60 The Mechanism of Alkane Oxidation by
Downloaded by MICHIGAN STATE UNIV on February 19, 2015 | http://pubs.acs.org Publication Date: January 1, 1968 | doi: 10.1021/ba-1968-0077.ch060
Ozone G O R D O N A . HAMILTON, BRUCE THOMAS M. HELLMAN
S.
RIBNER,
and
Pennsylvania State University, University Park, P a . , 16802 and Princeton University, Princeton, N. J. 08540
The characteristics of the initial step in the reaction of ozone with saturated hydrocarbons have been investigated. Ozonation of cyclohexane gives initially cyclohexanol and cyclohexanone in a 3:1 ratio. Cyclohexane is oxidized 4.5 times more rapidly than cyclohexane-d . The relative reactivity of primary, secondary, and tertiary hydrogens is approximately 1:13:110. The ozonation of tertiary hydrogens to tertiary alcohols occurs with 60 to 70% retention of configuration. The presence of good hydrogen atom donors, antioxidants, and a number of other reagents has only a small effect on the percent retention of configuration. These results and others are compared with those obtained for other hydrocarbon reactions, and a mechanism for the ozonation is suggested. 12
A s a result of o u r interest i n the m e c h a n i s m of b i o l o g i c a l oxidations of saturated h y d r o c a r b o n s ( I I ) , w e have i n v e s t i g a t e d the m e c h a n i s m s of several alkane oxidations (12, 13).
T h i s p a p e r reports o u r studies o n
the o x i d a t i o n of saturated h y d r o c a r b o n s b y ozone.
A l t h o u g h there are
f r e q u e n t references i n the literature to the o x i d a t i o n of alkanes b y ozone (2),
t h e m e c h a n i s m of the r e a c t i o n has r e c e i v e d r e l a t i v e l y little s t u d y .
D u r l a n d a n d A d k i n s (7) r e p o r t e d that cis- a n d J r a n s - D e c a l i n are o x i d i z e d i n reasonable y i e l d to tertiary alcohols w i t h r e t e n t i o n of c o n f i g u r a t i o n . S c h u b e r t a n d Pease (24)
s t u d i e d the gas-phase o z o n a t i o n of alkanes at
r o o m t e m p e r a t u r e a n d suggested that the p r o d u c t s arose f r o m the f o r m a t i o n a n d f u r t h e r reactions of R O ' a n d H O O * .
A c o m p l i c a t i n g feature i n
these investigations w a s the necessity to c a r r y o u t the o x i d a t i o n to r e l a t i v e l y h i g h conversions so that the p r o d u c t s c o u l d b e a n a l y z e d . 15 In Oxidation of Organic Compounds; Mayo, F.; Advances in Chemistry; American Chemical Society: Washington, DC, 1968.
Since
16
OXIDATION
O F ORGANIC
COMPOUNDS
III
the i n i t i a l alkane o x i d a t i o n p r o d u c t s are m o r e reactive t o w a r d ozone t h a n the alkane, t h e o b s e r v e d p r o d u c t s f r e q u e n t l y arise as t h e result of several steps.
W i t h t h e a v a i l a b i l i t y of sensitive gas c h r o m a t o g r a p h i c
methods
it is n o w possible to a n a l y z e f o r p r o d u c t s after v e r y l o w conversions, a n d thus t h e i n i t i a l step i n alkane o z o n a t i o n c a n b e s t u d i e d separately. investigation,
some
of t h e characteristics
of this
initial
step
In our were
determined.
Downloaded by MICHIGAN STATE UNIV on February 19, 2015 | http://pubs.acs.org Publication Date: January 1, 1968 | doi: 10.1021/ba-1968-0077.ch060
Experimental Materials. U n l e s s d e s c r i b e d o t h e r w i s e , c o m m e r c i a l materials, w h i c h w e r e u s u a l l y r e d i s t i l l e d a n d w h i c h w e r e s h o w n b y gas c h r o m a t o g r a p h y to b e either free of i m p u r i t i e s o r free of i n t e r f e r i n g i m p u r i t i e s , w e r e u s e d t h r o u g h o u t . C y c l o h e x a n e a n d 2 - m e t h y l b u t a n e w e r e refluxed w i t h l i t h i u m a l u m i n u m h y d r i d e before being distilled. cis-Decalin was obtained f r o m A l d r i c h C h e m i c a l C o m p a n y a n d frans-Decalin was obtained b y isomerizing commercial D e c a l i n w i t h aluminum trichloride followed b y fractional d i s t i l l a t i o n (14). G a s c h r o m a t o g r a p h i c analysis i n d i c a t e d that there w a s less t h a n 1 % trans i n t h e cis solvent a n d less t h a n 2 % cis i n t h e trans solvent. Cyclohexane-di2 w a s o b t a i n e d f r o m N u c l e a r E q u i p m e n t C h e m i cal Corp. a n d h a d 99.3% deuterium. Cis- a n d £rans-l,2-dimethylcyclohexanol-l were prepared b y J. R. G i a c i n b y t h e m e t h o d of C h i u r d o g l u (6) a n d i s o l a t e d b y t h e p r o c e d u r e of N e v i t t a n d H a m m o n d (20). T h e d s - a l c o h o l w a s n o t o b t a i n e d p u r e b u t as a m i x t u r e of cis a n d trans. T h e c o m p o s i t i o n of the m i x t u r e w a s d e t e r m i n e d b y a c o m b i n a t i o n of gas c h r o m a t o g r a p h y a n d n u c l e a r m a g netic resonance. T h e cis- a n d £rans-9-decalols w e r e p r e p a r e d b y J . R . G i a c i n b y oxidizing the corresponding hydrocarbons w i t h chromic an h y d r i d e i n acetic a c i d - a c e t i c a n h y d r i d e b y the m e t h o d of L e h r (16). T h e crude products were purified b y alumina chromatography followed b y s u b l i m a t i o n . Samples of the i s o m e r i c n o r b o r a n o l s a n d norbornanones w e r e o b t a i n e d f r o m P a u l v o n R . Schleyer. Reaction Conditions. T h e o z o n e - o x y g e n m i x t u r e u s e d i n these reac tions w a s o b t a i n e d f r o m either a W e l s b a c h T - 2 3 or T-408 L a b o r a t o r y O z o n a t o r . W h e n p u r e o x y g e n w a s f e d i n t o t h e o z o n a t o r at t h e rate of 0.6 l i t e r / m i n . , t h e effluent w a s ca. 5% ozone as d e t e r m i n e d b y i o d o m e t r i c t i t r a t i o n . A s m a l l f r a c t i o n of this stream g i v i n g 0 . 5 - 1 m g . of o z o n e p e r m i n u t e w a s b u b b l e d t h r o u g h 2 - 1 0 m l . of h y d r o c a r b o n solvent c o n t a i n e d i n a s m a l l flask fitted w i t h a c o l d finger condenser ( t o m i n i m i z e solvent e v a p o r a t i o n ) . M o s t of o u r results w e r e o b t a i n e d f r o m c o m p e t i t i o n e x p e r i ments either w i t h k n o w n mixtures of solvents o r w i t h c o m p o u n d s w h i c h c a n react t o give several p r o d u c t s . I n a f e w experiments the t o t a l y i e l d o f c y c l o h e x a n o l a n d c y c l o h e x a n o n e o b t a i n e d f r o m t h e o x i d a t i o n of c y c l o hexane at r o o m t e m p e r a t u r e w a s estimated to b e 0.2 t o 0.3 m g . / m i n . I n cases w h e r e the r e a c t i o n solutions w e r e r e d u c e d f o l l o w i n g o x i d a t i o n , t h e s o l u t i o n w a s d i l u t e d w i t h ca. 50 m l . ether, a n excess (0.15 g r a m ) of l i t h i u m a l u m i n u m h y d r i d e w a s a d d e d , t h e m i x t u r e r e f l u x e d f o r 2 h o u r s a n d t h e n c o o l e d , 0.4 m l . saturated s o l u t i o n of s o d i u m sulfate w a s a d d e d , the r e s u l t i n g suspension w a s filtered, t h e ether w a s d i s t i l l e d off u n t i l 5 - 1 0 m l . r e m a i n e d , a n d this s o l u t i o n w a s injected i n t o t h e gas c h r o m a t o g r a p h
In Oxidation of Organic Compounds; Mayo, F.; Advances in Chemistry; American Chemical Society: Washington, DC, 1968.
Downloaded by MICHIGAN STATE UNIV on February 19, 2015 | http://pubs.acs.org Publication Date: January 1, 1968 | doi: 10.1021/ba-1968-0077.ch060
60.
HAMILTON
E TA L .
Alkane
17
Oxidation
for analysis. I n controls w h e r e k n o w n amounts of p r o d u c t s w e r e present, essentially a l l t h e c a r b o n y l c o m p o u n d s w e r e r e d u c e d to alcohols, a n d over 9 5 % of t h e alcohols w e r e r e c o v e r e d b y this p r o c e d u r e . Analyses. T h e oxidation products were determined using a PerkinE l m e r m o d e l 800 gas c h r o m a t o g r a p h e q u i p p e d w i t h flame i o n i z a t i o n detectors. I n t h e c o m p e t i t i o n experiments t h e r e l a t i v e amounts of mate r i a l w e r e c a l c u l a t e d b y m u l t i p l y i n g either t h e p e a k heights or p e a k areas b y c o n v e r s i o n factors d e t e r m i n e d u s i n g k n o w n amounts of t h e p r o d u c t s . P r e l i m i n a r y experiments i n d i c a t e d that p e a k heights or p e a k areas gave the same amounts of materials w h e n m u l t i p l i e d b y t h e a p p r o p r i a t e c o n v e r s i o n factors. P e r k i n - E l m e r 12-foot c o l u m n s p a c k e d w i t h C h r o m o s o r b W a n d c o n t a i n i n g t h e l i q u i d phases p o l y p r o p y l e n e g l y c o l ( P e r k i n - E l m e r d e s i g n a t i o n R ) a n d fluorinated silicone o i l ( P e r k i n - E l m e r d e s i g n a t i o n F S - 1 2 6 5 ) gave c o n v e n i e n t separations. T h e last l i q u i d phase w a s u s e d for t h e d e c a l o l d e t e r m i n a t i o n s , a n d the first w a s u s e d f o r a l l others. U s u a l l y a s m a l l s a m p l e ( 1 - 2 /Jiters) of t h e r e a c t i o n s o l u t i o n w a s i n j e c t e d d i r e c t l y i n t o t h e gas c h r o m a t o g r a p h f o r analysis. H o w e v e r , to ensure that other p r o d u c t s w e r e n o t affecting the stereospecificity experiments, representative samples of t h e v a r i o u s systems s t u d i e d w e r e r e d u c e d w i t h l i t h i u m a l u m i n u m h y d r i d e b e f o r e analysis. T h e ratios of t e r t i a r y alcohols o b t a i n e d f o l l o w i n g r e d u c t i o n w e r e a l t e r e d o n l y s l i g h t l y i n a f e w cases, a p p a r e n t l y because some k e t o n i c p r o d u c t s w e r e e l u t e d f r o m t h e c o l u m n at t h e same t i m e as t h e t e r t i a r y alcohols. I n s u c h cases t h e results q u o t e d are those o b t a i n e d after r e d u c t i o n .
Results F o l l o w i n g o z o n a t i o n of c y c l o h e x a n e f o r short p e r i o d s at r o o m t e m perature, o n l y t w o o x i d a t i o n p r o d u c t s — c y c l o h e x a n o l a n d c y c l o h e x a n o n e — w e r e o b s e r v e d i n significant amounts o n gas c h r o m a t o g r a p h i c analysis. P o s s i b l y some m u c h less v o l a t i l e p r o d u c t s (e.g., r i n g f r a g m e n t a t i o n p r o d ucts, vide infra)
w e r e also f o r m e d b u t n o t d e t e c t e d b y t h e gas c h r o m a t o
g r a p h i c p r o c e d u r e . A f t e r 5 m i n u t e s of o z o n a t i o n t h e ratio of c y c l o h e x a none to c y c l o h e x a n o l w a s 0.3 to 0.35, b u t t h e r a t i o r a p i d l y i n c r e a s e d to 1.5 to 2 after 1 h o u r . T h e result indicates that even after v e r y l o w c o n version the i n i t i a l l y f o r m e d c y c l o h e x a n o l is o x i d i z e d f u r t h e r b y ozone (2).
C o n f i r m a t i o n of this w a s o b t a i n e d w h e n a s m a l l a m o u n t ( 2 0 m g . )
of c y c l o h e x a n o l was a d d e d to 10 m l . of c y c l o p e n t a n e a n d t h e s o l u t i o n w a s ozonized under the usual conditions.
Some
cyclopentanol a n d cyclo-
pentanone w e r e f o r m e d , b u t i n a d d i t i o n , over 8 0 % of t h e c y c l o h e x a n o l was o x i d i z e d to c y c l o h e x a n o n e after 1 h o u r . H o w e v e r , n o t a l l t h e c y c l o hexanone
obtained i n the cyclohexane
o x i d a t i o n of c y c l o h e x a n o l .
o z o n a t i o n arises
from
further
If t h e o b s e r v e d ratio of c y c l o h e x a n o n e t o
c y c l o h e x a n o l is p l o t t e d vs. time, a n d the c u r v e is e x t r a p o l a t e d to zero t i m e , one obtains a ratio at t i m e zero of 0.25 to 0.3. T h i s indicates that some of t h e c y c l o h e x a n o n e
is f o r m e d d i r e c t l y f r o m a n i n t e r m e d i a t e i n t h e
ozonation.
In Oxidation of Organic Compounds; Mayo, F.; Advances in Chemistry; American Chemical Society: Washington, DC, 1968.
18
OXIDATION
OF
ORGANIC
COMPOUNDS
III
C y c l o h e x a n o n e is o x i d i z e d f u r t h e r o n l y s l o w l y u n d e r o u r o z o n a t i o n c o n d i t i o n s . O z o n a t i o n of 30 m g . of c y c l o h e x a n o n e i n 7 m l . of c y c l o p e n tane for 1 h o u r l e d to the o x i d a t i o n of o n l y 1 0 % T h e o x i d a t i o n of c y c l o h e x a n e
of the
cyclohexanone.
requires the presence of o z o n e ;
control
experiments, w h e r e u n o z o n i z e d o x y g e n was passed t h r o u g h the c y c l o hexane w i t h a l l other c o n d i t i o n s the same, gave no detectable amounts of o x i d a t i o n p r o d u c t s . T h e k i n e t i c d e u t e r i u m isotope effect for the r e a c t i o n of c y c l o h e x a n e w i t h ozone was o b t a i n e d f r o m the c o m p e t i t i o n experiments s u m m a r i z e d
Downloaded by MICHIGAN STATE UNIV on February 19, 2015 | http://pubs.acs.org Publication Date: January 1, 1968 | doi: 10.1021/ba-1968-0077.ch060
i n T a b l e I. Since the solvent is i n large excess, the ratio fcn/fcp w a s c a l c u Table I.
Ozonation Time, min.
Deuterium Isotope Effect for the Ozonation of Cyclohexane at 2 2 ° C .
20
Cyclohexane (50 % ) Cyclopentane (50%)
20
Cyclohexane-d Cyclopentane
50 50
Molar Ratio of Cyclohexane to Cyclopentane Products
Solvent Composition, mole %
Cyclohexane Cyclopentane
12
0.94 4.5
(50%) (50%)
0.21
(50%) (50%)
1.10 4.1
Cyclohexane-d > (50%) Cyclopentane (50 % ) 1L
0.27
l a t e d b y s i m p l y d i v i d i n g the m o l a r ratio of c y c l o h e x a n e to c y c l o p e n t a n e o x i d a t i o n p r o d u c t s o b t a i n e d w i t h c y c l o h e x a n e present b y that w i t h cyclohexane-di » L
after the same o z o n a t i o n t i m e .
obtained
It is not k n o w n
w h y the ratio of p r o d u c t s increases s l i g h t l y or w h y the a p p a r e n t isotope effect decreases s l i g h t l y w i t h time. P e r h a p s it is c a u s e d b y different rates for the f u r t h e r o x i d a t i o n of the i n i t i a l o x i d a t i o n p r o d u c t s .
Nevertheless,
it is clear that there is a sizeable isotope effect for the o z o n a t i o n reaction, a n d k /k H
})
is p r o b a b l y b e t w e e n 4.5 a n d 5 for v e r y l o w conversions w h e n
f u r t h e r o x i d a t i o n of the p r o d u c t s w o u l d have a m i n i m a l effect. The
r e a c t i v i t y of ozone t o w a r d p r i m a r y , secondary,
and
tertiary
h y d r o g e n s was d e t e r m i n e d f r o m experiments w h e r e 2 - m e t h y l b u t a n e
was
o z o n i z e d . T h e s e experiments w e r e p e r f o r m e d at 0 ° C . to decrease solvent loss b y e v a p o r a t i o n d u r i n g o z o n a t i o n .
T o s i m p l i f y the analysis of
p r o d u c t s , the r e a c t i o n m i x t u r e f o l l o w i n g o z o n a t i o n was r e d u c e d
the with
l i t h i u m a l u m i n u m h y d r i d e . T h e relative r e a c t i v i t y per h y d r o g e n , c a l c u l a t e d f r o m the o b s e r v e d quantities of the f o u r isomeric C , alcohols, i s : r
p r i m a r y , 1; secondary,
13; tertiary, 110.
T h e s e values are t i m e i n d e
p e n d e n t for u p to 1 h o u r o z o n a t i o n . H o w e v e r , t h e y m a y not be a c o m -
In Oxidation of Organic Compounds; Mayo, F.; Advances in Chemistry; American Chemical Society: Washington, DC, 1968.
60.
HAMILTON
Alkane
E T AL.
19
Oxidation
p l e t e l y accurate measure of t h e r e a c t i v i t y of t h e various h y d r o g e n s b e cause some f r a g m e n t a t i o n p r o d u c t s , i n c l u d i n g ethanol, 2 - p r o p a n o l , a n d other m i n o r p r o d u c t s , w e r e also o b s e r v e d . T h e s e f r a g m e n t a t i o n p r o d u c t s w e r e f o r m e d i n smaller quantities t h a n t h e C , alcohols, a n d they c o u l d r
not alter t h e r e l a t i v e reactivities q u o t e d b y m o r e t h a n 2 5 % . relative y i e l d s of t h e C , alcohols r
Thus, the
(following reduction with
a l u m i n u m h y d r i d e ) s h o u l d b e a f a i r l y g o o d measure
lithium
of t h e relative
reactivities of the v a r i o u s h y d r o g e n s . T h e stereospecificity of t h e h y d r o c a r b o n o z o n a t i o n w a s i n v e s t i g a t e d
Downloaded by MICHIGAN STATE UNIV on February 19, 2015 | http://pubs.acs.org Publication Date: January 1, 1968 | doi: 10.1021/ba-1968-0077.ch060
b y m e a s u r i n g t h e isomer d i s t r i b u t i o n of tertiary alcohols f o r m e d o n o z o n a t i n g cis- a n d £rans-l,2-dimethylcyclohexane a n d cis- a n d lin.
trans-Deca-
O t h e r o x i d a t i o n p r o d u c t s are f o r m e d i n these ozonations, b u t t h e
t e r t i a r y alcohols a r e easily separated f r o m these b y gas c h r o m a t o g r a p h y . Some results are s h o w n i n T a b l e I I . T h e o b s e r v e d isomer d i s t r i b u t i o n s of t e r t i a r y alcohols are i n d e p e n d e n t of t i m e f o r u p to 3 hours o z o n a t i o n Table II.
Hydrocarbon Solvent
a
Isomer Distribution of Tertiary Alcohols from the Ozonation of cis- and trans-Hydrocarbons Isomer Distribution of Hydrocarbon Solvent, % cis trans
T,°C.
Isomer Distribution of Tertiary Alcohols, % trans cis
D M C
100 100 0 0 68 26
0 0 100 100 32 74
22 -48 22 -48 22 22
85 91 21 20 78 59
15 9 79 80 22 41
Decalin
100 100 0 0 62 36
0 0 100 100 38 64
22 0 22 0 22 22
85 85 20 29 79 68
15 15 80 71 21 32
1,2-Dimethylcyclohexane.
a n d are r e p r o d u c i b l e to ± 2 % .
C l e a r l y t h e f o r m a t i o n of t e r t i a r y alcohols
occurs w i t h c o n s i d e r a b l e b u t n o t c o m p l e t e
r e t e n t i o n of c o n f i g u r a t i o n
( e a r l i e r results b y others (7, 17) w i t h less sensitive a n a l y t i c a l procedures i n d i c a t e d almost c o m p l e t e r e t e n t i o n of c o n f i g u r a t i o n ) .
T h e observation
that t e m p e r a t u r e has s u c h l i t t l e effect o n the isomer d i s t r i b u t i o n suggests that i t is u n l i k e l y that t h e lack of c o m p l e t e stereospecificity is c a u s e d b y t w o d i s t i n c t l y different m e c h a n i s m s o p e r a t i n g s i m u l t a n e o u s l y . B e c a u s e the cis- a n d f r a n s - h y d r o c a r b o n s g i v e different ratios of tertiary alcohols i t is possible to d e t e r m i n e t h e r e l a t i v e r e a c t i v i t y of t h e t e r t i a r y positions of these h y d r o c a r b o n s b y u s i n g k n o w n mixtures of the h y d r o c a r b o n s . F r o m
In Oxidation of Organic Compounds; Mayo, F.; Advances in Chemistry; American Chemical Society: Washington, DC, 1968.
20
OXIDATION
OF
ORGANIC
COMPOUNDS
III
the results i n T a b l e II one calculates that the t e r t i a r y positions o n cis-1,2d i m e t h y l c y c l o h e x a n e are f o u r times m o r e reactive t h a n those of dimethylcyclohexane.
trans-1,2-
A s s u m i n g that the a x i a l t e r t i a r y h y d r o g e n of the
cis c o m p o u n d has the same r e a c t i v i t y as e a c h of the a x i a l t e r t i a r y h y d r o gens of the trans c o m p o u n d ( 8 ) , one calculates that the e q u a t o r i a l tertiary h y d r o g e n is seven times m o r e reactive t h a n a x i a l ones.
S i m i l a r l y , the
t e r t i a r y h y d r o g e n s of ci-s-Decalin are 5.6 times m o r e reactive t h a n those of f r a n s - D e c a l i n . T h e effect of v a r i o u s a d d i t i v e s o n the isomer d i s t r i b u t i o n of tertiary
Downloaded by MICHIGAN STATE UNIV on February 19, 2015 | http://pubs.acs.org Publication Date: January 1, 1968 | doi: 10.1021/ba-1968-0077.ch060
alcohols,
obtained
from d$-l,2-dimethylcyclohexane,
was
investigated
to d e t e r m i n e the reason for the l a c k of c o m p l e t e stereospecificity i n the ozonation.
T h e results are s u m m a r i z e d i n T a b l e III.
N o n e of the a d d i -
Table III. Isomer Distribution of Tertiary Alcohols from the Ozonation of cK-l,2-Dimethylcyclohexane at 2 2 ° C . in the Presence of Various Additives Isomer Distribution of Tertiary Alcohols Solvent Composition, mole % from c i s - D M C , % trans cis-DMC cis Additive
Additive None Cumene Chloroform Nitrobenzene Benzophenone E t h y l acetate 2,4-Di-tert-butylphenol Diphenylamine Iodine Bromotrichloromethane
15 15 15 15 18 21 27 30 30 20
85 85 85 85 82 79 73 70 70 80
100 88 38 44 91 43 91 92 93 84
0 12 62 56 9 57 9 8 7 16
tives has a d r a m a t i c effect. Some of the results m a y arise f r o m a g e n e r a l solvent effect w h i c h requires f u r t h e r i n v e s t i g a t i o n . H o w e v e r , since none of the a d d i t i v e s increases the stereospecificity of the o z o n a t i o n , several m e c h a n i s m s w h i c h m i g h t h a v e e x p l a i n e d the p a r t i a l loss of ficity c a n be e l i m i n a t e d (see L o n g (17)
stereospeci
Discussion).
o b s e r v e d that o z o n a t i o n of n o r b o r n a n e
(bicyclo-2,2,l-hep-
t a n e ) i n C C 1 at 0 ° C . gives o n l y e x o - 2 - n o r b o r n a n o l a n d 2 - n o r b o r n a n o n e . 4
W e have c o n f i r m e d this result u s i n g c y c l o h e x a n e as solvent a n d gas c h r o m a t o g r a p h y f o r analysis; less t h a n 2 % formed.
of a n y other a l c o h o l or ketone is
E n d o - 2 - n o r b o r n a n o l c o u l d not h a v e b e e n f o r m e d i n i t i a l l y a n d
t h e n r a p i d l y o x i d i z e d to 2 - n o r b o r n a n o n e .
I n a control experiment 6 m g .
of e n d o - 2 - n o r b o r n a n o l w e r e a d d e d to 1.7 grams n o r b o r n a n e i n 8 m l . of cyclohexane
a n d o z o n i z e d f o r 95 m i n u t e s .
Then, 75%
of the
endo-2-
n o r b o r n a n o l w a s o x i d i z e d . T h u s , it is o x i d i z e d u n d e r the r e a c t i o n c o n d i -
In Oxidation of Organic Compounds; Mayo, F.; Advances in Chemistry; American Chemical Society: Washington, DC, 1968.
60.
HAMILTON
ET
Alkane
AL.
21
Oxidation
tions, b u t this r e a c t i o n is s l o w e n o u g h that if 2 % of the o x i d a t i o n p r o d u c t s w e r e this c o m p o u n d , it c o u l d h a v e b e e n detected.
B y c o m p a r i n g the
y i e l d s of n o r b o r n a n e o x i d a t i o n p r o d u c t s w i t h those o b t a i n e d f r o m c y c l o hexane, a n d k n o w i n g the i n i t i a l solvent c o m p o s i t i o n , one c a n calculate that p e r h y d r o g e n the exo h y d r o g e n s of n o r b o r n a n e are o n l y 1.3 times m o r e reactive t h a n the h y d r o g e n s of c y c l o h e x a n e . Some peroxides are f o r m e d w h e n saturated h y d r o c a r b o n s are o z o n i z e d at r o o m temperature.
F o r e x a m p l e , w h e n 1.07 m m o l e s of ozone are
b u b b l e d ( d u r i n g 2 h o u r s ) i n t o 8 m l . of d s - l , 2 - d i m e t h y l c y c l o h e x a n e , 0.26
Downloaded by MICHIGAN STATE UNIV on February 19, 2015 | http://pubs.acs.org Publication Date: January 1, 1968 | doi: 10.1021/ba-1968-0077.ch060
m m o l e s of ozone passes t h r o u g h the s o l u t i o n , a n d 0.31 m m o l e s p e r o x i d e [determined by iodometric titration (25)]
is f o r m e d i n the h y d r o c a r b o n
solvent. T h e i d e n t i t y of these peroxides has not yet b e e n d e t e r m i n e d .
Discussion T a b l e I V compares some of the characteristics of the o z o n a t i o n re a c t i o n w i t h those of some other h y d r o c a r b o n reactions w h o s e nisms h a v e b e e n s t u d i e d extensively. free r a d i c a l reactions, O—C(CH ) 3
3
prim
Ozonation Chromate oxidation Carbene insertions Nitrene insertions H abstraction by •O—C(CH ), Carbene-oxygen oxidation
by
i n its selectivity
C o m p a r i s o n of Some H y d r o c a r b o n R e a c t i o n s Relative Reactivity per H
Reaction
mecha
resembles
s u c h as the a b s t r a c t i o n of h y d r o g e n atoms
a n d the c a r b e n e - o x y g e n o x i d a t i o n (12),
Table I V .
3
T h e ozonation reaction
Deuterium Isotope Effect(k /k )
Reference
70
4.5
This work
70-100
2.5
16,19,
1.2 (21)
100
1.3 to 2
15
sec
tert
1
13
110
1
110
7,000
1 (1)
1.0 (8)
% Retention of Configuration
H
D
1
10
30
100
1.5
1,
1
12
44
0
3.7
23, 26
1
15
140
0
4.6
12
28
5,18
t o w a r d various h y d r o g e n s a n d i n its d e u t e r i u m isotope effect. It is clear that the t r a n s i t i o n state for the o z o n a t i o n r e a c t i o n i n a l k a n e cannot
have m u c h c a r b o n i u m i o n character;
w o u l d be m u c h greater.
otherwise its
solvents
selectivity
T h e o b s e r v a t i o n that the exo h y d r o g e n s
of
n o r b o r n a n e d o not h a v e a n y s p e c i a l r e a c t i v i t y agrees w i t h this c o n c l u s i o n . A l s o , the t r a n s i t i o n state for the c h r o m a t e o x i d a t i o n of alkanes is b e l i e v e d
In Oxidation of Organic Compounds; Mayo, F.; Advances in Chemistry; American Chemical Society: Washington, DC, 1968.
22
OXIDATION
OF
ORGANIC
to h a v e o n l y p a r t i a l c a r b o n i u m i o n character (22),
COMPOUNDS
III
a n d yet its selectivity
is m u c h greater. T h e h i g h degree of retention of c o n f i g u r a t i o n is different f r o m that u s u a l l y o b s e r v e d for free r a d i c a l reactions. I n the o z o n a t i o n experiments, o x y g e n was present at a p p r o x i m a t e l y 1 a t m . , a n d a l k y l r a d i c a l s react w i t h o x y g e n to g i v e alcohols a n d ketones
(21).
However, only racemized
a l c o h o l is f o r m e d w h e n s u c h r a d i c a l s are generated b y other m e t h o d s i n the presence of a n atmosphere of o x y g e n (3,
12).
T h u s , it is e v i d e n t
that most of the o z o n a t i o n r e a c t i o n cannot p r o c e e d t h r o u g h " f r e e " free
Downloaded by MICHIGAN STATE UNIV on February 19, 2015 | http://pubs.acs.org Publication Date: January 1, 1968 | doi: 10.1021/ba-1968-0077.ch060
r a d i c a l intermediates,
a n d the a l c o h o l w i t h r e t e n t i o n of c o n f i g u r a t i o n
m u s t be f o r m e d b y some d i r e c t r e a c t i o n of ozone w i t h the h y d r o c a r b o n . T h e o b s e r v e d r e t e n t i o n of c o n f i g u r a t i o n is s i m i l a r to that o b t a i n e d i n carb e n e a n d n i t r e n e i n s e r t i o n reactions.
Therefore, an insertion reaction
w h o s e t r a n s i t i o n state has c o n s i d e r a b l e r a d i c a l character is the m e c h a n i s m f o r the initial
step of the o z o n a t i o n w h i c h is i n best agreement w i t h the
d a t a . T h e details of the steps l e a d i n g to the f o r m a t i o n of r a c e m i z e d alco h o l , ketone, p e r o x i d e , a n d f r a g m e n t a t i o n p r o d u c t s are not c o m p l e t e l y clear at this t i m e . H o w e v e r , some possibilities for the o v e r - a l l m e c h a n i s m are o u t l i n e d i n the r e a c t i o n scheme b e l o w . It is suggested that the a l k a n e a n d
ROH'
( r a c e m i z e d ) + ketone +
per-
oxides + fragmentation p r o d u c t s
ozone react to g i v e a t r a n s i t i o n state ( o r solvent c a g e d i n t e r m e d i a t e ) , I or II, w h i c h has c o n s i d e r a b l e r a d i c a l character. If there is no p a r t i a l b o n d i n g a m o n g the v a r i o u s r a d i c a l s of I a n d II, t h e n t h e r m o d y n a m i c
In Oxidation of Organic Compounds; Mayo, F.; Advances in Chemistry; American Chemical Society: Washington, DC, 1968.
60.
HAMILTON
ET
considerations (4)
AL.
Alkane
23
Oxidation
i n d i c a t e that I is m o r e l i k e l y t h a n I I .
H o w e v e r , if
the R - r a d i c a l is p a r t i a l l y b o n d e d to a n o x y g e n species either I or I I seem possible.
R e t e n t i o n of c o n f i g u r a t i o n i n the a l c o h o l p r o d u c t w o u l d
be e x p e c t e d if I or I I c o l l a p s e d d i r e c t l y to a l c o h o l a n d o x y g e n ( I I p o s s i b l y r e a c t i n g w i t h R O O O H as a n i n t e r m e d i a t e
(27)).
T o a c c o u n t for the
f o r m a t i o n of some r a c e m i z e d a l c o h o l , ketone, peroxides, a n d f r a g m e n t a t i o n p r o d u c t s , it is suggested that I a n d I I c a n also separate i n t o the r a d i c a l s R • a n d H O •. A l k y l r a d i c a l s are k n o w n to react w i t h o x y g e n i n a series of steps to g i v e these other p r o d u c t
(21).
Downloaded by MICHIGAN STATE UNIV on February 19, 2015 | http://pubs.acs.org Publication Date: January 1, 1968 | doi: 10.1021/ba-1968-0077.ch060
M e c h a n i s m s f o r the f o r m a t i o n of r a c e m i z e d a l c o h o l , w h i c h i n v o l v e the R O - radical's a b s t r a c t i n g a h y d r o g e n a t o m f r o m the a l k a n e as, f o r example, i n the f o l l o w i n g sequence: R O O O H —» RO* + H O O R O - + R H -> R- + R O H (retention) R- + 0
2
—> R O H (racemized) + ketone + peroxides + fragmentation products
are not consistent w i t h the stereospecificity experiments w i t h v a r i o u s a d d i tives ( T a b l e I I I ) .
M a n y of the a d d i t i v e s w o u l d h a v e t r a p p e d the R O -
r a d i c a l s , a n d thus no R - r a d i c a l s w o u l d b e f o r m e d a n d the p e r c e n t re t e n t i o n of c o n f i g u r a t i o n w o u l d h a v e i n c r e a s e d .
T h i s is the o p p o s i t e of
that o b s e r v e d . If some of the a d d i t i v e s c o u l d t r a p the R - r a d i c a l s , t h e n b y either of the above m e c h a n i s m s the p e r c e n t r e t e n t i o n of c o n f i g u r a t i o n s h o u l d increase.
H o w e v e r , o x y g e n w o u l d p r o b a b l y react too
rapidly
w i t h R - f o r it to b e t r a p p e d b y other species. T h e results r e p o r t e d here c o u l d also be e x p l a i n e d if ozone or a n i n t e r m e d i a t e s u c h as I or II c o u l d exist i n a singlet a n d a t r i p l e t f o r m . T h e p r o d u c t s w i t h r e t e n t i o n of c o n f i g u r a t i o n w o u l d t h e n arise f r o m the singlet species a n d the r a c e m i z e d p r o d u c t s f r o m the t r i p l e t . S o m e of the results w i t h a d d i t i v e s are consistent w i t h this h y p o t h e s i s : t h e
decreased
p e r c e n t r e t e n t i o n of c o n f i g u r a t i o n w i t h some a d d i t i v e s c o u l d b e c a u s e d b y catalysis of singlet to t r i p l e t interconversions.
Clearly more experi
m e n t a l results are necessary to c l a r i f y this p o i n t . Regardless of the nature of the subsequent steps i n the r e a c t i o n , it seems clear f r o m the results here that the i n i t i a l step i n the o x i d a t i o n is a n i n s e r t i o n t y p e r e a c t i o n i n w h i c h the t r a n s i t i o n state has r a d i c a l char acter.
B e c a u s e the selectivity of ozone is greater t h a n that of
i n s e r t i o n species
other
( c a r b e n e s a n d n i t r e n e s ) , it is possible to s p e c i f y the
characteristics of intermediates or t r a n s i t i o n states ( s u c h as I or I I ) a greater extent.
to
H o w e v e r , it s h o u l d not be c o n c l u d e d that a l l ozone
reactions necessarily p r o c e e d b y s u c h a m e c h a n i s m . I n other cases w h e r e i o n i c intermediates are m o r e f a v o r e d (e.g., i n m o r e p o l a r solvents or i n cases w h e r e c a r b o n i u m ions are m o r e stable) it is possible that the t r a n sition state for the r e a c t i o n has m o r e p o l a r character (9, 10,
27).
In Oxidation of Organic Compounds; Mayo, F.; Advances in Chemistry; American Chemical Society: Washington, DC, 1968.
24
OXIDATION
O F ORGANIC
COMPOUNDS
III
E n z y m i c h y d r o x y l a t i o n s of saturated h y d r o c a r b o n s , w h i c h a p p a r e n t l y i n v o l v e t h e i n s e r t i o n of a n o x y g e n to g i v e alcohols w i t h r e t e n t i o n of c o n figuration,
c o u l d p r e s u m a b l y o c c u r b y a m e c h a n i s m s i m i l a r to that p r o
p o s e d f o r the o z o n a t i o n r e a c t i o n .
I n t h e e n z y m i c reactions o x y g e n is the
oxidant, a n d the o v e r - a l l m e c h a n i s m is c l e a r l y m o r e c o m p l i c a t e d
than
that f o r o z o n a t i o n ( I I ) . H o w e v e r , i n these reactions p o s s i b l y some c o m p l e x e d f o r m of o x y g e n is c a p a b l e of a b s t r a c t i n g h y d r o g e n atoms a n d t h e n d o n a t i n g a h y d r o x y l r a d i c a l b e f o r e the a l k y l r a d i c a l has a n o p p o r t u n i t y to i n v e r t . T h e o v e r - a l l r e a c t i o n w o u l d b e a n i n s e r t i o n r e a c t i o n (11), b u t the
Downloaded by MICHIGAN STATE UNIV on February 19, 2015 | http://pubs.acs.org Publication Date: January 1, 1968 | doi: 10.1021/ba-1968-0077.ch060
t r a n s i t i o n state c o u l d h a v e r a d i c a l character, as o b s e r v e d f o r the o z o n a tion reaction.
A cknowledgments S e v e r a l h e l p f u l discussions at t h e O x i d a t i o n S y m p o s i u m , especially w i t h P . S. B a i l e y , C . W a l l i n g , M . C . W h i t i n g , a n d S. W . B e n s o n are gratefully
acknowledged.
This
research
was supported
by
research
grants G M - 0 9 5 8 5 a n d G M - 1 4 9 8 5 f r o m t h e Institute of G e n e r a l M e d i c a l Sciences, P u b l i c H e a l t h Service, a n d i n part b y a grant to B . S. R . f r o m the
N a t i o n a l Science
Foundation
Undergraduate
Research
Program,
P r i n c e t o n U n i v e r s i t y . G . A . H . is a n A l f r e d P . S l o a n R e s e a r c h
Fellow
(1967-69).
Literature Cited
(1) Anastassiou, A. G., Simmons, H. E., J. Am. Chem. Soc. 89, 3177 (1967). (2) Bailey, P. S., Chem. Rev. 58, 925 (1958). (3) Bartlett, P. D., Pincock, R. E., Rolston, J. H., Schindel, W. G., Singer, L. A., J. Am. Chem. Soc. 87, 2590 (1965). (4) Benson, S. W., J. Am. Chem. Soc. 86, 3922 (1964). (5) Breslow, D. S., Prosser, T. J., Marcantonio, A. F., Genge, C. A., J. Am. Chem. Soc. 89, 2384 (1967). (6) Chiurdoglu, G., Bull. Soc. Chim. Beiges. 47, 241 (1938). (7) Durland, J. R., Adkins, H., J. Am. Chem. Soc. 61, 429 (1939). (8) Eliel, E. L., "Stereochemistry of Carbon Compounds," p. 211, McGrawHill, New York, 1962. (9) Erickson, R. E., Bakalik, D., Richards, C., Scanlon, M., Huddleston, G., J. Org. Chem. 31, 461 (1966). (10) Erickson, R. E., Myszkiewicz, T. M., J. Org. Chem. 30, 4326 (1965). (11) Hamilton, G. A., J. Am. Chem. Soc. 86, 3391 (1964). (12) Hamilton, G. A., Giacin, J. R., J. Am. Chem. Soc. 88, 1584 (1966). (13) Hamilton, G. A., Workman, R. J., Woo, L., J. Am. Chem. Soc. 86, 3390 (1964). (14) Jones, R., Linstead, R., J. Chem. Soc. 1936, 616. (15) Kirmse, W., "Carbene Chemistry," Academic Press, New York, 1964. (16) Lehr, R., Senior Thesis, Princeton University, Princeton, May, 1965. (17) Long, Jr., W. P., Ph.D. Thesis, Harvard University, 1955. (18) Lwowski, W., Maricich, T. J., J. Am. Chem. Soc. 87, 3630 (1965). (19) Mareš, F., Roček, J., Collection Czech. Chem. Commun. 26, 2370 (1961).
In Oxidation of Organic Compounds; Mayo, F.; Advances in Chemistry; American Chemical Society: Washington, DC, 1968.
60.
HAMILTON
ET
AL.
Alkane
Oxidation
(20) (21) (22) (23) (24) (25)
25
Nevitt, T., Hammond, G., J. Am. Chem. Soc. 76, 4124 (1954). Pryor, W. A., "Free Radicals," McGraw-Hill, New York, 1966. Rocek, J., Tetrahedron Letters 1962, 135. Russell, G. A., J. Am. Chem. Soc. 79, 3871 (1957). Schubert, C. C., Pease, R. N., J. Am. Chem. Soc. 78, 2044 (1956). Wagner, C. D., Smith, R. H., Peters, E. D., J. Anal. Chem. 19, 976 (1947). (26) Walling, C., Thaler, W., J. Am. Chem. Soc. 83, 3877 (1961). (27) White, H. M., Bailey, P. S., J. Org. Chem. 30, 3037 (1965). (28) Wiberg, K. B., Foster, G., J. Am. Chem. Soc. 83, 423 (1961). October 9, 1967.
Downloaded by MICHIGAN STATE UNIV on February 19, 2015 | http://pubs.acs.org Publication Date: January 1, 1968 | doi: 10.1021/ba-1968-0077.ch060
RECEIVED
In Oxidation of Organic Compounds; Mayo, F.; Advances in Chemistry; American Chemical Society: Washington, DC, 1968.