941-2944. 189. Leng, M.; Chen, Z.; Yang, Y.; Li, Z.; Zeng, K.; Li, K.; Niu, G.; He, Y.; Zhou, Q.; Tang, J. Lead-Free, Blue Emitting Bismuth Halide Perovskite Quantum Dots. Angew. Chem. Int. Ed. 2016, 55, 15012-15016. 190. Tang, Z.; Bessho, T.; Awai, F.; Kinoshita, T.; Maitani, M. M.; Jono, R.; Murakami, T. N.; Wang, H.; Kubo, T.; Uchida, S.; Segawa, H. Hysteresis-Free Perovskite Solar Cells Made of Potassium-Doped Organometal Halide Perovskite. Sci. Rep. 2017, 7, 12183. 191. Hao, F.; Stoumpos, C. C.; Chang, R. P.; Kanatzidis, M. G. Anomalous Band Gap Behavior in Mixed Sn and Pb Perovskites Enables Broadening of Absorption Spectrum in Solar Cells. J. Am. Chem. Soc. 2014, 136, 8094-8099.

ACS Paragon Plus Environment

Chemistry of Materials 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

192. Zhang, J.; Wu, S.; Liu, T.; Zhu, Z.; Jen, A. K. Y. Boosting Photovoltaic Performance for Lead Halide Perovskites Solar Cells with BF4 Anion Substitutions. Adv. Funct. Mater. 2019, 1808833. 193. Zhou, Y.; Zhou, Z.; Chen, M.; Zong, Y.; Huang, J.; Pang, S.; Padture, N. P. Doping and Alloying for Improved Perovskite Solar Cells. J. Mater. Chem. A 2016, 4, 17623-17635. 194. Zhang, Q.; Tavakoli, M. M.; Gu, L.; Zhang, D.; Tang, L.; Gao, Y.; Guo, J.; Lin, Y.; Leung, S. F.; Poddar, S.; Fu, Y.; Fan, Z. Efficient Metal Halide Perovskite Light-Emitting Diodes with Significantly Improved Light Extraction on Nanophotonic Substrates. Nat. Commun. 2019, 10, 727. 195. Shen, Y.; Cheng, L. P.; Li, Y. Q.; Li, W.; Chen, J. D.; Lee, S. T.; Tang, J. X. High-Efficiency Perovskite Light-Emitting Diodes with Synergetic Outcoupling Enhancement. Adv. Mater. 2019, 1901517. 196. Talin, A.; Dean, K.; Jaskie, J. Field Emission Displays: a Critical Review. Solid State Electron. 2001, 45, 963-976. 197. Kato, T.; Uchida, J.; Ichikawa, T.; Sakamoto, T. Functional Liquid Crystals Towards the Next Generation of Materials. Angew. Chem. Int. Ed. 2018, 57, 4355-4371. 198. Schadt, M. Milestone in the History of Field-Effect Liquid Crystal Displays and Materials. Jpn. J. Appl. Phys. 2009, 48, 03B001. 199. Bushby, R. J.; Kawata, K. Liquid Crystals that Affected the World: Discotic Liquid Crystals. Liq. Cryst. 2011, 38, 1415-1426. 200. Schadt, M.; Helfrich, W. Voltage-Dependent Optical Activity of a Twisted Nematic Liquid Crystal. Appl. Phys. Lett. 1971, 18, 127-128. 201. Schiekel, M.; Fahrenschon, K. Deformation of Nematic Liquid Crystals with Vertical Orientation in Electrical Fields. Appl. Phys. Lett. 1971, 19, 391-393. 202. Soref, R., Transverse Field Effects in Nematic Liquid Crystals. Appl. Phys. Lett. 1973, 22, 165-166. 203. Lee, S.; Lee, S.; Kim, H., Electro-Optic Characteristics and Switching Principle of a Nematic Liquid Crystal Cell Controlled by Fringe-Field Switching. Appl. Phys. Lett. 1998, 73, 2881-2883. 204. Collings, P. J.; Hird, M. Introduction to liquid crystals: chemistry and physics. CRC Press, London, 2017. 205. Salehi, A.; Fu, X.; Shin, D. H.; So, F. Recent Advances in OLED Optical Design. Adv. Funct. Mater. 2019, 29, 1808803. 206. Jang, J. Displays Develop a New Flexibility. Mater. Today 2006, 9, 46-52. 207. Komatsu, R.; Nakazato, R.; Sasaki, T.; Suzuki, A.; Senda, N.; Kawata, T.; Ikeda, H.; Eguchi, S.; Hirakata, Y.; Yamazaki, S. Repeatedly Foldable Book-Type AMOLED Display. SID Symposium Digest of Technical Papers 2014, 45, 326-329. 208. Noda, M.; Kobayashi, N.; Katsuhara, M.; Yumoto, A.; Ushikura, S.; Yasuda, R.; Hirai, N.; Yukawa, G.; Yagi, I.; Nomoto, K. An OTFT-Driven Rollable OLED Display. J. Soc. Inf. Disp. 2011, 19, 316-322. 209. Tang, C. W.; VanSlyke, S. A. Organic Electroluminescent Diodes. Appl. Phys. Lett. 1987, 51, 913915. 210. Di, D.W.; Romanov, A. S.; Yang, L.; Richter, J. M.; Rivett, J. P. H.; Jones, S.; Thomas, T. H.; Jalebi, M. A.; Friend, R. H.; Linnolahti, M.; Bochmann, M.; Credgington, D. High-Performance Light-Emitting Diodes Based on Carbene-Metal-Amides. Science 2017, 356, 159-163. 211. Nakamura, S. Background Story of the Invention of Efficient InGaN Blue-Light-Emitting Diodes (Nobel Lecture). Angew. Chem. Int. Ed. 2015, 54, 7770-7788. 212. Baldo, M.; Lamansky, S.; Burrows, P.; Thompson, M.; Forrest, S. Very High-Efficiency Green Organic Light-Emitting Devices Based on Electrophosphorescence. Appl. Phys. Lett. 1999, 75, 4-6. 213. Kondakov, D. Characterization of Triplet-Triplet Annihilation in Organic Light-Emitting Diodes Based on Anthracene Derivatives. J. Appl. Phys. 2007, 102, 114504. 214. Uoyama, H.; Goushi, K.; Shizu, K.; Nomura, H.; Adachi, C. Highly Efficient Organic Light-Emitting Diodes from Delayed Fluorescence. Nature 2012, 492, 234-238.

ACS Paragon Plus Environment

Page 42 of 70

Page 43 of 70 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Chemistry of Materials

215. Park, Y. S.; Lee, S.; Kim, K. H.; Kim, S. Y.; Lee, J. H.; Kim, J. J. Exciplex-Forming Co-Host for Organic Light-Emitting Diodes with Ultimate Efficiency. Adv. Funct. Mater. 2013, 23, 4914-4920. 216. Lee, J.; Sundar, V. C.; Heine, J. R.; Bawendi, M. G.; Jensen, K. F. Full Color Emission from II–VI Semiconductor Quantum Dot–Polymer composites. Adv. Mater. 2000, 12, 1102-1105. 217. Hines, M. A.; Guyot-Sionnest, P. Synthesis and Characterization of Strongly Luminescing ZnSCapped CdSe Nanocrystals. J. Phy. Chem. 1996, 100, 468-471. 218. Colvin, V.; Schlamp, M.; Alivisatos, A. P. Light-Emitting Diodes Made From Cadmium Selenide Nanocrystals and a Semiconducting Polymer. Nature 1994, 370, 354-357. 219. Mueller, A. H.; Petruska, M. A.; Achermann, M.; Werder, D. J.; Akhadov, E. A.; Koleske, D. D.; Hoffbauer, M. A.; Klimov, V. I. Multicolor Light-Emitting Diodes Based on Semiconductor Nanocrystals Encapsulated in GaN Charge Injection Layers. Nano Lett. 2005, 5, 1039-1044. 220. Caruge, J.-M.; Halpert, J. E.; Bulović, V.; Bawendi, M. G. NiO as an Inorganic Hole-Transporting Layer in Quantum-Dot Light-Emitting Devices. Nano Lett. 2006, 6, 2991-2994. 221. Chen, H.; He, J.; Wu, S.T. Recent Advances on Quantum-Dot-Enhanced Liquid-Crystal Displays. IEEE J. Sel. Top. Quantum Electron. 2017, 23, 1-11. 222. Luo, Z.; Xu, D.; Wu, S.T. Emerging Quantum-Dots-Enhanced LCDs. J. Disp Technol. 2014, 10, 526539. 223. Chen, O.; Zhao, J.; Chauhan, V. P.; Cui, J.; Wong, C.; Harris, D. K.; Wei, H.; Han, H.-S.; Fukumura, D.; Jain, R. K. Compact High-Quality CdSe–CdS Core–Shell Nanocrystals with Narrow Emission Linewidths and Suppressed Blinking. Nat. Mater. 2013, 12, 445-451. 224. Greytak, A. B.; Allen, P. M.; Liu, W.; Zhao, J.; Young, E. R.; Popović, Z.; Walker, B. J.; Nocera, D. G.; Bawendi, M. G., Alternating Layer Addition Approach to CdSe/CdS Core/Shell Quantum Dots with Near-Unity Quantum Yield and High On-Time Fractions. Chem. Sci. 2012, 3, 2028-2034. 225. Coe-Sullivan, S. The Quantum Dot Revolution: Marching Towards the Mainstream. SID Symposium Digest of Technical Papers 2016, 47, 239-240. 226. Directive, E., 95/EC on the Restriction of the Use of Certain Hazardous Substances in Electrical and Electronic Equipment. OJ L 2002, 37 (13.2), 2003. 227. Sadasivan, S.; Bausemer, K.; Corliss, S.; Pratt, R. Performance Benchmarking of Wide Color Gamut Televisions and Monitors. SID Symposium Digest of Technical Papers 2016, 47, 333-335. 228. Pickett, N. L.; Harris, J. A.; Gresty, N. C. Heavy Metal-Free Quantum Dots for Display Applications. SID Symposium Digest of Technical Papers 2015, 46, 168-169. 229. Yang, X.; Zhao, D.; Leck, K. S.; Tan, S. T.; Tang, Y. X.; Zhao, J.; Demir, H. V.; Sun, X. W. Full Visible Range Covering InP/ZnS Nanocrystals with High Photometric Performance and Their Application to White Quantum Dot Light-Emitting Diodes. Adv. Mater. 2012, 24, 4180-4185. 230. Steckel, J. S.; Colby, R.; Liu, W.; Hutchinson, K.; Breen, C.; Ritter, J.; Coe-Sullivan, S. Quantum dot Manufacturing Requirements for the High Volume LCD Market. SID Symposium Digest of Technical Papers 2013, 44, 943-945. 231. Shirasaki, Y.; Supran, G. J.; Tisdale, W. A.; Bulović, V. Origin of Efficiency Roll-Off in Colloidal Quantum-Dot Light-Emitting Diodes. Phys. Rev. Lett. 2013, 110, 217403. 232. Coe-Sullivan, S.; Liu, W.; Allen, P.; Steckel, J. S. Quantum Dots for LED Downconversion in Display Applications. ECS J. Solid State Sci. Technol. 2013, 2, 3026-3030. 233. Jang, E.; Jun, S.; Jang, H.; Lim, J.; Kim, B.; Kim, Y. White-Light-Emitting Diodes with Quantum Dot Color Converters for Display Backlights. Adv. Mater. 2010, 22, 3076-3080. 234. Bourzac, K. Quantum dots go on display. Nature News 2013, 493, 283. 235. Luo, Z.; Chen, Y.; Wu, S.T. Wide Color Gamut LCD with a Quantum Dot Backlight. Opt. Express 2013, 21, 26269-26284. 236. Nakamura, S.; Mukai, T.; Senoh, M. Candela-Class High-Brightness InGaN/AlGaN Double-Heterostructure Blue-Light-Emitting Diodes. Appl. Phys. Lett. 1994, 64, 1687-1689.

ACS Paragon Plus Environment

Chemistry of Materials 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

237. Ying, L.; Ho, C. L.; Wu, H.; Cao, Y.; Wong, W. Y. White Polymer Light-Emitting Devices for Solid-State Lighting: Materials, Devices, and Recent Progress. Adv. Mater. 2014, 26, 2459-2473. 238. Bando, K.; Sakano, K.; Noguchi, Y.; Shimizu, Y. Development of High-Bright and Pure-White LED Lamps. J. Light Vis. Environ. 1998, 22, 12-15. 239. Cho, J.; Park, J. H.; Kim, J. K.; Schubert, E. F. White Light-Emitting Diodes: History, Progress, and Future. Laser photonics rev. 2017, 11, 1600147. 240. Nakamura, S. Background Story of the Invention of Efficient Blue InGaN Light Emitting Diodes. Angew. Chem. Int. Ed. 2015, 54, 7770-7788. 241. Feezell, D.; Nakamura, S. Invention, Development, and Status of the Blue Light-Emitting Diode, the Enabler of Solid-State Lighting. CR Phys. 2018, 19, 113-133. 242. Akasaki, I. Blue light: a Fascinating Journey (Nobel Lecture). Angew. Chem. Int. Ed. 2015, 54, 77507763. 243. Day, J.; Li, J.; Lie, D.; Bradford, C.; Lin, J.; Jiang, H. III-Nitride Full-Scale High-Resolution Microdisplays. Appl. Phys. Lett. 2011, 99, 031116. 244. Kang, C. M.; Kong, D. J.; Shim, J. P.; Kim, S.; Choi, S. B.; Lee, J. Y.; Min, J. H.; Seo, D. J.; Choi, S. Y.; Lee, D. S. Fabrication of a Vertically-Stacked Passive-Matrix Micro-LED Array Structure for a Dual Color Display. Opt. Express 2017, 25, 2489-2495. 245. Ra, Y.H.; Wang, R.; Woo, S. Y.; Djavid, M.; Sadaf, S. M.; Lee, J.; Botton, G. A.; Mi, Z. Full-Color Single Nanowire Pixels for Projection Displays. Nano Lett. 2016, 16, 4608-4615. 246. Wang, H.; Zhang, X.; Wu, Q.; Cao, F.; Yang, D.; Shang, Y.; Ning, Z.; Zhang, W.; Zheng, W.; Yan, Y. Trifluoroacetate Induced Small-Grained CsPbBr3 Perovskite Films Result in Efficient and Stable Light-Emitting Devices. Nature Commun. 2019, 10, 665. 247. Chen, J.; Hardev, V.; Hartlove, J.; Hofler, J.; Lee, E. A High-Efficiency Wide-Color-Gamut Solid-State Backlight System for LCDs Using Quantum Dot Enhancement Film. SID Symposium Digest of Technical Papers 2012, 43, 895-896. 248. Ma, R. Handbook of Visual Display Technology, Springer, Switzerland, 2016 249. Ukai, Y. TFT-LCDs as the Future Leading Role in FPD. SID Symposium Digest of Technical Papers 2013, 44, 28-31. 250. Zhu, Z. Q.; Klimes, K.; Holloway, S.; Li, J. Efficient Cyclometalated Platinum (II) Complex with Superior Operational Stability. Adv. Mater. 2017, 29, 1605002. 251. Cao, W.; Xiang, C.; Yang, Y.; Chen, Q.; Chen, L.; Yan, X.; Qian, L. Highly Stable QLEDs with Improved Hole Injection via Quantum Dot Structure Tailoring. Nat. Commun. 2018, 9, 2608. 252. Srivastava, A. K.; Zhang, W.; Schneider, J.; Rogach, A. L.; Chigrinov, V. G.; Kwok, H. S. Photoaligned Nanorod Enhancement Films with Polarized Emission for Liquid-Crystal-Display Applications. Adv. Mater. 2017, 29, 1701091. 253. Reineke, S.; Lindner, F.; Schwartz, G.; Seidler, N.; Walzer, K.; Lüssem, B.; Leo, K. White Organic Light-Emitting Diodes with Fluorescent Tube Efficiency. Nature 2009, 459, 234-238. 254. Wang, O.; Wang, L.; Li, Z.; Xu, Q.; Lin, Q.; Wang, H.; Du, Z.; Shen, H.; Li, L. S. High-Efficiency, Deep Blue ZnCdS/CdxZn1− xS/ZnS Quantum-Dot-Light-Emitting Devices with an EQE Exceeding 18%. Nanoscale 2018, 10, 5650-5657. 255. Acharya, K. P.; Titov, A.; Hyvonen, J.; Wang, C.; Tokarz, J.; Holloway, P. H. High Efficiency Quantum Dot Light Emitting Diodes from Positive Aging. Nanoscale 2017, 9, 14451-14457. 256. Dai, X.; Zhang, Z.; Jin, Y.; Niu, Y.; Cao, H.; Liang, X.; Chen, L.; Wang, J.; Peng, X. Solution-Processed, High-Performance Light-Emitting Diodes Based on Quantum Dots. Nature 2014, 515, 96-99. 257. ITU, I., Parameter Values for the HDTV Standards for Production and International Programme Exchange. Recommendation ITU-R BT. 709-5 2002. 258. BT., R. I. R., Parameter Values for Ultra-High Definition Television Systems for Production and International Programme Exchange. ITU-R BT. 2020 2012.

ACS Paragon Plus Environment

Page 44 of 70

Page 45 of 70 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Chemistry of Materials

259. Jang, E. In Environmentally Friendly Quantum Dots for Display Applications. 2018 IEEE International Electron Devices Meeting (IEDM), 2018, pp 38.2.1-38.2.4. 260. Zhou, Q.; Bai, Z.; Lu, W. g.; Wang, Y.; Zou, B.; Zhong, H. In Situ Fabrication of Halide Perovskite Nanocrystal-Embedded Polymer Composite Films with Enhanced Photoluminescence for Display Backlights. Adv. Mater. 2016, 28, 9163-9168. 261. Chen, N.; Bai, Z.; Wang, Z.; Ji, H.; Liu, R.; Cao, C.; Wang, H.; Jiang, F.; Zhong, H. Low Cost Perovskite Quantum Dots Film Based Wide Color Gamut Backlight Unit for LCD TVs. SID Symposium Digest of Technical Papers 2018, 49, 1657-1659. 262. Kang, Y.; Song, Z.; Jiang, X.; Yin, X.; Fang, L.; Gao, J.; Su, Y.; Zhao, F. Quantum Dots for Wide Color Gamut Displays from Photoluminescence to Electroluminescence. Nanoscale Res. Lett. 2017, 12, 154. 263. Xiang, C.; Cao, W.; Yang, Y.; Qian, L.; Yan, X. The Dawn of QLED for the FPD Industry. Information Display 2018, 34, 14-17. 264. Zhang, Y.; Lee, J.; Forrest, S. R. Tenfold Increase in the Lifetime of Blue Phosphorescent Organic Light-Emitting Diodes. Nat. Commun. 2014, 5, 5008. 265. Scholz, S.; Kondakov, D.; Lüssem, B. R.; Leo, K. Degradation Mechanisms and Reactions in Organic Light-Emitting Devices. Chem. Rev. 2015, 115, 8449-8503. 266. Hack, M.; Weaver, M. S.; Brown, J. J. Status and Opportunities for Phosphorescent OLED Lighting. SID Symposium Digest of Technical Papers 2017, 48, 187-190. 267. Coe, S.; Woo, W.-K.; Bawendi, M.; Bulović, V. Electroluminescence from Single Monolayers of Nanocrystals in Molecular Organic Devices. Nature 2002, 420, 800-803.

ACS Paragon Plus Environment

Chemistry of Materials 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

The future is blue (LEDs): why chemistry is the key to perovskite displays C-H. Angus Li, Zhicong Zhou, Parth Vashishtha, Jonathan E. Halpert*

Author Biography

C-H. Angus Li

C-H. Angus Li is now pursuing his PhD in Chemistry at the Hong Kong University of Science and Technology (HKUST) under the supervision of Prof. Jonathan E. Halpert. His current research focus is on perovskite material for efficient lightemitting devices for display applications. Before joining HKUST, he worked as a research assistant at Prof. Alex Jen’s group while obtaining his MSc at City University of Hong Kong.

Zhicong Zhou

Zhicong Zhou completed his B.Sc. degree in Materials Science and Engineering in South China Agricultural University in 2016 and his MSc in Analytical Chemistry in HKUST in 2017. Since then he has been working in Prof. Jonathan E. Halpert’s group in the department of chemistry at HKUST. His current research is focused on high performance quantum dots LEDs and perovskite materials. Parth Vashishtha

ACS Paragon Plus Environment

Page 46 of 70

Page 47 of 70 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Chemistry of Materials

Parth Vashishtha obtained his PhD degree at Victoria University of Wellington (VUW), New Zealand in 2018 on Nanostructured Perovskites for Optoelectronic Applications. Prior to this, He carried out his MPhil dissertation at University of South Australia (UniSA) in 2014 on synthesis of InP quantum dots for DSSC. Currently, He is a Presidential Postdoctoral Fellow at School of Materials Science & Engineering, Nanyang Technological University (NTU), Singapore. His current research area is focused on lead-free perovskite nanocrystals for optoelectronics.

Jonathan E. Halpert*

Jonathan E. Halpert received his PhD in Physical Chemistry in 2008 at the Massachusetts Institute of Technology (MIT). He was a visiting fellow at the Chinese Academy of Sciences’ Institute for Process Engineering (CAS-IPE), and a postdoctoral researcher in the Optoelectronics Group (OE) at the University of Cambridge. He was a lecturer and senior lecturer in the School of Chemical and Physical Sciences (SCPS) at VUW from 2013-2017, as well as a Rutherford Discovery Fellow and a Principal Investigator in the MacDiarmid Institute for Advanced Materials and Nanotechnology. He recently moved to the Department of Chemistry at HKUST where he has been an assistant professor since 2017. His research interests include nanocrystals, nanomaterials and quantum dots using semiconductor materials, especially perovskites, to produce functional electronic and optoelectronic devices, including memristors, energy storage devices, photodetectors, solar cells and LEDs.

ACS Paragon Plus Environment

Chemistry of Materials 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

TOC 63x35mm (96 x 96 DPI)

ACS Paragon Plus Environment

Page 48 of 70

Page 49 of 70 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Chemistry of Materials

Figure 1, see manuscript for caption 338x190mm (96 x 96 DPI)

ACS Paragon Plus Environment

Chemistry of Materials 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Figure 2, see manuscript for caption 338x190mm (96 x 96 DPI)

ACS Paragon Plus Environment

Page 50 of 70

Page 51 of 70 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Chemistry of Materials

Figure 3, see manuscript for caption 338x190mm (96 x 96 DPI)

ACS Paragon Plus Environment

Chemistry of Materials 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Figure 4, see manuscript for caption 338x190mm (96 x 96 DPI)

ACS Paragon Plus Environment

Page 52 of 70

Page 53 of 70 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Chemistry of Materials

Figure 5, see manuscript for caption 338x190mm (96 x 96 DPI)

ACS Paragon Plus Environment

Chemistry of Materials 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Figure 6, see manuscript for caption 338x190mm (96 x 96 DPI)

ACS Paragon Plus Environment

Page 54 of 70

Page 55 of 70 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Chemistry of Materials

Figure 7, see manuscript for caption 338x190mm (96 x 96 DPI)

ACS Paragon Plus Environment

Chemistry of Materials 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Figure 8, see manuscript for caption 338x190mm (96 x 96 DPI)

ACS Paragon Plus Environment

Page 56 of 70

Page 57 of 70 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Chemistry of Materials

Figure 9, see manuscript for caption 338x190mm (96 x 96 DPI)

ACS Paragon Plus Environment

Chemistry of Materials 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Figure 10, see manuscript for caption 338x190mm (96 x 96 DPI)

ACS Paragon Plus Environment

Page 58 of 70

Page 59 of 70 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Chemistry of Materials

Figure 11, see manuscript for caption 338x190mm (96 x 96 DPI)

ACS Paragon Plus Environment

Chemistry of Materials 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Figure 12, see manuscript for caption 338x190mm (96 x 96 DPI)

ACS Paragon Plus Environment

Page 60 of 70

Page 61 of 70 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Chemistry of Materials

Figure 13, see manuscript for caption 338x190mm (96 x 96 DPI)

ACS Paragon Plus Environment

Chemistry of Materials 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Figure 14, see manuscript for caption 338x190mm (96 x 96 DPI)

ACS Paragon Plus Environment

Page 62 of 70

Page 63 of 70 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Chemistry of Materials

Figure 15, see manuscript for caption 338x190mm (96 x 96 DPI)

ACS Paragon Plus Environment

Chemistry of Materials 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Figure 16, see manuscript for caption 338x190mm (96 x 96 DPI)

ACS Paragon Plus Environment

Page 64 of 70

Page 65 of 70 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Chemistry of Materials

Figure 17, see manuscript for caption 338x190mm (96 x 96 DPI)

ACS Paragon Plus Environment

Chemistry of Materials 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Figure 18, see manuscript for caption 338x190mm (96 x 96 DPI)

ACS Paragon Plus Environment

Page 66 of 70

Page 67 of 70 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Chemistry of Materials

Figure 19, see manuscript for caption 338x190mm (96 x 96 DPI)

ACS Paragon Plus Environment

Chemistry of Materials 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Figure 20, see manuscript for caption 338x190mm (96 x 96 DPI)

ACS Paragon Plus Environment

Page 68 of 70

Page 69 of 70 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Chemistry of Materials

Figure 21, see manuscript for caption 338x190mm (96 x 96 DPI)

ACS Paragon Plus Environment

Chemistry of Materials 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Figure 22, see manuscript for caption 338x190mm (96 x 96 DPI)

ACS Paragon Plus Environment

Page 70 of 70