I
Volume 4 Number 1
Inorganic Chemistry 0 Copyright 1965 b y the American Chemical Society
January 4, 1965
CONTRIBUTION FROM THE DEPARTMENT O F CHEMISTRY, UNIVERSITY O F WISCONSIN, MADISON 6, WISCONSIN
The Molecular Structure of a Tricyclic Complex, [SFe(CO),], BY CHIN HSUAN WE1 AND LAWRENCE F. DAHL'
Received July 20, 1964 A three-dimensional single-crystal X-ray determination of [SFe(C O ) ~ ]has Z revealed the first known example of a transition metal p-dithio complex with a disulfide group symmetrically bonded to two iron tricarbonyl fragments. The structure thereby represents a new type of transition metal carbonyl complex in which two bonding metals and two nonmetal bridging groups are fused along the bridged atoms to give a heterotricyclic system containing four three-membered rings. The compound contains two diyeric molecules in a triclinic unit cell of symmetry P i and of reduced cell parameters a = 6 63 i 0 01 b.,b = 7.85 =t 0.01 A,, c = 11 46 =t 0 02 A , a = 83" 20' f lo', 6 = 76' 09' f lo', y = 78" 25' =t 10'. Threedimensional anisotropic refinement of all atoms resulted in final discrepancy factors of R1 = 10 397, and RZ = 10 3% for 1536 observed reflections The dimeric molecule of idealized (2%"symmetry formally can be derived from the intersection of two basal planes of two distorted tetragonal pyramids along the S S line with a sharp dihedral angle of 59 7". A "bent" ironiron bond involving the overlap of two iron orbitals a t an angle of 130" is presumed together with the S-S bond to be responsible for the molecular geometry with the remarkably acute S-Fe-S and bridge Fe-S-Fe angles of 53.5" (av.) and 69 9 " (av.), respectively. A comparison of the molecular configuration of [SFe(CO)J2 with that of [CzH&Fe(CO)r]zis made, and its structure and bonding are discussed with respect to those given for related p-peroxo- and acetylene-dimetal complexes.
[SFe(C0)3]zdue to the absence of alkyl groups was made by Hieber and Beck. Besides providing an explanation for the bonding and observed diamagnetism, this present research on [SFe(C0)3]2has afforded the opportunity for a detailed comparison of the molecular features of these corresponding types of compounds.
Introduction Our interest in [SFe(C0)3I2stemmed from previous X-ray studies of the related compounds [C2H5SFe(CO)3]22and XzFe3(C0)9 (X = S , Se).3 This dinuclear thioiron carbonyl complex and its selenium analog were first prepared and characterized by Hieber and Gruber4 as diamagnetic solids whose infrared spectra possess only terminal carbonyl type bands. For these two compounds and the related sulfur and selenium dimeric complexes of formula [XFe(CO),]z (where X = SCzH6,SeCzH5, SCeH,), Hieber and Beck5 later proposed from extensive infrared and dipole moment studies a general molecular configuration of symmetry with a nonplanar (Fe-cha1cogen)z bridge fragment. A subsequent structural determination2 of one of the alkyl-substituted chalcogen complexes, [CZHbSFe(C0)3]2, not only confirmed the idealized geometry suggested by Hieber and Beck5 but also yielded detailed molecular parameters consistent with our proposa16 of a "bent" Fe-Fe bond for these complexes. However, the structural relationship of [SFe(C0)3]2 to the ethylthio compound remained unclear; no speculation on the difference in the electronic configuration of
Experimental The compound was prepared from iron pentacarbonyl and sodium polysulfide solution in the way described by Hieber and Gr~ber.~ Reddish orange prismatic crystals were separated from the reaction products by sublimation a t 40" under vacuum. A suitable single crystal of average width 0.20 mm. and length 0.43 mm. was selected for collecting Weissenberg data, while another crystal of average width 0.27 mm. and length 0.55 mm. was used for obtaining precession data. Since the absorption parameters, wR, of these two crystals are estimated to be 0.30 and 0.38, respectively, no absorption corrections were considered necessary. Both crystals were mounted in thin-walled glass capillaries such that the a-axis approximately corresponded to the cylinder axis for each crystal. Since the crystal system was found to be triclinic, the lattice dimensions of the originally chosen primitive unit cell were transformed to the reduced primitive cell with acute interaxial angles.7 The lattice parameters for both primitive cells were determined from NaC1-calibrated precession photographs. Multiple-film equiinclination Weissenberg photographs were obtained with Zr-filtered Mo KCXradiation ( A 0.7107 b . )for eight reciprocal layers, OBI through 7kl. In order to minimize the
(1) Fellow of the Alfred P. Sloan Foundation. (2) L. F. Dah1 and C. H. Wei, Inovg. Chem., 2 , 328 (1963). (3) L. F. Dah1 and P. W. Sutton,ibid., 2, 1067 (1963). (4) W. Hieber and J. Gruber, 2. anorg. allgem. Chem., 296, 91 (1958). (5) W. Hieber and W. Beck, ibid., 305, 265 (1960). (6) L. F . Dahl, C. Martell, and D. L. Wampler, J . A m . Chem. Soc., 83, 1761 (1961).
(7) Cf.L. V. Azaroff and M. J. Buerger, "The Powder Method in X-Ray Crystallography," McGraw-Hill Book Company, Inc., New York, PIT. Y., 1958, Chapter 11; V. Balashov, Acta Cuyst., 9, 319 (1956).
1
2
CHIKHSUANWEI AND LAWRENCE F. DAIIL
variations in reflection spot area which occur in upper-layer Weissenberg photographs, the reflections of an entire reciprocal lattice level were collected from only the upper half of the Weissenberg film. This procedure, which eliminates spot compaction (but not spot extension),* was accomplished by obtaining two different sets of multiple-film exposures for each layer. Timedexposure h01 and hkO precession photographs also were obtained with Mo KCYradiation. A total of 1536 independent hkl diffraction maxima were obtained, of which 1504 were recorded from the Weissenberg data while the other 32 additional reflecI hese observed tions were supplied only from precession data. ‘ intensities were estimated by visual comparison with a set of intensity standards made with the same two crystals and then corrected for the Lorentz and polarization factors.9 The intensities of the two different sets of multiple films for each reciprocal Weissenberg layer were merged together by comparison of common reflections which overlapped on both film sets. Finally, the corrected intensity data from different Weissenberg layers were correlated with the corrected precession data and placed on a common relative scale. Least-squares refinements of the structure by multiple scale factors ( L e . , for each layer the observed data are adjusted t o the calculated data by a different scale factor) as well as by one over-all common scale factor were carried out for both the isotropic and anisotropic thermal models in order to assess the possible introduction of systematic error in merging the intensity data.
Results
Unit Cell and Space Group.-Crystals
of [SFe(C0)3l2 are triclinic with reduced cell dimensions a = 6.63 f: 0.01 A., b = 7.86 f 0.01 A., c = 11.46 i. 0.02 8., a = 83’ 20’ lo’, = 76’ 9‘ f lo’, y = 78’ 25‘ f: 10’. The volume of a unit cell is 566 Pobsd = 1.92 g. ~ m . -(obtained ~ by flotation) vs. pcalcd = 2.02 g. cm.+ for two dimeric molecules per unit cell. A molecular weight determination carried out with a vapor pressure osmometer (Model 301 A, Mechrolab, Inc.) in chloroform solution (with benzil as a standard) gave an experimental value of 345 vs. a calculated value of 343.76. The total number of electrons per unit cell, F(000) = 336. The probable space group, Pi(Cil), was verified by the satisfactory refinement of the structure found. All atoms occupy the general twofold set of positions (2i) : f(x, y , ,).lo Determination of the Structure.-The structural analysis involved the location of two iron, two sulfur, six oxygen, and six carbon atoms which correspond to one dimeric molecule as the asymmetric unit. The other molecule in the unit cell is related by a center of symmetry. A three-dimensional Patterson function was computed from the corrected intensities. l1 The interpretation of the resulting map revealed the positions of the iron and sulfur atoms. With the aid of a block-diagonal least-squares refinement program12these trial positional parameters and estimated isotropic temperature factors of 2.0 and 3.0 k 2for each iron and
*
(8) Cj’. M. J. Buerger, “X-Ray Crystallography,” John Wiley and Sons, Inc., New York, N. Y . , 1942, pp. 227-229. (9) D . L. Smith, “A Data Correction Program for the CDC 1604 Computer,” Ph.D. Thesis (Appendix I ) , University of Wisconsin, 1962. (10) “International Tables for X-Ray Crystallography,” Vol. I, The Kynoch Press, Birmingham, England, 1952, p. 75. (11) W. G. Sly and D. P . Shoemaker, “Two- and Three-dimensional Crystallographic Fourier Summation Program for the IBM 704 Computer,” M I F R l (1960). (12) P. W. Sutton, “Acentric Block-Diagonal Least-Squares Program for the CDC 1604 Computer,” University of Wisconsin, 1962.
Inorganic Chemistry sulfur atom, respectively, were refined together with ten scale factors. After two cycles, the unweighted discrepancy factor, R1 = [ 2 / / F o /- ~ F c ~ ~ / Z X~ F o ~ l 1 0 0 ~ oremained , a t 28.8%; an R 1 value of 37.770 was obtained for only the iron atoms. The phases of the calculated structure factors based on the four iron and sulfur atoms were combined with the observed structure amplitudes (derived from the Lorentz and polarization corrected intensity data by the relationship F(hkZ) = I(hkZ)’”) to compute a three-dimensional Fourier synthesis” from which initial atomic coordinates for the six carbon and six oxygen atoms were obtained. Preliminary refinement of these positional and estimated isotropic thermal parameters along with the ten scale factors was carried out again with the Sutton block-diagonal leastsquares program12; after two cycles an XI value of 12.1y0 was obtained. Subsequent least-squares refinement of all atomic parameters was performed with the BusingLevy full matrix least-squares program.13 The isotropic refinement with individual temperature factors and ten scale factors yielded after two cycles final discre ancy factors of R, = 11.9% and Rz = [ZwllFoI - ~ F f ~ 2 / 2 ] F o ~X z ] 1100% ’ z = 12.3%; the final value of the error of fit function, [ w ] FoI - FC/2 / ( m- n)J1”, was 1.871. After the second cycle all positional parameters shifted within l6Y0 of their individual standard deviations. A subsequent least-squares isotropic refinement with one scale factor produced R1= 13.8%, Rz = l5.0%, and a value of 2.232 for the error of fit function. A complete three-dimensional Fourier difference analysis for the isotropic multiply-scaled data showed no residual peaks greater than 1.4 electrons/A.3 or less than -2.1 ele~trons/A.~ To provide a more realistic crystal model from which to obtain more meaningful molecular parameters, an anisotropic refinement was begun with the merged data based on one common scale factor. Individual atom tempernture factors of the form
1
1
expf - [Bd?
+ Bzzk2 + B d 2 + 2Bizhk
1
1 I
+ 2B13hl + 2B23klI)
were employed. After four cycles all the parameter shifts settled down within 6% of their individual standard deviations. The discrepancy factors were R, = 10.3% and Rz = 10.3%; the error of fit function was 1.535. An anisotropic refinement of the multiplyscaled data (i.e., ten scale factors) also was carried out and as expected yielded slightly lower discrepancy factors of R1 = 9.1% and RZ = 8.8yo and a value of 1.312 for the error of fit function. A three-dimensional Fourier difference map based on the final anisotropic parameters for the multiply-scaled data resulted in a maximum residual peak height of 0.7 electron/A.3 and a minimum height of -1.1 electron~/A.~The final positional parameters from the anisotropic refinement with the singly-scaled data are listed in Table I. The final atomic parameters for either the singly(13) W. R. Busing and H. A. Levy, “ A Crystallographic Least-Squares Refinement Program for the IBM 704,” Oak Ridge National Laboratory Report 59-4-37 (1959).
MOLECULAR STRUCTURE OF A TRICYCLIC COMPLEX,[SFe(C0)3]2 3
Vol. 4, No. 1, January 1965
TABLE I FINAL POSITIONAL PARAMETERS AND STANDARD DEVIATIONS FROM ANISOTROPIC LEAST-SQUARE REFINEMENT WITH ONE SCALE FACTOR Atom
2
Y
Z
UZ
CY
UZ
Fel Fez Si
0.3614 0.2113 0.0332 0.2622 0.3897 0.3371 0.6270 0.0470 0.1548 0.4523 0.4114 0.3146
0.4909 0.8117 0.6215 0.6919 0.2909 0.4016 0.5016 1.0192 0.7981 0.8950 0.1589 0.3478
0.2813 0.2380 0.3566 0.4172 0.3695 0.1496 0.2261 0.2749 0.0978 0.1770 0.4262 0,0667
0.0003 0.0003 0.0005 0.0006 0.0026 0.0018 0.001.9 0.0025 0.0020 0.0021 0 0020 0 0015
0.0002 0.0002 0.0004 0.0005 0.0018 0.0017 0.0016 0.0018 0.0016 0.0017 0 0016 0,0014
0.0002 0.0002 0.0003 0.0003 0.0014 0.0012 0.0014 0.0014 0.0012 0.0014 0.0012 0.0010
0‘7997 -0.0704 0.1215 0.6012
0’5178 1.1451 0.7823 0.9460
o’1860 0‘0014 o‘oolo 0 2937 0.0021 0.0018 0.0012 0.0059 o 0017 0.0014 o.ooog 0,1407 0.0020 0.0015 0.0012
Sz C1 Cz C3 Ca C5
CS 01 0 2
O3
0 4
OS
and Umeda,14for sulfur those of Dawson,l5 and for carbon and oxygen those of Berghuis, et aL.16 The interatomic distances and bond angles and their standard deviations were calculated with the BusingLevy function and error program.17 The intramolecular distances for the anisotropic refinement are given in Table IV and the bond angles in Table V. In order to obtain by a least-squares method the “best” molecular planes formed by certain atoms and the distances of these and other atoms from these planes, the Smith programla was modified to fit the triclinic crystal system; the results are given in Table VI. Individual weights were assigned to the atoms which form the planes according to the relation W k = [ a U ( x k ) ‘ bU(yk)CU(Zk)]-2”, where u(xk), U(yk), and U(Zk) are the standard deviations in fractional coordinates of the atomic coordinates Xk, y k , and z k , respectively. The equation of each least-squares plane is expressed in
TABLE I1 FINAL ANISOTROPIC THERMAL COEFFICIENTS ( )< lo4) AND ROOTMEANSQUARE RADIAL THERMAL DISPLACEMENTS Atom
Bii
Bza
Bas
Fel Fez SI
234f 5 245f 5 256f 9 431 f 13 484 f 53 190 f 31 203 f 36 409 f 52 319 f 39 242 f 37 522 f 45 360 f 33 284 f 29 488 f 47 488 f 38 431 f 39
112f 3 94f 3 181 f 7 221f 8 132 f 27 166 f 27 151 f 25 149 f 28 144 f 26 163 f 28 265 f 28 234 f 23 249 f 24 292 f 31 230 f 23 214 f 24
6lf 2 62f 2 65f 3 61f 3 97 f 15 86 f 14 147 f 17 104 f 16 5 8 f 12 143 f 18 151 f 15 106 f 11 138 f 12 192 f 19 7 4 f 10 196 f 16
SZ
c1
cz Ca CC
c 5
CS 0 1
02 0 8 0 4
os OS
scaled or multiply-scaled data were invariant within two standard deviations to change from (individual atomic) isotropic to anisotropic thermal factors. The corresponding coordinates for the singly-scaled and multiply-scaled data also did not vary by more than two isotropic standard deviations except for both the x and z coordinates of one carbon atom (G), which showed changes of 2-4u. These results indicate that relatively little systematic error was introduced by merging the data. The coefficients of the anisotropic temperature factor tensors of the atoms for the singly-scaled data are given in Table 11. The final observed and calculated structure factors from the last cycle of the anisotropic one-scaled refinement are given in Table 111. Throughout these least-squares refinements, the same variable weights utilized for the least-squares refinement of [CzH&3Fe(CO)3]2 were assigned to the observed structure amplitudes as follows.
.\/&
20/F0 if Io 2 41, (min.) 4%= 1 . 2 5 1 0 2 / ~ 0 1(min.) 0 if Io < 41, (min.) =
The scattering factors used for iron are those of Thomas
Bza
Bis
BIB
-3lf -27f
3 3
-OOf
7
-78f 8 -73 f 31 -35 f 23 -34 f 24 79 f 32 -30 f 26 -64 f 28 -17 et 29 -32 f 21 -46 zk 22 145 f 32 -73 f 23 - 157 f 26
-46f
2 2 12f 4 -51f 5 -85 f 23 -8f 17 -90 f 21 -54 f 24 -30 f 18 -44 f 22 -70 f 21 -49 f 16 -56 f 16 -28 f 24 -43 f 17 - 5 f 21
-8f
Radial thermal displacement, A.
0.34 0.35 0.39 0.43 0.44 0.39 0.41 0.45 0.38 0.43 0.54 0.45 0.46 0.58 0.46 0.53
7f
2 2 12f 4 -22f 4 56 f 17 - O f 16 -36 f 17 -19 f 17 1 f 14 -24 f 19 53 f 17 -69 f 14 -9 f 14 -20 f 20 -9 f 12 23 f 16
-6f
orthogonal coordinates (X,Y,2) which are related to the triclinic cell coordinates (x, y, z) by the transformation X = x sin y z cos cp, Y = y z cos a x cos y, and Z = z cos p where cos cp = (cos p - cos y cos a)/sin y and cos p = (1 - cos2 a! - cos2 p cos2 y 2 cos a cos /Icos y)’”/sin y. In this transformation X lies in the xy plane, Y coincides with y, and Z is perpendicular to the xy plane. Analysis of Anisotropic Thermal Motion.-The three orthogonal principal axes of the ellipsoid of thermal motion were computedl7 from the anisotropic temperature factor coefficients, Btj,given in Table I1 according to the method described by Busing and Levy.Ig Examination of the root mean square components of thermal displacements and the orientations of the principal axes with the crystallographic axes (not given
+
+
+
+
(14) L. H. Thomas and K. Umeda, J . Chem. Phys., 26,293 (1957). (15) B. Dawson, Acla Curst., 13,403 (19sO). (16) J. Berghuis, IT. M. Haanappel, M. Potters, B 0. Loopstra C H. MacGillavry, and A. L. Veenendaal, ibid., 8,478 (1955). (17) W. R. Busing and H. A. Levy, “A Crystallographic Function and Error Program for t h e I B M 704,” Oak Ridge National Laboratory Report 59-12-3(1959). (18) D. L. Smith, “A Least-Square Plane Program for the C D C 1604 Computer,” Ph.D. Thesis (Appendix IV), University of Wisconsin, 1962 (19) W. R. Busing and H. A. Levy, Acla Cvyst.. 11, 450 (1958).
4 CHINHSUAN WEI AND LAWRENCE F.DAHL
Inorganic Chemistry TABLE
111
CO>fPARISOl O F OBSERVED AND CALCULATED STRUCTURE FACTORS H
K
L
re
e O 0 O
1 Y 4 b
0 O 0 0
1O.Y
0
1
0
0 9 0 10
0
I
O
0
1 1 1 "1
0 0
I
0
2
0
1 -2 1
0 0
3
1 -3
0
1 4 1 5 1 -5 1 b 1 -6
0 0 O 0
I
0
0
1
0
1 -1 1 -8 1 9 1 -v
2
0
0 0
0
0
27.8
-25.4
51.4 43.1 24.2 49.0 10.8 20.1 14.4
5Y.b -4b.7 23.2
5.4 5.6 11.1
13.0 4Y.b 115.0 55.5 2P.5 16.0 30.8
2 1 2 -1 2 2 2 -2 2 3 2 -3
0 0 0 0
20.8
2
0
0
4
0
-4 2 6 2 -6
0 0
42.5 5.6 13.0
0
20.5
2 2
7 8
0 0
2 -8 2 10 3 0 3 1 3 -1 3 2
0
11.6 16.9 14.b 14.8
2
0 0
34.2
0
94.1
0
22.3 27.8 46.2 3b.b 1.2 27.9 17.2 10.9 5.4 26.1 12.1 16.3 13.4 7.2 1.7 5.7
3
-2
3
3
0 0 n
3
4
0
3
5
0
3 -5
0
Y
O 0
b
3 -6 3 1 3 -7 3 8 3 -8 3 -9 4 0 4 1
0
0 0 0 0 0 0 0
4 -I
4
2
0
4 b
-2
0 0
b 4
-3
0
b
O 0 0 0
3
24.2 38.b 13.8 29.5
6
0
b -1
b 8 4 9 5 0 5 1 5 -1
0 0 0 0 0 0
13.3 12.0 29.7 22.5 16.1 12.5 12.b 11.0 13.2 26.2 14.3 19.3
5
0
8.5
4 -4 b 5 4 -5
b
5 5 5 5 5 5 5 5 1 6
6
2
-2
0 0 0
n
-5 6 -6 7 9 -1
0 0
0 0 0
2
6 -2 6 3 6 4 6 -4 b 5 b -5 6 6 b 8 7
0
3 -3 -4
0
7.7
9.5 n.1
0 0 0
11.6
0 0 0
0 0 0 0 o 0 O
0 0
2
0
0
3 1 3 -1
O
b
1
0
4
2 -1
0
5 6
0 0
6 1
1 -1 -1 1 -1 -1
0
P
l
0
1
I
1 1
1 1 1
1 1 1 1 1
1 1 1 1
5.2 16.b 9.7
0
0
0
6.6 5.5
9 -1 0 1 0 -1 2 1 2 -1 -2 1 - 2 -1 3 1 3 -1 -3 1 - 3 -I 4 1 4 -1 -4 1 -4 -1 5 1 5 -1
-14.5 32.3 11.8 -9.b
-20.2 22.7 16.3 -10.3
-7.0
n.3 -6.5 -7.0
-18.4 9.6 b.9 -7.7 -7.1 8.5
-10.2 5.6
16.1 I1.b 13.8 9.2 5.5 18.3 11.6 10.5 5.3 6.1
15.1 8.5 -13.8
9.6
-5.3 19.1 9.4 -9.7
-6.0 7.3 2b.5 -9.9
-12.8
1b.b 18.3 1Y1.1 128.5 13.4 27.2 8.0
10.6 b8.9
24.0
27.n 17.3 -10.1 11.6
-101.7 93.8 11.1 25.0 8.6
-111.) -9.9 -68.0
20.8
b3.2
-44.1
6 6
b 6 6 0 6
b 6
b 7
10.3 18.1 6.b 9.5
-10.2 16.1 -4.6 7.2 26.2 16.9 -11.9 -33.5 16.8 11.9 -14.9 1b.9 -1b.8
10.6 17.7
21.3
13.2 13.3 15.3 10.b 1b.b 13.2 14.6
12.6 -12.3 -15.b
10.3 b6.O 18.2 10.0 39.P
19.1 21.1 29.2 23.0
12.1
-2 -1
-1 I -1 5 1 5 -1
6 1 6 -1 0 1 0 -I 1 -1 -1 1 -2 1 3 1 3 -1 -3 1 -3 - 1 4 1 1 5 -1 b 1 -6 -1 7 1 1 1 1 -I
1 7 2 -1 7 -2 -1 7 4 1 1 4 -1
10.4 12.9 15.0 17.2 10.3 26.2 19.6
22.5 18.7 20.b
20.3 12.8 18.4 6.9
1 1 1 1
I 1 1 I I 1 1 1 1 1 1 1 1
20.7 11.1 48.b -18-6 22.1 -3b.8
-2br9 11.7 -13.7
21.7 6.5
12.8 12.1 -6.2
-i3.5 16.4 -11.5 35.8 -14.5
-n.8 -12.2 13.b -11.6 6.9
21.6 -15.4 -19.. 15.8 18.b -18.5 -15.0
21.1 -6.1 7.5 -5.0 10.0
2 0 -2 1 -2 -1 2 -1 -2 2 2 2 -2
2 -2 -2 -2 3
2
-3
2
-3 - 2 b 2 4 -2 -4
2 -2 5 2 5 -2 -5 2 1 -5 - 2 1 6 2 I 6 -2 I -6 2 I -6 - 2 1 1 2 1 7 -2 I -0 2 I 9 -2 1 -9 2 I -9 -2 1 10 2 2 0 2 2 0 -2 2 -1 2 2 -1 - 2 -4
2
2 -2 2 -2 2 2 3 2 2 3 -2 2 -3 2 2 -3 -2 2 4 2
2
4 -2 -4 2 - 4 -2
2 2 2 5 2 -5 2 6
2
2
2 2 b -2 2 -6 2 2 7 2 2 7 -2 2 8 -2
2 -8
2
2 10
2
0 -2
3 7
24.0
-14.7 14.1
0
0
3
105.4 64-9
21.4 20.5 -111.2 70.1
-2
7
1
2
14.7 -39.0 64.7
' 2 2 2
2 2
0
3
2J.b 9.9 -12.9 -20.0 11.3 1b.O -13.7 -11.4
b
10.9
-13.6
2 2
3 - 5 -2 ? 6 -2 1 - 6 -2
' 7 2 3 7 -2 3 -7 2 3 n 2 3
8 -2
3 -8 6 6
-2
0 2 1 -2
-2 -2 3
3 -2 b 2 4 -2
1 4
2
b -b 2 b - 0 -2 6 5 2 b 5 -2 A -5 2 4 - 5 -2 4 b
3
b 2 6 -2 7 -2 -7 2
3
-2 -2 -2
2
5 -3 2 5 4 -2 5 -4 2 5 5 2 5 5 -2 5 - 5 -2
5
6
2
5 -b 5 1
2 2
O
n
-10.2 -60.7 -8.1 -58.5
25.2
?
-3
1 3 1 -3
-I 3 -1 -3 2 3 2 -3 -2 3 -2 -3 3 3 3 -3 -3 3 -3 -3
10.8
8. I -11.4 -26.1
-10.1 -10.2 12.' -2n.4
-13.2
n.n
18.0
Ih.*
-20.2 I6.C 18.5 -10.2
-1s.n -10.1 -11.1 12.8 5.8 -29.6 45." 35.2 19.8
-12.'1 -7.5
-8.1 12.1 26.9 18.0
29.1
-30.1
3O.b
41.8 -19.2 -19.1 16.9 10.b 10.9 -12.. 11.1 -19.0 -20.6 -29.9 -3.9 17.b b.2 15.1 3n.1 28.1 13.2 -21.4 6.b -18.4 '9.2 -19.b
11.9 Y1.b
7.6 17.2 b.1 18.1 29.0 Y0.5 1b.O 24.3 8.8 21.8 12.b 21.1 13.0 16.1
-0.9
14.0
here to conserve space) reveals that all the atoms have an anisotropic character. The calculated root mean square radial thermal displacements of the atoms are listed in Table 11. Noteworthy is that the average
5 -3 -5 3 -5 -3 6
3
b -3 -b - 3 7 3 7 -3 -7 - 3
0
n
; -3
1 3 1 -3 -1 1 - 1 -1
2 3 2 -3
-2. 3 -2 -3 3 3 3 -7 -1 1 -1 - 3 4 1 b -3
-.
-3
5
3
-5 3 - 5 -3 b 3 6 -3 -6 3 -6 - 3 1 3 7 -3 8 3
8 -3 - 6 -3 0 3 0 -3 -I 3 2 3 2 -3 -2 3 3
1
3 -3
-3
3
-3 -3 -4 3 - 4 -3 5
3
5 -3 -5 Y - 5 -3 b 3 6 -3 7 -3 3 8 3 0 7 0 -3 1 -1 -1 3 -7
2 -3 -2 3 b -2 -3
26.3 -45.0 -16.6 -37.4
28.3 18.3 -0.9 36.1
-25.5 11.b - 1- 99..51
11.2 22.8 11.6
27.5 20.5
37.9 26.6
7 7 7
58.9
1
9.8 21.2 10.9 -24.9 19.7 -21 .3
6
3
5 6 -1 5 8 -3 5 9 1 6 0 3 6 0 -3 5 -2 -3 6 3 3 6 3 -3 6 -3 3 6 L 3 6 -b 3 6 - b -3
-9.5
2T.8
29.7
5 -4 1 5 -b -3 5 5 1 5 5 -3
8.6
3
25.0
3 3 5 -3 - 3 5 L -3
6 6 I
-3
23.6 -34..
5
9.3 lb.5 -15.1
5
13.4 11.9 13.7 14.9 13.3
-16.0 -0.5 15.6 lb.3 -13.2 6.b -1Y.8 -14.8 -10.1 -9.8 6.1 9.0 11.1 -11.6
-11.5
-4
19.3 17.3
lO,8
12.9 16.1 1b.3 38.8 25.9 56.3
b -3 -4 3
2n.o
-8.0 in.8
L
3 Y 4 b -Y 3 4 -3 -3 4 4 3 b 4 -3 b -4 3 b I Y b 5 -3 4 - 3 -3 6 6 3 b -7 3 b 8 3 b 8 -3 5 0 3 5 0 -3 5 1 -3 5 -I 3 5 -1 -3 5 2 -3 5 -2 3
14.5
7*.0
l b9.b .3 24.2 19.1
-8.0
9
6
21.8
9.7
b 09 bo8 1Y.b 4 . 1
X
4 4
21.1
-9.4
21.3
-1m.i
U
22.2
11.0
25.7
4
12.9 20.b
20.6
41.b 31.3 19.8 l3.b
4
5 3 5 -3 b 3 6 -3 7 3 8 3 8 -3 9 -3
34.8 9.4 11.6 25.1 10.8 11.. 15.2
2
4
28.1
-17.0 -38.7
3
27.2 b2.8 18.3 38.7 32.3 20.3 11.5 37.9
23.1 29.3 68.5 48.4 5b.l b3.4 10.1 35.6
4 -1 -2 b 2 -2
1 -1
11.3 12.1 12.1
4 -3
-19.2 25.5
12.6
5
3 -5
2 3 2 -3 3 3 3 -3
36.2
12.1
2
-2
7.2
b.3 -14.0 be9 10.6 20.Y
3 1 3 1 -3
-in.?
17.3 15.2 19.6 16.3 18.6 12.2 i3.n 20.1 11.6 12.2 7.3
b 4
12.8 15.2 13.1 12.9
Fa
22.5
14.3
3 3 ?
1 7
4 2 b -2
6 7
38.5
7.8 -bl.A -41.C 44.2
2
7 7
-21.9 -16.2 20.1 -b2.5 -16.1 -12.0
8.5 40.0 43.0 b3.2
3
3 -2 3 -3 2 1 -3 - 2
3 2 3 -2
7
-2
-37.8
7 3
7
11.6 11.1 11.1 11.9 14.0 15.3 11.2 13.9 lb.6 9.1 be9
7 -3
b2.7
8.3
5,2 1204
I -3
-b.9
5.2 14.8 b.5 10.b 19.3 11.8
2
b9.b 44.4
'0
Y -2 6 -b 2 6 -b -2 6 -4 -2 b
-28.3
35.) lb.2 8.4 19.1
2 -2 -2
-99.5 21 u.3
0
-2
5 0 5 0 5 I 5 -I 8 2 5 -2
-6.0 lb.8 -b.9
1
-b6+9
2
n.7 16.4 6.9
8.1 48.7 24.3 25.1 30.9 21.8 29.3
6 b 1
-44..
P
2.'
...
b1.b -28.5 -17.q -15.3 -b.8
5 -2 6 2 6 -2 0 2
67.1
*
in.%
12.9 13.2 10.7 10.6 9.7 9 32.8 18.4 22.6 11.6 11.4 34.9 52.5
2
b
b3.5
2
-5.9
20.3
0
2
8
7.0 7.1 10.8
16.7 12.3 21.9 26.1 8.2 12.7
L
o 2 0 -2 6 1 -2 6 -1 2 b -1 -2 6 2 -2 b -2 2
-P*b
3 -2 3 -2
6
9.0
51.8
K
b b
0
14.4
-10.1 -12.0 1.5 10.b
20.4
H
21.1 8.8 -5.4 12.2 12.3 -12.b
32.0
L
8.8
26.2
-22.4
51.0
b
13.5 11.6 11.2
49.2 30.b 6.9 62.5 61.7 38.3 22.9 22.0
15.P -44.1 -11.7 15.7 -13.1 -35.1
57.6
-3.5
10.9
62.9
'.
1 -2 1 -I 2 1 2 -2
-12.4 13.1 -5.7
2 2 2 -2 2
1
0
6.2
0
15.1 15.1
1
7.1 7.b E*8 12.1 11.4 8.1
q0.n
30.8
-63.0
i1.n
141.1 23.4 29.8
2b.7 b3.6
9.2 -14.1 12.1 -igen -11.0
19.5 36.7
0 2 1 2 1 -2
-36.5
-1.7
-17.6
20.0
0 0 0
Y1.b
21.3 42.8
35.4
1 -1
5 -4 5 -b
6
17.1
2 -1
.
I
5 -3 5 5 5 5 6 6
-17.7 -18.3 70.1
50.5
16.9 18.5 34.4 18.5 12.8 16.0 16.8 15.9
o i n -2
-46.8
4a.5
272
9 2 0 9 -2 0 10 2
-31.8 52.7 52.9 -26.8 1b.l
21.3 -49.0 111.4 16.2
2
0
6.2
-6.6
1 1 -1
3 1 5 3 -1 5 -3 1
6
-33.6
1
5
6
14.3
09.1
5 5 5
-10.3 9.9 -17.5 11.6 13.4 -36.5 11.9 -3.3 60.3 -65.1
8.7
7 n 8 1 -1 -I
5
8
-0.4
-1
,
b
5
0
b4.9 11.1 11.3 14.0 Yb.1 24.4 2b.5 11.9 11.4 13.5 13.8 13.3 13.5 53.2 28.6 2O.b 16.6 5.3 15.0 39.0
-1v.n
-5
.
b
4 -2 5 2 5 -2 b 2 6 -2 1 2 7 -2
-1 i -1
I(
b
2
0 0 O 0 0 0
1b.9 20.6 8.3 13.7 20.3 i3.n 10.2 l3.b 15.6
L -4 b 5
-..1 -10.8
22.0
I
b -1
b
-2b.1)
12.7 25.6 28.n 19.6 35.0
1
3 1 -3 1 -3 -I b 1
-
4
0
-5b.2
0 -1 1 -1 -1 1 -1 -1 2 -1 -2 1 -2 -1
11.8 26.0 14.6 -18.8
0
30.1 -2b.b 28.8 1b.5 -15.5 10.5
50.0
0
12.1 -0.0
-11.6
-24.3
5 1 5 -1 -5 1 - 5 -1 6 1 6 -1 7 -1 -1 1 -7 -1 8 1 8 -1 -8 1 - 8 -1
-41.6
10.4
-17.3
1 -1 1 -1 -1
b
26.7
I*
-2
23.9 15.9 3b.3
-1
b -1 4 1 4 -1
6,O
46.9
L
Y
20.8
1 -1 1
-2 - 1 3 -1 -3 1 -3 - 1
10.0 17.3 14.3 -9.0 -8.3
v.n
14.6 14.5 15.2 44.8 12.7 6.3 48.9 53.2 8.3 29.7
K
9
14.9 -10.7 -19.5 11.3 -16.0 13.8
-1
-2
-29.2
21.7 lb.5 14.P 13.0 10.3 11.3
U
43.8
0 1 0 -1 1 -1 -1 1 - 1 -1 2 -1
3b.3 6.1 -21.6 -16.2 8.5 6.6
25.5
V l
-14.0
2b.6 13.3 41.2 21.1 42.6 17.5 19.6 15.3 19.5 21.6 lb.3 12.7 19.I 1I.b l4.b 13.8
-9 -1
28.5
14.2 10.3 28.4
l 1
-8 1 -8 -1
47.8
re
4 -1 - 4 -1
5 5 -5 -5 6 -b 1 7 -7 -1 8
20.7 -bb.O 5.1 -10.1 -21.1 11.1 14.2 15.8 -1b.b 29.3 -13.9 -24.1
5.2
6.6
b
30.7
11.b
27.3 12.1 27.2
-? 1 -1 -1 -8 -1 * 1 10 1 1 0 -I 0 1 0 -1 -1 -1 2 -1 -2 1 -2 -1 3 1 -3 1 - 3 -1
17.3 -35.9 90.8 -44.0 39.8 1l.b
8.2 7.6 10.1
13.' 11.4
1 1 -1
-6.3 -11.8
9.5 -11.7 -22.6
L
1
9.3 -21.8 14.6 -6.1
6.1
K
-5 1 b 1 b -1 -6 1 -b -1
52.1
11.1 12.6 2b.8
0 0
7 1 7 2 1 3 1 -3 ? b 7 6 8 b
H
I.
-01 .I %.*- 5 I . b 20.b lP.1 43.) 41.9 25.1 -24.3 11,o -1b.3 1b.O 15.1 4.. 11.1 114.4 81.1 43.8 -3b.l b.5 -3.7 6b.9 -12.2
o n ,
-7n.8
-b7.8
61.7
0
-43.9
0 O
-b1.9 24.7 + I .b b.9 7.6
b2.9
38.0
42.1
20.7
-21.1 -27.1 -30.5 7.b 47.2 48.2 21.9 -11.7
12.9
If.?
11.4
-10.7
52.9 29.1 16.1 26.8
-60.9 32.0
-13.8
I 1 4 I -I 4 I -1 4 1 2 6 I 2 -b I -2 b I -2 1
1
1
5
1 l 1 1 1 -6 1
7
31.3
10.9 18.3
-11.6 17.5
1
20.5 12.4
-21.2
I
-11.9 26.7
1 -8
32.9 15.9 41.8 18.3 20.2
1v.a
21. 18.0 16.9 lY.5 13.8 YO..
1l.P 22.1 10.9
-18.1 9.0 12.6 28.5
32.1 -6b.2 51.0 -16.3 2b.2 18.2 -26.9
7.1 -26.5 33.0 -15.1 -41.8 16.8 -19.3 19.5 21.6 18.4 -18.4
-12.8 13.4 -26.1 10.5
22..
7.1
-10.2 -b.9
28.3 z8.n
29.8 -28.1
1
.
5 -4 L -5 6 I 6 -b -6 b
I -5
26.b 34.8
13.3 -19.b
-. . -.
3 . 3 -4 1 -3 l b 6 1 b -6 I -6 - b
I
-t
L -7
-4 . b -4
.
8 4 8 -b b
1 -9 I -9 - b 2 0 1
2
60.3 9.0 8.b 35.9 16.1 27.5
13.2 13.5
3
3
-4 4
-. -4 6 4
-4 -4
4
56.9 58.6 71.b
8
4
o
4
2
4
b 2 -4 b -2 4 1 -2 -b b 3 b 4 3 -4 L -6 4 4 -b 4
-.
+ 5 b L 5 -6 L -5 b 6 4
7.8
?7.6 65.6
-12.2 -55.b 60.0
-75.1 -27.4
-n.3
b2.l 17.0
b3.I
12.7
-12.1 21.5
13.5
16.?
7.5
6 -4 13.9
21.4
-23.7
13.1 27.3 16.3 11.0 22.9
-13.1 28.2 14.5 -10.8 -25.9
8.8
6.5
16.7 11.9 10.8 14.9
-18.5 13.5 11.3 -14.n -63.3 12.7
28.0 24.4 29.4 32.1 12.0
26.8
-50.0
30.6 23.2 21.2 J0.b -34.0 -10.9 25.9
17.1
17.0
31.11
11.9 6.b -25.4 71.2
9.8
25.6 32.8
10.9
8.8
38.3
-43.6
22.6 9.3
-24.2 -10.0
22.7
-22.5
i3.a
-13.1 19.0 21.3
19.8
21.. 11.2 10.9 10.2 11.7 13.b 13.0 Y1.9 b.8
5 -I
5
-12.2 12.8 -6.9 19.9 11.9 -1.1 -3101
a.n
-4 2 6 2 -6
3 5 -2 - 6 5 3 b 5 1 -b 5 -3 4 5
5 5 5 5
5
-. -. .
1
b -4
L
5
6
5 -6 6 b
+
5 -6 5 7 5 8 -b
6 6 6
10.6
20.7 9.9 v.0
5 1 -6 5 -1 L
9.2
18.7 -21.1 24.q -39.5
4 -4 -4
4
21.2
b
211.3 19.3 29.8 23.9 b0.6
-4
-b -4 0 . 0 - 4
b
-27.v -7.1 -7.0
20.6
2 4 2 -4 2 -4 2 5 2 -5 2 -5 2 b 2 -1 2 7 2 1 2 -7 2 -7 2 8 2 -8 2 9 I 10
lb.0
119.3
2 2 -4 2 -2 2 -2 - b
3 4 2 3 -4 2 -3 4 2 -3 -b 2 b b
76.0
8.9 8.7
37.8 15.3 b2.5
2
9.5 7.9
109.9 31.3 66.9 1b.6
0 -4 2 1 b 2 -1 b 2 -1 4 2 2 4
.
1 -4 4 -1 4 4 -1 -4
11.9 18.5 21.2 13.0 bP.0 27.0 13.6
12.2 12.9 17.1 11.3 13.8
15.0 25.0 16.7
12.1 19.7
b
11.9 10.5
8 4
10.6
l
13.a
-10.8
63.3 28.6
0 IO 1 0 1 I 0 -I 1 1 .
3 3 b 4
11.0
25.1 10.1 18.8
5
10.6
67.0
n
3 3 3
in.9 13.b 30.6 11.3 1.9 10.3 10.3
3 -b
4
7
5 b 5 -b -5 4 -5 -b b b -6 - 4 l b -7 4
10.4 15.b
2 6 2 -b
.
3
1 1 4 -4
1 .
3
b
i 3 1
4
0
-9.1
3
4
9 0
25.7
. 5 -4
1 -Y
8
-2b.l 29.7
4
Y 4
3
1 5
31.2
-. .
4 3 -2 -4 3 3 4
41.1
loa0 10.3 31.2 22.2 Y1.O 30.0 18.1 lI.1 1b.4 27.6 71.1 18.6 19.5
b
21.0
b
b -4
-6.6
32.0
6 -4 b -7 b
21.3
1 5
2
2 3 -2 3
0 ) 0 -1 I b 1 -6
6 -I 6 6
7 O
n
. -, . 4 6
-I
b 4
I - 3 -4 l b b 1
6 6
-&
7
7
.
0
0
5
0
1 5 I -5
0 O
17.5
17.8 15.0 23.. 2lrb 17.3
11.2 11.9 7.9
s-8 14.11 8.5
11.3
7 I 7 3 7 3 7 -?
7
34.6 13.0 24.5 17.0
21.6
6 -5
7
21.0 9.4
-4
3 6 6 3 -1\ b -3 b 6 -b - b 6 5 -4 6 I
8.2
2 -b -2 b
6
.
l
5 2 -5 3 5 3 -5 4 5
5 5
5 "5 b -5 7 5 8 5 8 -1 P
S
9 -5 0
5
0 -5 -1 5 -1 -5
2 5 I -5 -2
5
-2 -5 Y -5 -3 -9 4 .4
5 -5 b 6 -0
5 -5 -5 -5 5 5 3 -5 5
-6 -3 1 5 1 -5 -1 5 -1 - 5 -e 5 0
5
0 -9
v.
7.1
4
0 O 0
71 e 5
3
pa
6.7
11.8 - 5 .n -14.n
b
4
1 6 3 1 -4 3 -1 b 9 -1 -4
9.6 -7.8
l
0
I,
K
9
7.2 10.6
0
-27.0
E
10.5
I -b
28.8
9.1
-16.1
0
28.1
18.2
-7.7 11.1
O
I7.b 26.0
26.8
-10.1 9.2
-7.8 6.4
i3.n
rn:i
20.2
9.b 9.6
16.0
17.9 9.9 11.0 26.1 31.1 59.8 48.b 11.5 25.2
8.9 10.6 13.7
b 3 5 -3
15.3
15.1
9.9 18.1 -!?A -10.5
8,3
14.b
2o.n
-9.2
-12.1
9.11
25.0
22.3
11.7 16.3
10.0 20.0 6.6
16.8 8.9 12.5
6 -6
19.7
10.1 11.6 16.9 11.1 21.1 21.9 11.1 11.5 14.2 !Ye6 16.8 11.2 9.9 ?.I
-30.b lb.8
3 -3
3 1
7
29.b 9.3 b3.1 blab 22.7
5::
18.6 -13.9 11.5 15.5 -11.6 -if.$ bob -6.7 22.0
-9
2
0
25.3
19.6
20.8
7 1
n
31.7
8.8 P O 0 2306 33.3
PO
21.1 19.1 12.. 1.b 13.8 49.2 -13.0 -16.1
17.6
78.b 13.5 35.1 -10.7 10.6 -23.1 -19.0 -21.5
17.9
ll.8 18.3 11.5 9.2 11.1 4L.b 19.2 1b.Y 20.1 21.2 15.b 12.5 17.1 12.9 19.1
6 3 6 -3
-34.7
Ib.8 32.. 10.9 11.8 21.6
Po
16.4
8.) '8.7 Y5.1 19.P z9.7
20.2 -11.1 -1201 -13.b
26.8 51.7 -11.1 -14.7 -17.0 -24.3 -10.7 IV.8
-10.1 9.P 19.0 -2b.l
11.5 53.1
2b.8 -21.4 -13.; -11.0 -12.5 11.0
-10.2 -12.0 -13.) 10.9
16.2 11.9
-Po.) -9.2
14.2 -18.b 1402 32.3 -12.2
2.n -9.1 1.3 8.T 1.6
-17#h -15.1 -11.1 -21.9 15.3 -15.0 14.1
-1b.3 19.9
20.0 14.5 10.8 -0.7 -9.1
6r2 19.6 -6.b -10.1 23.0 -16.2
6.2
-5.5
10.1 9.5 10.8 14.0 9.6 11.0 15.4 10.1
-9.3
5.4 6.3
11.3 9.1
lorn 11.8 14.3
12.0 12.3 15.L 31.1 7.1 21.9 37.1
>3d
44.9 32.7 10.0 16.2
11.4 20.8
13.Y 15.0 13.2 17.8 46.1 96.0 51.0 42.T
63.1 11.1 1.7
29.8
33.4 2q.b 32.8 29.P 13.9 I.? 10.9
Zf.¶ 27.6 10.1 10.4 19.0 17.2
18.9 1b.7 14.9 l O d 19.7
1.8
1n1o - y . 7" 6 9.6
-14.6 -7.9
5.5 5.7 8.7 1.4 9.0
-11.2 -12.9 '11.6 11.3
-. 12.1
?7.7
.4
-19.6 -60.0 -21.1
4b.b
-30.2 5.7
13.9 -8.6
19.2 4 . 1 -19.8 -10.4 13.8
-48.3 59.3
-51.6 -49.1 43eo -2F.0
5.1
28.3 -74.4 27.5
-YY.P 2P.2 14.8 -4.6 -12.y -21.5 28.. -9.7 19.7 rn"8
-20.0 -14.9 -1I.9 11.1 -9.0
-¶Q*O
carbon and oxygen radial thermal displacement values of 0.45 and 0.56 A., respectively, for the two apical carbonyls (C,and C4; Ol and 0 4 ) are greater than the corresponding average carbon and oxygen displacement
MOLECULAR STRUCTURE OF
VoZ. 4 , No. 1,January 1965
A
TRICYCLIC COMPLEX, [SFe(C0)3]2 5
TABLE I11 (Continued) H
l
r.
L
I.
2 1 4 2 I -5 1' -1 5 2 - I -5
4b.8
-55-b
b -b
16.2
42..
47.Y 15.4
4 b 4 -b
*.2 11.1
2 2 2 -2
5 5
2 - 2 -5 2
2 2 2 2 2
2 2
2 2
2
14.0
Y 5 Y -Y 4 5 . 5 4 -5 -4 4 -4 -5 5 4 -5 5 -5 -5
b
5
b -5 2 -b -5 2
9 0 1
11.5 11.2 8.8 11.4
20.2 12.5 8.* 9.)
18.) in.9 11.2 15.7
2 7 5 2 8 5 Y O 5 Y 0 -5 1 1 5 I 1 -5 Y -1 5 1 2 5 1 2 -5 1 -2 5 Y -2 -5 Y 1 5 1 Y -4 Y -Y 5 1 -3 -5 3 4 5 1 4 -5 3 -4 5 3 -4 -5 3 5 5 3 6 5 9 -b -5 3 -7 5 3 8 5 3
19.1 23.1 ?8.8 28.)
5 5 5
21.1 21.8 20.) 1.2 17.5 27.0 10.9 45.7 41.4
6.5 Y4.Y
1.0 Y1.8 28.1 15.0 10.7 18.1 15.7 29.4 9.1
35.4 17.7
18.0
M
29.1
w.7 20.9 40.0
b
Y0.4 15.7 61.2
-14.8 -7Y.Y
-7..
2 -6 -2 6
21.1
19.4
-19.6
15.7
-15.9
4 6 4 -6 4
4 4 5 5 5 3 5 5 5 5 5 5 5 5 5 5
7
-7 8 0 1 1 -1 5 -1 -5 2 5 2 -5 3 5 -3 -5 4 5 4 -5 - 4 -5 5 5 6 5
5
8
5 5 6 b
8 -5
b 6
6 6 b 6 b 6 6
5
9 5 0 1 1 -5 3 5 3 -9 -3 5 -3 - 5 b 5 5 5 b 3 -b 5 7 9
7 7
0 3 1 5 7 2 -5 7 -2 5 7
0
O
.
5
0
I
6
L
n
I
0
2 6 2 -6 3 0 3 -6 4 6
n 0
0 0
n
O
-6
4 -6
b
6
0 0
6 -b 7 6 0 8 b 0 8 -6 0 10 b
I
I 1
I
22.3
11.8 12.7
11.6
14.3
-12.3 -14.3 -9.0 8.2
14.2 13.6 10.7 7.b 12.0 23.6 12.9 18.9 2Y.4 21.8 9.7 10.6
9.9
11.4 12.7 112b.4 .L 19.1 11.4 13.5 10.6 17.3 1.1 10.1 11.7 10.1 1.0
I -I I 2 1 2 I -2 I -2 I Y 1 -3 1 4 I I -e 1 5 I 5 I -5 1 6
-I1.6 -6.1
13.2 -7.1
6.9 -0.0 -0.7
9.3
38.5 21.3
12.6 13.4 34.7 10.1 24.5 29.5 19.5
18.1 28.1 10.7 -33.2 7.0
-20.9 -26.5 10.3 9.5 12.7 -10.8 21.1 7.7 -67.5
6
b9.9
6 -6
36.2
6 -b
2b.b
6 -6 -b b
45.1
47.8
20.0 21.1 31.5
-19.8 19.9 -12.6
0 -6 -h
b -6
b b
94.5 49.)
2b.b
13.5
lb.? 71.7 26.9 22.0 18.9
13.5
-94.1 -35.8 45.0
25.9 -26.0
15.2
-11.2 -71.3
-23.5 -19.b ?2.5 13..
0 b b b b
b 6 6
9.4
19.5 16.6 17.4 23.3 11.9
12.4 12.1 31.6 10.2 13.7 29.9 17.0
43.5
11.3
21.7
22.5 8.1 8.. 16.2 9.2 13.7
12.7 12.1 7.b.
15.1 be8 16.2
20.9 10.4
11.2 16.4
12.9 11.4 11.5 12.2 11.2 7.7
7.8
7
21.6 34.2 '17.3
8 0 1
-26.5 -18.6 -20.4 17.9
7
-7 7
1 -7
-9.4 -26.5 10.3
-1
7
-I
-7
2 7 - 2 -7
-9.8 18.8 12.7
3
7
-.
3 -I -3 -7
16.8
4 -7
19.'
-4
8.5 11.7
5 -5 6
-10.1 -1n.i -7.0
- 77
7 I
7
67 -7 -7
11.6
-21.7
15.2
6 -7 - b -7
-15.5
22.5
28.5
6 -7
-4 7 5 7 5 -7 -5 7 -5 -7
-21.2 -12.4
16.7
17.1
-2 7 - 2 -1 3 7 -Y 1 -3 ' 7 4 1
9. I 35.9 32.4
-6.4 -27.9 -15.4 30.8 14.3 16.8
9.1
28.3
Ib.7
1 7 I -7
I 1 I
9.9
1.7 12.6
b
0
0 0 0 0
7.6 12.2 11.3
b
11.6 -10.3 -90.a 7.5
12.1 -21 .3 10.0 -8.2
7 7
-7 7
I
1
1
-7
8
8 I -8 2 8 2 -1 3 1
I I -7 I -I 7
20.9 1I.b 12.1 9.3
51.7 19.)
2b.9 28.4
A.,
-11.6
17.3
-1b.3
13.0 49.7 9.8 32.1 27.3
20.3 14.7 31.0 11.7 15.5 12.7 18.5 9.2
10.4
-1b.8
25.2 28.8
1
I 1
I
54.1 -5.9
-33.4
-28.2 -20.2 15.1 31.6
in.%
-15.4 -10.1 18.9 9.2
27.3
12.8 8.7 11.5 12.1 16.8 15.5
-32.1 20.1 15.4 -16.3 -23.4 11.9 -7.5 29.6
-7.2 10.9
-16.4
-11.2 16.1 15.1
10.3 8.4
-7 3 . 50
9.3
-8.2
19.0 0.9
be0 16.3 12.5 -5.b 14.4 -6.5 -7.1 -14.1 10.4 -6.1
16.9
9.b
16.3 11.3
12.3 15.0 11.2 9.6
11.6 11.9
8.3 18.5 11.6 12.4
8.3
19.1 9.0
In.,
17.0 9.4 25.2 29.2
-1l.b -10.4 7.9 -21.0 -8.8 11.1 7.8 7.5 -13.1 -7.9
7.2
16.6 -4.9
18.2 -16.0 -7.3
-22.5 25.7
-21.0
28.9 22.8
8
21.1 4o.n
i i 1 -I
1 -I
1 1
9.n
n
31.9
7 1 7 -7 O 7 0 I? 1 7
b.7 11.2
22.5
5 7 5 -7 6 -7
-31.7 18.7 -9.5 5.1 8.9 -34.9 18.5
29.0 -b.6
-9.4
'24.8 17.9
-8 2 1 2 -1 -2 8 3 8 . 0 4 '8
I - 4 -8 1 5 8 1 5 -8 I -5 8 1 6 -1
7.7
I -8 3 - 2 -8
11.7 20.8 18.1 34.2
11.5 -12.0
-3.1
12.2 26.6 16.6
8
11.0 12.6 23.1
-9.5
11.2 11.0
2 -7 3 -7 4 7 4 -7
10.9 11.5 14.9
7 -8 0 8
12.6
1 -0
8 8
1
11.7
o
12.1
-8
10.2 10.1 13.4
17.4
7
-1
12.7
5 -8 b 8 6 -1
14.1 14.9 1b.Y 21.2
8
12.4 13.9 25.0 9.3 14.6 -10.0
21.4
I
1
8 -8 8 1 8
27.3 14.b 21.4
1
bel
21.8
0
7 3
8
12.1 32.2
8
23.8
0
-16.3 9.1 -11.4
7
9.8
1
10.4
I
7
0
17.1
-8 1
3 6 3 -6
9.b
0
-8
7 3 b 4 4
-14.6
14.7 10.5
7
1
l8.Y -46.9 45.7
15.7 13.9 13.5 25.1 12.0 13.8 10.4 15.5
7
0
7 7
11.1
19.5
-10.3 9.0 14.4 9.3 -22.7
12.3 19.2 15.8 l7.b 22.4 11.0 10.6
7
14.2
19.2
L9.9
42.Y
18.7 40.8 42.5
11.5 14.0
7
'12.7
-15.2
1
1
7
18.8 -11.6
-14.8
15.5 -27. 1
9
I -1 -2 k 5
0 O
-11.5
-11.1
9
-17.3 -4.1
0 0 0 0
12.2
10.5
YY.7 2b.2 27.0
-8
11.1 70.1 2o.n -44.4
12.4
-12.8
21.2
-17.0 20.2 -9.6
Y6.l 8.7 39.b 11.0 21.0 YI.0 21.8
-42.1 -9.9
21.6
24.0
12.% -21 .O 2b.b
21.8
21.1
values of 0.40 and 0.48 respectively, for the other four equatorial carbonyl groups. As expected, the radial thermal displacement of each carbonyl oxygen is larger than that of the carbon atom to which the oxygen is bonded.
4
4 n -8 4 -I 8 4 4
2
8
2 -1 4 -2 8 3 1 .3 -I 6 -1 -4 8 5 8 6 8 6 -8 0 8
I
8 1 -8 -I 8 2 8 2 -8 -2 n
Ib.0 12.9
15.5
v
4 -4
-11~4 -11.2
9.n -13.8 -4.1
-10.9 10.7
19.0 74.3 -16.6 11.1 -13.5
-12.4
4 5 9 6 6 9 4 7 9 1 0 -9 5 1 9 5 ,2 9 3 -? 9
n
-9
3.4
l
9
7 - 2 7 4
9
17.1 11.7
n
25.4
20.7 9.0 10.4
15.1 10.5
8
11.0
23.7 -23.7 11.8
8.5
I
n-in
1 I
1-10
I in
1 -1-10 1 7 in I
2-10
1
1 10
I
6
I - 2 in
in IO
1
5
1
5-10
1 2
1
0.8
8 10
o in n-io 1-10 -I i n
-9.n
4.8 0.8 16.3
0.1
14.q -13.2
-3.4 -5.0
I
1 2 ?
9.9 10.5
-in.,
21.7 12.7
-22.4
11.0
11.9 21.7
-11.1 -23.7
71.0
8.1 L?.8
-0." -0.9
2 -2 3
8
9.4
8
17.9 9.4 17.7
-17.9 9.9
7 -*-in 2 4 IO
13.0
-15.9
1.2.2
-11.4
-19.5
7
11.7
9.4
12.8 11.1
-17.0
8
+in
8
13.0
-10.1
2
5
0 1
9 9
6.b 30.1 14.1 20.3 32.0
-5.0 28.4 9.7 -18.3
2
6
3 I 9
n in
n-in
7
1-10
1 -9 2 9 2 -9
- 4 IO 7 -4-1"
2
in
10
I in
in.? 25.8 14.7
n.5 15.0 0.n
9.8 0.7
26.11 -11.8 23.6 -1A.8 4."
4
9.2
b1 -99
15.2 11.1
-16.8 -11.0
1
IO
16.7
1b.O
3 -4
in
17.1
0
11.1
-11.1 11.7 14.1
18.1
19.6 7.4 -44.2 -9.9 10.9
1 -q
1"
i3.n
-10.0
11.7
17.7
0
17.7 14.1
l*.h -14.7
I
11.6 11.5
9.L 4.3
n
9 -9
I 9 -1 9 - 1 -9 2 -9 -2 9 - 2 -9 1 9 3 -9
- 3 -9 4 9 -4
9
5 9 5 -9 -5 9 6 9 -7 -9 0 9 0 -9
I -9 -1 9 - 1 -9
2 -9 -2 9 - 2 -9 3 9 3 -9 --3 Y -9 9 4
9
4 -9
- 4 -9 5 9 6 9 b -9 8 9 0 9 0 -9
I
-1 2 -?
8.b 40.1
10.2 10.8 12.7
in - b IO n-in I IO -I i n 6
10.4
12.9 -8.9
n.q
6.4
25.1 15.5
-25.7
-16.6
5
-6.5
'I
7.6 17.9 25.8 13.5
13.3 12.5 14.0 20.2 6.3 10.8
IP.0 -2b.0 13.1 -11.7 13.8 -15.8
-21.2
11.1
5
IO 7 IO
10.8
3 10 -9 4 10
1.7
*
in
4-10 I in 6 IO 7 in I 10
-11.1 30.2
2 -2
Ib.4
14.5 -15.7 10.1 '10.4 11.2 10.1
4
11.7 14.0 14.9
11.9 lY.4 1Y.O 10.7
9.4
'11.8 11.5 -10.8 -7.3 9.1
19.0
9.9
-25.1 -13.6 10.0 24.0 -14.1
9
9
14.8
9
11.4
9.9
-9
i8.n
20.1
10.5 19.2 12.9
-1.9
21.2 -11.9
in.*
5 -1
12.0 27.9
12.5
10.6 11.7
21.1
l5.Y 12.2 10.2
in in
in o in 1-in
8.4 -7.n '19.2
-3 9 -1 -9 4 -9
1
*
4
4 4 4 4 2 4 -? 4 5
24.1 16.2 24.1 11.1
9
9
in in in
3 in
I in - I in 7 10
n 11
Z?.l I?..
l&,5
11.1 -15.6 -9.1
7.4 --0 7.1, .
-19.3 -9.9 8.9 7.1 '.I
11.5 14.3
11.0 -10.4 11.7
9.4
7.7
11.4 11.0 11.5 14.0 9.5 14.1
-1b.5
9.4
-7.2 I .?
11.1 in.) 17.0
10.1
-19.2 1?.4 8.9
Il,? 0.2
n 12 I 12
0-12 1 12 2 12
I I2 2 17 4 12 3 I? 2 I2
16.0
-7L.l
23.1
77.9.0 -17.9
11.5 18.1
11.7 15.0
-10.0 15.4 -11.5
11.9
10.4
23.6
-2q.n 3.6
1n.n 10.9 21.0 12.7 13.1 13.9 12.5 9.1 11.6 9.9
12.8 10.5 14.2
-10.5 -7.1 8.1 be9 10.4 -1.9
9.1
-7.7
I?.? 1i.n in.2 11.1 in.?
I?.# -7.0 -9.4
0.n 8.5
n I I3 0 2-13 n 1 11
16.5
3 11 I I1
I..? ?.3
-7.n
1-1% 2 1% 3 I1
?11.2 7.1
10.7
11.7
I - 4 11 2 0 11 2 -1-11 2 1 11 2 -1 I1
-11.6
19.4 15.1 17.6 16.3
I I I
. * 9
. 4 4
"-1. 4
I1
1 11 7 11 1
11
14.2 14.2
14.7
I'.9
-11.1 -10.. 0.4
74.%
i*.n -1I.5
-11.1 lT.1 14.6
9.7
-1i.n
10.6 10.4 11.b 16.4
-14.9
- 70..78 7.6
4 '1 - 2 11 1 4 11
11.9
7.7
11.0
-17.1
12.4
-11.1
o
n
n n
13.0 11.0
2
4
n
I
t2
2 2
14 16
1-14
ir
::
n-14
14.7 16.0 n.7 12.5
4.7 11.9
0 1h
10.9
-7.0
-I?.. 10.1
-17.9 11.L
1
-..e
0.1
77,* 11.'
15.4
i1.n
9.1
15.9
-1n.i -11.7
14.2
1-10
9..
n.l
-1i.n
n
0.1 n.7
10.1 1e.n 11.7 I*.)
6 12
1.9
-9.1 Q.7
1q.7
14.0
1 11 1-11 -I I I ? II
14.7 15.1
12
3.3 6.1 -26.7
-1l.b
2-19
0-11
-2 11 -?-11 1 I1
17 7 17
-10.6
-1q.q
4
-9.q
3.7 - 71. 3. 9
12.4 15.2 1O.b 11.4
n
11.3
- 4 4 -2n.1
5.5 18.1 -17.1
4
11
10.1
5.0
I3.b
17.1 16.7 11.1 12.7
n II
?
1i.n
16.1
15.4
2 I1 2-11 9-11
I7.P
6 b 6 6
1.7 -1.7
11.7
1.9 -7.n
- 2 ?*.7 ,b
n II
17
..
26.3 4.9
7
11.1
2 I4 1 0 14 3 1 14 1 1. -1 I 4
' 9 . 3
1 II
4 I1
17.n
*-I?
77
12.1
11.8 16.7 11.3 11.8
12.5 -7.7 7.1
12
4-17
n
9
9.4 7.7
1.0
I1.b
(I
6
Il.2
1.7
1n.n
11.8 ?0.' 11.4
l?
2b.l
30.7 13.5
20.1 13.5 -19.9
21.0 10.0 11.6 12.1
n.9
4
3 -I i n 7 ? in 3 2-10 3 3 10 1 3-10 1 - 3 IO
l0.l
-17.7 11.9
7.n
5
9 9 9 9 -9
3 4 5
I3.h -9.1 b.4
0.6
4 -2 I 2 4 3 I2 4 4 12 4 5 12 5 3 12
-14.b 4.2 -26.6 12.9 26.1
in.?
-IT.* -ii.n
11.6
12 I? 1 - 3 I? 1 4 12
.
I..? 14**
11.8
3 - 1 I I
4
7.b -14.1 -20.? -11.4
9.9
2 3 I2 2 -3 I2 2 -4 12 2 5 I2 2 1 1
11.1 11.4 ?&.l
11.2 16.0
1-12
2 -2
.)I
11.0
-1
2
15.1
ll
2 12 2-12 3 17 3-12 0-77
I
e'
20.4 14.0
17.2
-0.3 17.0
-17.5 -8.6 in.9
in.2
I 12 1 - I I2 I -1-12 1 1
12.4 36.7 tn.5 14.1
n
i7.n
I 12
n
I
19.1 -1h.1 11.0
2 2 2 -1-12 2 in 2 -7 i n 2 3-10
8
17.9
4
3
18.7 31.0 17.1
-17.1 11.8 6.6 -9.5 -n.8
4
14.1
14.1 11.9
27.6
2 17
in.?
17.5 11.7 8.7 11.5
-5 -1
1
l?.? -11.9
-15.4
-9.
14.7
13.8
11
n 12
n
n n n n
12.2 15.5
2
o
15.9 11.0
171..1 17.2 10.0 11.)
19.0 17.4
31
1.
1 - 5 IO
-14.6 -15.1
4.n 11.1 9.1
10
i -.-in
-7.4
8.7 -12.0
II n-it
-16.n
1
11.6
10.7 21.2 6.b
5 11 6 11
-".*
6.6
17.9
lb.7
8.n
7.2
11.5 -7.2
in.4
7 in
-11.1
.I 1 .9
-12.6
in
n in
i5.n
10.4
6
2
3-10
-in.?
11 n II 1-1 I 3 11 -1 I I 4 11
-8.5 22.0
I I!
0
10.3
0.1
11.9
I9.0
1k.0 1q.n 17.1 18.7
'....
7 11 1 11
-5.7
-8.7 10.4 10.1 -17.2 8.0 -19.5 -18.5 1l.b
i*.n
-11.3
in
13.4
-9.4
20.4
r-in
11.1 19.5 lb.2 20.1 14.0 26.5
9.4
10.3 15.2
L IO
1
-11.1
n in I in 1-16
n
n
1o.n
2-11 Y I1 1-11
3 II 2 II 4 11
0
14.7
5.1 16.1 9.5 13.9
14.5
n
11.7
11.2 9.0 11.1 27.b 15.9
i1.n 1'1.2
9.3
12.8
-21.1 0.n
1 It -I 11 -1-11
12.6 10.1
9
n
-12.4
0-11
9 9
n
-10.8
0.4
0
o
10.3
17.1
4 7
o
-14.1 -11.0
-I I1
-14.4 -16.5
6 6 b
9
n 11
19.1 17.4 17.1 10.6
4 3
9.3
-3
8
9 9 9
-1b.4
15.3
7 b 1 8 -I 8 - 1 -8
-.
1 4 -1 4 4
-18.1 21.2
0-11
20.1 1O.b
4
24.7 -13.7 -16.3
in.$
9 9 o * 0 -9 1 9
-1q.n 9.h
11.9
L
?O.O 7.)
1?.I
It.?
t
5-11 -Y I 1 4 II -4 I I 5 I1 -5 I 1
-12.1
16.1 10.6
1
6
1
Y
15.6
i7.n
11.0 11.0
3
4 -8
3n.9 -13.1
I.
9 b -9 7 -9
6
4 1 -9 4 -I 9 4 -2 9 4 -7
36.4
I.
-19.9
8
-1
L
15.9 11..
8 -1 8 -8
a
I
, * **
1 -4
8
-16.2
7
9.3 -9.2 6.9 4.1 -7.4 14.1
11.5
-11.1
1 0 2 0 2 1 2 I 2 -1 2 2 2 2 2 -2 2 3 2 3 2-9 2 4 2 -4 2 -4 2 5 2 -5 2 b 2 6 2 -6 2 0 3 0
-2I.2
4
-lO.O
-19.0 7.8 -8.5 -21.1 9.7 11.2
12.2
14.9
8.0
-9.9
-15.b
N
I.
le
-29.1
7
-8.h 17.4
35.1 11.4
1
L
8.0 30.2 19.4
22.5
2 3 -3
20.6 8.4
1Y.8 Yl.0
l
3 3 1 3 -3 1 3 - 3 -1 3 4 -8 3 -4 1
1n.o
-14.6
-16.0 6.2
I
4 7 5 -7 -5 7 b ? 0 7 0 -7
-5.4 -7.5 -13.5 8.8 -11.2 10.8
-1.4
-6.9 11.4
-I 7 2 -1 -2 7 3 -7
11.3 k3.9 10.4 19.3 -21.0
9.9 12.9 16.9 41.0 12.4 10.4 30.4 11.4
-5.b
4.8
3 -7 -3 7 - 3 -7 4 7 5 7 6 7 7 7 7 -7 0 7 0 -7 1 7
-7.7
12.6
1 -6 4
-11.1
1
17.0
19.1 15.5 19.1 7.2 9.0 21.8 9.5 9.7 10.2
M
11.6
-10.0
-2 -2
-17.7 23.4
29.1 3b.O
re 4Y.5
9.1
-I
-7.9
12.) 50.4 6.7 9.9 7.5 17.3 15.1
9.9 31.5
I -7
-17.9
I O
7 7 0 -7
9 0
14.2
n r r 0 0
18.3 19.6 17.9 18.7
4
0
0
12.7
3 0
0 0
26.2 11.6
1 -7 -1 7 - I -7 2 7
-9.9 9.8
14.2 9.3
-5 6 0 -6 -1 6
0
10.8
16.3 -19.1 -92.7 7.2 15.1 9.2 14.5 18.5 18.6 -9.0 -15.5 17.4 -1y.5 -16.2 11.0
-5.7
-I 2 -b -2 b 9 -b -1 6 4 b - 4 -6 5 b 5 -b
22.8
10.0
-4 7 - 4 -7 5 7 5 -7 6 -7 -6 7 7 -7 -7 7 -7 -7 0 7 -1 7 0 -7 I 7
-7.1 41.1 -29.4
9.2
O 1
17.9
14.9
7
4 -7
-5.2 -21.0
9.3
7 -6 8 -b 6
-21.7
12.7
4
YI.7
11.9
9
-38.5
IY.5
13.2
13.5
b
4 5 b -6 7
5.6
14.b
1 -7 -2 7 -2 -7 1 7 Y -7 - Y -7
11.8 -8.n
2 'b -2 b -2 - b 3 b 3 -6 -3 6
-20.3
6.0
b
2
-11.1
12.9 7.7
6
I b I -6 -1 6
11.2 22.7
10.1
6 b
-7 b 8 6 9 b O b 0 -6
-9.3
7.4 7.9 -14.7
5
-4
-?ab
14.3
29.b 2b.8 22.b
6 3 0 -3 6 % -6
-2
11.2 18.0 -20.7
8.4 8.2 -7.0 -12.7 -17.9
1
I -b
1 -I
9.4
10.5
0 -b
6
b.5
8.9 -3.7
b
8 b 0 -6 1 6 1 -6 -1 6 -1 -6 2 b 2 'b
-20.6
11.7 10.4 10.6
35.0 32.4 25.3 11.0 15.5 27.9 18.5 23.7 18.3
-7
10.7
13.1
I3.b IY.8 19.1 22.7 I.l
O
-24.3 -17.4
11.1
b
4 b 4 -6 -4 6 - 4 -b 5 b 5 -6 -5 6 -5 -b b b 7 -b
21.7 9.1
17.1
I
-3 -6
4.n
16.2 12.0 11.9 21.1
0
1 -6 6 -1 -b 2 6 - 2 -6 3 6 -3 b
-21.3
289.9 .2
14.4
-I
-17.0 -18.2
20.2
b 6 b -b -6 6
P 9
7.7
20.3 16.3
8
IO
36.1 13.7
6
19.9
15.7
-8
I1.b 9.6
7.4
7 -6 6
-7
27.8
13.9
10.2 20.6 1l.b
7
14.2 40.9 20.7
7.5
Y 6 Y 4 -Y 6 - Y -6 4 -b -4 6 9 6 5 -6 -5 b b -6 -6 -b
-17.3 -15.2 -10.0
29.0 -28.3
4 5
-2 -6
YYr4
26.1
4 5 4 -5
Z
-)Os5 -26.7 18.3 41.1 '45.1 4.b -Y3.1 6.9
4 4 4
0 4 I b I 4 -1 b -1 -b
-18.5 19.1 -8.1 11.1 -2y.o -20.9 20.0 -5.0
4 -1 5 4 - 2 -5 4 -3 4 -3
10.2 -2b.0 lO.0
10.7 15.1 9.Y
b
I -6 O b
L
-1 -1 2 7
8.1
.7 -(I
8
I
-Ma*
31.0 )..I -14.1 -9.7 -9.4 7.9 7.9 -19.0 -1Y.0 0.6
9.8
5 5 -5 -5 5 -5 -5 5 5 -5 5 5 1 5 -5
r*
29.0
41.5 -5.4 -17.4
Y
I O
b
10.9
1 -5
L
7
-24.7
36.9 6.3 11.4 20.3 27.1
4 4 4
I
I4
17.2
-'e4 9.6
-12.1 12.1
10.0
1z.n
-0.1 7.1
9 . .
Iq.7 -10.4 -9.n
I?.* I?.I
-10.0 -12.2
11.5
1.4
11.0
-*.n
-n.*
IO.9
-15.. -15.b
0.n
13.7
In order to visualize the thermal motions of the individual carbonyl groups with respect to the molecule, the root mean square components of thermal displacements of each carbon and oxygen atom both along and perpendicular to the Fe-C bond directions were
G
CHINHSUANWEI ANI) LAWRENCE E'. DAIIL TABLE IV MOLECULAR BONDDISTANCES XVITH STASDARD DEVIATIONS~ Model A Bond
dist.,
Model B dist., b.
k.
2.552 4 0.002 2.586 k 0.002 2.223 i 0.004 2.231 10.004 2.262 i 0.004 2.222 i 0.003 2.229 1 0.004 2.269 i 0.003 2.238 1 0.004 2.253 i 0.004 2.286 i 0.004 2.230 10.004 2.243 10.004 2.280 f 0.004 Si-Sx 2.007 1 0.005 2.06040.005 Fel-CI 1 . 7 6 8 f 0.012 1.793 f:0.014 1.842 10.012 Fel-Cs 1.789 f 0.015 1.790 10.015 1.835 f 0.014 1.753 f 0.014 1.793 1 0.012 Fel-Cg 1 . 7 3 9 i 0.013 Fez-C4 1.802 i 0.014 1 . 8 2 5 1 0.015 1.873 4 0.013 Fe2-c~ 1.754i 0.013 1.763 1 0.014 1.805i0.013 1.820 10.008 1.862 & 0.008 Fez-C6 1.803 f 0.007 1 . 1 6 0 f 0 . 0 1 5 1.186i0.018 1 . 3 3 6 i 0 , 0 1 4 C1-01 1.245i0.014 Cz-0~ 1 . 1 3 7 f O . 0 1 5 1 . 1 7 0 1 0.017 Cy-08 1.154iO.015 1.170i00.017 1 . 2 7 2 i 0 . 0 1 4 C*-04 1.135 i 0.016 1.186 f 0.020 1.336 f 0,015 (26-03 1.152i0.014 1.177i0.016 1.267i0.013 (26-06 l . l l l i O . 0 1 3 1 . 1 5 0 f 0.016 1 . 2 7 3 i O . 0 1 2 a The values of model h are uncorrected for thermal motion; the values for models B and C are averaged over thermal motion in which either the second atom is assumed to ride on the first (model B ) or the atoms are assumed t o move independently (model C).
WITH
TABLE V STASDARD DEVIATIONS IN DECREES
PLANE AND DISTASCES
(x.)
5 3 . 4 8 f 0.14 53.58 4I 0.14 70.0810.11 69.67f0.12 63.64i0.16 62.88f0.15 63.42 i 0.15 63.01i0.14 178.9 k 1.5 177.6 11.1 176.0 & 1 . 2 173.6 f. 1 . 5 177.3 11 . 2 179.2 i 1 . 5 103.9 1 0 . 6 103.9 1 0 . 5 103.3 1 0 . 5 102.6 1 0 . 5 103.0 1 0 . 4 102.0 4 0 . 4 102.6 4 I o 4 101.6 k 0 . 5 149.8 4 I O . 4 151.9 f . 0 . 4 151.1 f 0 . 4 151.2 i 0 . 4 93.9 4I0.6 95.3 410.6 96.2 f 0 . 7 98.8 1 0 . 7 98.6 i 0 . 6 96.2 1 0 . 7
computed. The values perpendicular to the Fe-C bond directions were obtained by averaging four root mean square components of thermal displacement of the atom along the neighboring two Fe-C and two Fe. . - 0 bond directions] since all the C-Fe-C angles are be-
O F ATOMS
THESEPLANESO ( a ) Plane through SI, SZ, CZ,and Ca FROM
Sl SZ CZ
-0.208X 0.002 -0.003 -0.028
+ 0.757Y - 0 . 6 2 0 2 - 1.403 = 0 Ca Fel 02
0.031 -0.34 0.19
03 c 1
0 1
0.36 -2.10 -3.25
( b ) Plane through SI, SZ, Ce, and CS 0.583X - 0.755Y - 0.3022 4.621 = 0 -0.001 C6 -0.016 Os O,l7 0.002 Fez -0.32 C4 -2.09 0.014 0 5 0.29 0 4 -3.19
+
s 1
sz
C:,
(c) Plane through Fel, Fez, and the midpoints of SI& -0.816X - 0.471Y- 0.3362 5.804 = 0 SI 1.02 CZ 1.32 C; 1.29 -1.02 Ca -1.29 C% -1.37 c1 0.03 0 2 2.19 0; 2.14 0 1 -0.06 03 -2.14 0 6 -2.23 C4 -0.01 0 4 0.11
+
sz
( d ) Plane through SI, and Sz, and the midpoint of Fcl-Fez -0.454X 0.872Y - 0.1822- 3.487 = 0
+
Fel Fez Cl C4
-1.26 1.26 -2.85 2.86
01 0 4
C2 C5
-3.90 3.87 -1.57 1.54
0 2
-1.73
0 3
1.67 -1.49
C6 OS
1.57 -1.57 1.76
c* OG
Angle
Si-Fel-S2 St-FeZ-Sz Fel-SI-FeZ Fel-SZ-FeZ Fe1-Sl-S Fel-SZ-SI Fe2-S1-S2 Fe2-Sz-S1 Fel-C1-O1 Fel-C2-02 Fel- CB-03 Fe2-C4-04 Fe2-C,-06 Fez-Cs-Os S1-Fel-CI SZ-Fel-CI Sl-FeZ-Cd SZ-Fez- C4 SI-Fel-Cz SZ-Fel-Ca Sl-FeZ-Cj SZ-Fep-Cs Sl-Fel-Cy SZ-Fel-C? Sl-Fez-Ce S-FeZ-C:, Cz-Fel-Cs C5-FeZ-C6 Cl-Fel-CZ C1-Fel-Ca Cd-Fez-Ca C4-Fez-C6
TABLE VI EQUATIOS O F MOLECULAR
Model C dist., b.
Fel-FeZ Fcl-Sl FeA1 Fel-SZ Fe2-S2
MOLECULAR AXLES
inorganic Chemistry
' X,Y,and 2 are orthogonal coordinates expressed iri .&. tween 90 and 100' and all thc Fe- C-0 angles are close to 180' (as shown in Table V). I n general, the root mean square displacements of both the carbon and the oxygen atoms perpendicular to the Fe-C bond directions (;.e., average perpendicular displacements are 0.25 A.for carbon and 0.30 8. for oxygen) are greater than those along the Fe-C bond directions (Le., average parallel displacements are 0.20 B. for carbon and 0.23 A. for oxygen), with the greatest observed differences in magnitude occurring for the apical carbonyl atoms (i.e.] average displacements are 0.20 A. us. 0.17 A. for carbon and 0.36 8. vs. 0.23 A. for oxygen). Although it must be emphasized that these thermal calculations a t most are qualitative due to the accumulation of systematic errors in the anisotropic thermal coefficients, of interest is that the values of the root mean square components of thermal displacement and of the root mean square radial thermal displacements (Table 111) compare favorably with the corresponding values reported for the carbonyl groups in Mn2(CO)lo.20 Bond distances based on the singly-scaled anisotropic least-squares refinement were averaged over thermal motion as provided by the Busing-Levy function and error program.17 For model B the second atom with the greater thermal ellipsoid is assumed to ride on the first atom, while for model C the atoms are assumed to move independently. The intramolecular bond distances for these models are listed in Table I V together with the corresponding distances obtained from the thermally uncorrected anisotropic (model A) refinement. (20) L.F. Dah1 and R. E. Rundle, Acln Cvysl., 16, 419 (1963).
Vol. 4, No. 1, January 1965
MOLECULAR STRUCTURE OF A TRICYCLIC COMPLEX,[SFe(C0)3]2 7
All bond lengths obtained from the thermally uncorrected anisotropic refinement (model A) are within two isotropic standard deviations of those calculated from the isotropic multiply-scaled refinement except for only three values (viz., FeI-Ca, Fel-CCq, and Ch-Oh), each of which differs by less than 3a. For model B the changes in bond lengths from the thermally uncorrected anisotropic values are all less than 4u, while for model C the increases in the bond lengths are unrealistically large. These changes due to thermal motion are similar to those reported for Mn2(C0)10 based on the application of the same thermal models.2” Both of these thermal models (B and C), however, are rejected for [SFe(C0)3]2in favor of those with no thermal corrections for the same reasons as discussed in the case of Mnz(CO)lo.20 Neither of these models is believed to possess physical significance for these transition metal carbonyl complexes. The bonded atoms certainly do not move independently in the crystal, and the “piggy-back model” is not applicable for the carbonyl groups. For these reasons, the preferred values of the thermally uncorrected anisotropic model are employed hereafter in the discussion of the molecular parameters.
Discussion Crystalline [SFe(C0)3I2 consists of discrete dimeric molecules of the configuration shown in Figure 1. As suggested by Hieber and BeckJ6the over-all molecular geometries of [SFe(C0)3]2 and the corresponding fragment in [CzH,SFe(C0)3]2 are similar with both possessing idealized CzVsymmetry. The configuration also is compatible with our previous proposal of a bent Fe- Fe bond.6 In a molecular unit of [SFe(C0)3]2the two irons, related to each other by an idealized mirror plane, are each coordinated to three carbonyl groups and two sulfurs which are located a t the corners of a distorted tetragonal pyramid. The degree of distortion of these five ligands about each iron from a regular tetragonal pyramid is revealed by a calculation of the “best” basal plane (comprised of the two sulfurs and two carbonyls) as given in Table VI, (a) and (b). Both iron atoms are displaced by 0.34 and 0.32 8.from their respective basal planes in directions toward their apical carbonyls ; for [C2H,SFe(C0)3]2 the corresponding displacements are slightly greater (0.38 A. for both irons). The dimeric molecule of [SFe(CO)3]2 then results from the junction of the two basal planes along the S-S line a t a sharp dihedral angle of 59.7’ (compared to 69.5’ for [CzH5SFe(C0)8]2). The idealized molecular Czv symmetry of [SFe(CO)3]2 is verified by a calculation of the two molecular mirror planes (Table VI, (c) and (d)) which are approximately perpendicular to each other (dihedral angle 88.8’). One mirror plane (Table VI, (c)) is defined by atoms Fel, Fez, and the midpoint of S1 and S2, while the other mirror plane (Table VI, (d)) passes through SI, SZ,and the midpoint of Fel and Fez. Examination of the perpendicular distances of the
Figure 1.-The
molecular structure of [SFe(CO),] 2.
pairs of equivalent atoms resulting from these symmetry planes establishes the corresponding atoms to be essentially equidistant on opposite sides of the mirror planes. The twofold axis in the third direction is generated from the intersection of the two perpendicular mirror planes. Of prime significance (particularly since not predicted by Hieber and Beck) is that this structural determination revealed that the diamagnetism of [SFe(CO)3]2is achieved in the absence of alkyl groups by the formation of a S-S bond in which the S-S distance has decreased from a nonbonding value of 2.932 =k 0.014 A. for the ethylthio compound to a bonding value of 2.007 f 0.005 A. The resulting configuration is a new type of transition metal carbonyl complex in which the two bonding metals and two nonmetal bridging groups are fused along the bridged atoms to give a heterotricyclic system containing four three-membered rings. The resemblance of the molecular configurations of [SFe(C0)3]2 and [CzH&Fe(C0)312 is clearly illustrated in Figure 2, and a comparison of their molecular parameters is summarized in Table VII. Note that the standard deviations of the molecular bond distances
8 CHINHSUANWEI AND LAWRENCE F. DAI-IL
Figure 2.-Comparison
Inorganic Chemistry
of molecular configurations of [SFe(CO),]p (a) arid [CAH&FC(CO)J]I (b)
and angles of [SFe(C0)dj2are much lower than those determined for [C2H5SFe(CO),I2, The Fe-Fe bonding distance is invariant to the conformational change of the [SFe(