The Mutational Consequences of DNA Damage Induced by Benzo[a

Jul 19, 1985 - Induced mutagenesis in Escherichia coli is an active process involving proteins with DNA replication, repair, and recombination functio...
1 downloads 0 Views 1MB Size
13 The Mutational Consequences of DNA Damage Induced by Benzo[a]pyrene Downloaded by PENNSYLVANIA STATE UNIV on May 16, 2013 | http://pubs.acs.org Publication Date: July 19, 1985 | doi: 10.1021/bk-1985-0283.ch013

ERIC EISENSTADT Department of Cancer Biology and Laboratory of Toxicology, Harvard School of Public Health, Boston, MA 02115 Induced mutagenesis i n Escherichia c o l i i s an active process involving proteins with DNA replication, re­ pair, and recombination functions. The available evi­ dence suggests that mutations are generated at sites where DNA has been damaged and that they arise v i a an error-prone repair activity. In an attempt to under­ stand what specific contributions to mutagenesis are made by DNA lesions, we have studied the mutational specificity of some carcinogens, such as benzo[a]pyrene and aflatoxin B1, whose chemical reactions with DNA are well-studied. Our results, obtained by monitoring the distribution of lacI nonsense mutations i n E. coli, suggest that the major mutational events induced by benzo[a]pyrene and aflatoxin B are base substitutions. The base substitutions are primarily transversions at G:C base pairs and the available evidence suggests that these mutations are induced by apurinic sites which are generated as secondary consequences of the initial al­ kylation event. The significance of these results i n the context of carcinogenesis i s briefly considered. 1

The h i g h f i d e l i t y w i t h w h i c h genomes a r e r e p l i c a t e d in v i v o and passed on t o daughter c e l l s i s a c h i e v e d by a r e p e r t o i r e o f a c t i v i t i e s which f u n c t i o n d u r i n g r e p l i c a t i o n , r e p a i r , and r e c o m b i n a t i o n (1^,2). These a c t i v i t i e s , which c o l l e c t i v e l y m a i n t a i n the s t r u c t u r a l and i n ­ f o r m a t i o n a l i n t e g r i t y o f the DNA m o l e c u l e , a r e s e v e r e l y t e s t e d when the DNA t e m p l a t e i s damaged and becomes n o n - r e p l i c a b l e . Under these c i r c u m s t a n c e s , which o b t a i n , f o r example, when c e l l s a r e exposed t o such human c a r c i n o g e n s as U V - l i g h t (3) o r p o l y c y c l i c a r o m a t i c h y d r o ­ carbons ( 4 ) , i t i s commonly observed t h a t the f r e q u e n c y o f m u t a t i o n i s enhanced by many o r d e r s o f magnitude. The c o r r e l a t i o n between t h e mutagenic and c a r c i n o g e n i c a c t i v i t y o f many p h y s i c a l and c h e m i c a l agents has been well-documented (_5). Recent o b s e r v a t i o n s even sug­ g e s t the p o s s i b i l i t y t h a t one s t e p i n t u m o r i g e n e s i s might l i t e r a l l y i n v o l v e the m u t a t i o n a l a l t e r a t i o n o f s p e c i f i c chromosomal genes (6-8). 0097-6156/ 85/ 0283-0327506.00/ 0 © 1985 American Chemical Society

In Polycyclic Hydrocarbons and Carcinogenesis; Harvey, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1985.

328

POLYCYCLIC HYDROCARBONS AND CARCINOGENESIS

I n t h i s c h a p t e r I w i l l r e v i e w some a s p e c t s o f mutagenesis mecha­ nisms and t h e m u t a t i o n a l consequences o f DNA damage g e n e r a t e d by ben­ zo [a] p y r e n e . The f o c u s w i l l be on knowledge d e r i v e d from i n v e s t i g a ­ t i o n s i n v o l v i n g the bacterium E s c h e r i c h i a c o l i .

Downloaded by PENNSYLVANIA STATE UNIV on May 16, 2013 | http://pubs.acs.org Publication Date: July 19, 1985 | doi: 10.1021/bk-1985-0283.ch013

Mutagenesis i s an a c t i v e p r o c e s s 12. c o l i and e u k a r y o t i c c e l l s can respond t o DNA damage by i n d u c i n g the s y n t h e s i s o f s p e c i f i c gene p r o d u c t s ( 9 - 1 2 ) . The phenomenon o f gene i n d u c t i o n by DNA damage has been most t h o r o u g h l y d e s c r i b e d f o r 12. c o l i and has r e c e n t l y been reviewed by Walker ( 9 ) . Among t h e i n ­ d u c i b l e r e s p o n s e s t o DNA damage i s the mutagenic r e p a i r p r o c e s s , whose e x i s t e n c e was f i r s t suggested o v e r 30 y e a r s ago by t h e e x p e r i ­ ments o f W e i g l e ( 1 3 ) . W e i g l e showed t h a t U V - l i g h t was mutagenic t o b a c t e r i o p h a g e lamb­ da o n l y i f t h e U V - i r r a d i a t e d lambda were grown on b a c t e r i a w h i c h had a l s o been i r r a d i a t e d w i t h U V - l i g h t . I n o t h e r words, t h e UV treatment was n o t mutagenic p e r s e . F u r t h e r m o r e , he demonstrated t h a t i r r a d i ­ ated lambda phage c o u l d be r e a c t i v a t e d by growing t h e phage on p r e i r r a d i a t e d b a c t e r i a . H i s r e s u l t s suggested t h e p o s s i b i l i t y t h a t bac­ t e r i a had an i n d u c i b l e system f o r DNA r e p a i r and mutagenesis w h i c h a c t e d on U V - i r r a d i a t e d lambda phage. The g e n e t i c s o f what i s now c a l l e d W e i g l e o r W - r e a c t i v a t i o n and W-mutagenesis i s now v e r y w e l l understood. Some twenty genes i n J2. c o l i — known c o l l e c t i v e l y as d i n genes (damage i n d u c i b l e ; 9,14) a r e c o o r d i n a t e l y r e g u l a t e d by t h e p r o d u c t s o f t h e genes recA and l e x A . The LexA p r o t e i n r e p r e s s e s d i n gene e x ­ p r e s s i o n by b i n d i n g t o t h e o p e r a t o r r e g i o n o f each gene and p r e v e n t ­ i n g i t s t r a n s c r i p t i o n i n t o RNA by RNA polymerase. Treatments w h i c h damage t h e c e l l ' s DNA o r o t h e r w i s e i n t e r f e r e w i t h DNA s y n t h e s i s , a c t ­ i v a t e t h e RecA p r o t e i n ; a c t i v a t e d RecA p r o t e i n t h e n promotes t h e p r o ­ t e o l y t i c i n a c t i v a t i o n o f LexA r e p r e s s o r ( 1 5 ) . Genes whose t r a n s c r i p ­ t i o n had been r e p r e s s e d by LexA p r o t e i n c a n now be t r a n s c r i b e d and new p r o t e i n s c a n be s y n t h e s i z e d . The o v e r a l l response o f 12. c o l i t o DNA damage, w h i c h i s g e n e t i c a l l y r e g u l a t e d by t h e r e c A and l e x A l o c i , i s known as t h e SOS-response ( 1 6 , 1 7 ) . M u t a t i o n s i n e i t h e r recA o r l e x A c a n a b o l i s h t h e SOS-response and e l i m i n a t e b o t h W - r e a c t i v a t i o n and W-mutagenesis. These m u t a t i o n s a l s o e l i m i n a t e t h e m u t a b i l i t y o f t h e b a c t e r i a by U V - i r r a d i a t i o n ( 1 6 ) . The o b s e r v a t i o n t h a t UV mutagenesis depended on t h e SOS-response e s ­ t a b l i s h e d t h a t m u t a t i o n s were n o t i n e v i t a b l e outcomes o f DNA damage and t h a t DNA damage r e q u i r e d p r o c e s s i n g by c e l l u l a r mechanisms i n o r ­ der f o r m u t a t i o n s t o be r e c o v e r e d . What s p e c i f i c p r o c e s s e s r e g u l a t e d by t h e SOS-response a r e r e s p o n s i b l e f o r mutagenesis? A major c o n t r i b u t i o n towards answering t h i s q u e s t i o n was made by the i s o l a t i o n o f m u t a t i o n s w h i c h s p e c i f i c a l l y e l i m i n a t e d t h e m u t a b i l ­ i t y o f 12. c o l i w i t h o u t a f f e c t i n g any o f t h e o t h e r components o f t h e SOS-response. M u t a t i o n s a t t h e umuDC l o c u s were i n d e p e n d e n t l y d i s ­ covered by Kato and S h i n o u r a (18) and S t e i n b o r n (19) t o a b o l i s h t h e m u t a t i o n a l a f f e c t s o f DNA damage by U V - i r r a d i a t i o n . These mutants were a l s o shown t o be d e f e c t i v e i n W-mutagenesis (18,20) and W-react­ i v a t i o n (18,20). The b i o c h e m i c a l n a t u r e o f t h e a c t i v i t y performed by the umuDC gene p r o d u c t s i s n o t known. However, s e v e r a l o b s e r v a t i o n s suggest t h a t t h e f u n c t i o n o f t h e umuDC p r o t e i n s i s t o enhance some mode o f DNA r e p a i r , e i t h e r d i r e c t l y o r i n d i r e c t l y : 1) J2. c o l i c a r r y -

In Polycyclic Hydrocarbons and Carcinogenesis; Harvey, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1985.

13.

Mutational Consequences of DNA Damage

EISENSTADT

329

i n g t h e umuC36 a l l e l e i s more s e n s i t i v e t o t h e l e t h a l e f f e c t s o f UVi r r a d i a t i o n (18) and a n g e l i c i n p l u s near-UV ( 2 1 ) ; 2) P l a s m i d borne a n a l o g s o f the umuDC l o c u s (mucAB; 12) enhance W - r e a c t i v a t i o n and t h e resistance of b a c t e r i a to the l e t h a l e f f e c t s of U V - i r r a d i a t i o n (23); 3) As p r e v i o u s l y n o t e d , W - r e a c t i v a t i o n i n U v r b a c t e r i a i s e l i m i n a t e d by m u t a t i o n s a t the umuDC l o c u s ( 1 8 ) . Of t h e a p p r o x i m a t e l y twenty genes induced by DNA damage, the umuDC genes and t h e i r p r o d u c t s a r e the b e s t c a n d i d a t e s f o r d i r e c t p a r t i c i p a n t s i n the b i o c h e m i c a l p r o ­ c e s s i n g o f DNA l e s i o n s t o m u t a t i o n s . The p r o c e s s i n g o f DNA damage i n °li umuDC gene p r o d u c t s and t h e a s s o c i a t e d p r o t e i n s r e g u ­ l a t e d by t h e SOS-response i s c a l l e d SOS-processing (9) o r , sometimes, e r r o r - p r o n e r e p a i r ( 1 6 , 1 7 ) . Mutagenesis i n IS. c o l i , t h e r e f o r e , a p ­ pears t o be a g e n e t i c a l l y and b i o c h e m i c a l l y a c t i v e p r o c e s s r e q u i r i n g the p a r t i c i p a t i o n o f i n d u c i b l e p r o t e i n s . Not a l l mutagenesis i n IS. c o l l i s dependent on S O S - p r o c e s s i n g . M u t a t i o n s may a r i s e q u i t e s i m p l y d u r i n g DNA r e p l i c a t i o n i f a base i s s u b s t i t u t e d by o r c o n v e r t e d t o a n o t h e r , i n c o r r e c t , base. Consider the consequence o f o x i d a t i v e d e a m i n a t i o n o f t h e base 5 - m e t h y l c y t o s i n e to thymine. R e p l i c a t i o n f o l l o w e d by daughter s t r a n d s e g r e g a t i o n w i l l r e s u l t i n a G:C base p a i r h a v i n g been mutated t o an A:T base p a i r . S i t e s c o n t a i n i n g 5 - m e t h y l c y t o s i n e a r e h o t s p o t s f o r G:C t o A:T t r a n s i ­ t i o n s i n E. c o l i ( 2 4 ) . A l k y l a t i o n o f some bases a t the e x o c y c l i c oxygen atoms c a n l e a d to c h e m i c a l l y s t a b l e a l t e r a t i o n s i n t h e base p a i r i n g p r o p e r t i e s o f a base and, t h e r e b y , d i r e c t l y induce base m i s - p a i r i n g by DNA polymer­ a s e . A w e l l - s t u d i e d example o f t h i s i s t h e consequence o f a l k y l a t i n g guanine a t the 0-6 p o s i t i o n ( 2 5 - 2 7 ) . T h i s has t h e e f f e c t o f f r e e z i n g guanine i n i t s ( r a r e ) e n o l tautomer p e r m i t t i n g the G:T mismatch t o form i n p l a c e o f the u s u a l G:C base p a i r . A subsequent round o f DNA r e p l i c a t i o n l e a d s t o the g e n e r a t i o n o f a G:C t o A:T t r a n s i t i o n muta­ t i o n . These e x c e p t i o n s n o t w i t h s t a n d i n g , most DNA damaging agents i n ­ duce mutations i n IS. c o l i v i a SOS-processing.

Downloaded by PENNSYLVANIA STATE UNIV on May 16, 2013 | http://pubs.acs.org Publication Date: July 19, 1985 | doi: 10.1021/bk-1985-0283.ch013

c

v

i

a t

n

e

How u n i v e r s a l i s t h e SOS-processing

system o f E. c o l i ?

The dependence o f m u t a t i o n on f u n c t i o n s i n v o l v i n g DNA r e p a i r seems t o be widespread among organisms. Many p r o k a r y o t i c s p e c i e s a r e i n h e r ­ e n t l y non-mutable by U V - l i g h t b u t become mutable when p l a s m i d s encod­ i n g f o r f u n c t i o n s analogous t o the umuDC f u n c t i o n s a r e i n t r o d u c e d (e.g. 2 8 ) . Non-mutable mutants o f the y e a s t Saccharomyces c e r e v i s i a e have been i s o l a t e d and shown t o possess d e f e c t s which i m p l i c a t e DNA r e p a i r and r e c o m b i n a t i o n p r o c e s s e s ( s e e 29^ f o r a r e c e n t r e v i e w ) . F u r t h e r m o r e , t h e r e a r e many examples o f DNA r e p a i r s t r a t e g i e s which a r e common t o p r o k a r y o t i c and e u k a r y o t i c organisms ( n u c l e o t i d e e x c i ­ s i o n r e p a i r , DNA g l y c o s y l a s e s , a p u r i n i c / a p y r i m i d i n i c e n d o n u c l e a s e s , 0 -methylguanine-DNA-methyl t r a n s f e r a s e ; 2,30). P u r i f i e d DNA p o l y ­ merases from mammalian c e l l s and v i r u s e s behave s i m i l a r l y _in v i t r o t o IS. c o l i DNA polymerase when DNA damage i s encountered — r e p l i c a ­ t i o n ceases a t t h e s i t e o f t h e l e s i o n ( 3 1 ) . Of c o u r s e , even i f ana­ logues o f SOS-processing a r e i d e n t i f i e d i n e u k a r y o t e s , t h e r e g u l a t i o n of these a c t i v i t i e s might d i f f e r i n d e t a i l from the scheme which ob­ t a i n s i n IS. c o l i (e.£. analogous f u n c t i o n s may be c o n s t i t u t i v e l y ex­ p r e s s e d ) . N o n e t h e l e s s , Ruby and S z o s t a k (10) have demonstrated t h e e x i s t e n c e o f DNA damage i n d u c i b l e l o c i i n j>. c e r e v i s i a e and e s t i m a t e

In Polycyclic Hydrocarbons and Carcinogenesis; Harvey, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1985.

330

POLYCYCLIC HYDROCARBONS AND CARCINOGENESIS

t h a t t h e r e may e x i s t as many as 80 such genes ( 1 1 ) . Shorpp e t a l . (12) have r e c e n t l y r e p o r t e d t h a t UV l i g h t enhances t h e s y n t h e s i s o f a t l e a s t e i g h t p r o t e i n s i n human f i b r o b l a s t c e l l s .

Downloaded by PENNSYLVANIA STATE UNIV on May 16, 2013 | http://pubs.acs.org Publication Date: July 19, 1985 | doi: 10.1021/bk-1985-0283.ch013

Are m u t a t i o n s d i s t r i b u t e d a t s i t e s o f DNA damage? The dependence o f mutagenesis on SOS p r o c e s s i n g r a i s e d q u e s t i o n s about t h e r o l e ( s ) p l a y e d by DNA l e s i o n s i n mutagenesis. Do DNA l e ­ s i o n s s i m p l y t r i g g e r the SOS response by i n t e r f e r i n g w i t h DNA r e p l i ­ c a t i o n t h e r e b y g e n e r a t i n g m u t a t i o n s i n d i r e c t l y v i a an e r r o r - p r o n e form o f DNA r e p l i c a t i o n ? Or do m u t a t i o n s a r i s e d i r e c t l y a t t h e s i t e s i n DNA where damage has been generated? The o b s e r v a t i o n s t h a t m u t a t i o n f r e q u e n c i e s a r e e l e v a t e d s e v e r a l f o l d above normal l e v e l s i n mutants w h i c h c o n s t i t u t i v e l y e x p r e s s t h e i r S O S - f u n c t i o n s (32) and t h a t the m u t a t i o n f r e q u e n c y o f u n i r r a d i ­ ated phage i s e l e v a t e d by growing them on i r r a d i a t e d ( i . ^ e . SOS-in­ duced) b a c t e r i a ( 3 3 ) , have been i n v o k e d t o argue f o r the n o t i o n t h a t mutagenesis v i a SOS-processing may be i n d i r e c t . On the o t h e r hand, the o b s e r v a t i o n t h a t 95% o f the UV induced base s u b s t i t u t i o n m u t a t i o n s a r o s e a t the v e r y s i t e s ( p y r i m i d i n e - p y r i midine sequences) where the major f r a c t i o n o f UV damage i s d e p o s i t ­ ed suggested t h a t a t l e a s t the UV i n d u c e d m u t a t i o n s were t a r g e t e d (24). Drake and B a l t z (34) and W i t k i n and Wermundsen (35) p r e s e n t e d arguments i n f a v o r o f the n o t i o n t h a t , f o r the most p a r t , SOS muta­ g e n e s i s was o c c u r r i n g a t s i t e s o f DNA damage. More r e c e n t e v i d e n c e , based on a n a l y z i n g the d i s t r i b u t i o n o f m u t a t i o n s w i t h i n the l a d gene of _E. c o l i , s t r o n g l y s u g g e s t s t h a t m u t a t i o n s a r i s i n g v i a SOS-process­ i n g a r e o c c u r r i n g a t the s i t e s o f DNA damage ( 3 6 , 3 7 ) . B r i e f l y , when one examines t h e spectrum o f m u t a t i o n s i n d u c e d by a v a r i e t y o f muta­ gens whose a c t i v i t y i s dependent on S O S - p r o c e s s i n g , one f i n d s t h a t both where the m u t a t i o n s a r e i n d u c e d and w h i c h m u t a t i o n s a r e induced depends on the mutagen. The observed d i f f e r e n c e s among mutagens a p ­ p l y b o t h t o the m u t a t i o n a l e v e n t s t h a t a r e d i s t r i b u t e d non-randomly at o n l y a few s i t e s ( h o t s p o t s ) and t o e v e n t s t h a t a r e d i s t r i b u t e d randomly a t many d i f f e r e n t s i t e s w i t h i n t h e gene ( l o w f r e q u e n c y o c ­ c u r r e n c e s o r LFO e v e n t s ) ( 3 6 ) . S i n c e each mutagenic t r e a t m e n t l e a v e s behind i t s own c h a r a c t e r i s t i c d i s t r i b u t i o n o f m u t a t i o n s w i t h i n t h e gene ( 3 7 ) , m u t a t i o n s g e n e r a t e d b y SOS-processing o f damaged DNA must be o c c u r r i n g a t the s i t e s o f damage. F u r t h e r m o r e , t h e r e c e n t s t u d y by M i l l e r and Low (38) on the d i s t r i b u t i o n o f m u t a t i o n s g e n e r a t e d by t u r n i n g on the SOS-response w i t h o u t DNA-damaging t r e a t m e n t s shows t h a t even these m u t a t i o n s a r e g e n e r a t e d a t s p e c i f i c s i t e s i n a gene as i f t h e y arose a t s i t e s where s p o n t a n e o u s l y g e n e r a t e d l e s i o n s o c c u r with a h i g h frequency. The w e l l c h a r a c t e r i z e d r e a c t i o n s o f c a r c i n o g e n s such as benzo[a]pyrene and a f l a t o x i n B^ w i t h DNA (39-50) suggested t o us t h a t an a n a l y s i s o f the k i n d s o f m u t a t i o n s t h e s e agents i n d u c e d c o u l d shed l i g h t on the c o n t r i b u t i o n o f s p e c i f i c DNA l e s i o n s t o mutagenesis. Such an a n a l y s i s c o u l d , i n t u r n , p r o v i d e c l u e s as t o w h i c h s p e c i f i c DNA l e s i o n s g e n e r a t e d by t h e s e agents were mutagenic. I would l i k e t o d e s c r i b e o u r i n v e s t i g a t i o n s , performed i n c o l ­ l a b o r a t i o n w i t h J e f f r e y M i l l e r . To b e g i n , I w i l l b r i e f l y o u t l i n e t h e g e n e t i c system d e v e l o p e d by M i l l e r w h i c h p e r m i t s a r a p i d , r i g o r o u s d e t e r m i n a t i o n o f t h e p o s i t i o n and k i n d s o f mutants i n d u c e d i n a p a r ­ t i c u l a r gene by DNA. damaging a g e n t s *

In Polycyclic Hydrocarbons and Carcinogenesis; Harvey, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1985.

Downloaded by PENNSYLVANIA STATE UNIV on May 16, 2013 | http://pubs.acs.org Publication Date: July 19, 1985 | doi: 10.1021/bk-1985-0283.ch013

13.

EISENSTADT

Mutational Consequences of DNA Damage

The

l a d system f o r a n a l y z i n g nonsense m u t a t i o n s I n E. c o l i

331

The l a d system has been d e s c r i b e d i n d e t a i l by M i l l e r ( 5 1 ) . The l a d gene product i s the r e p r e s s o r o f t h e l a c operon. C e l l s w h i c h have normal r e p r e s s o r a c t i v i t y a r e r e p r e s s e d f o r t h e s y n t h e s i s o f the l a c Z gene p r o d u c t , 3 - g a l a c t o s i d a s e , and t h e o t h e r p r o d u c t s o f t h e l a c operon. C e l l s w h i c h c a r r y m u t a t i o n s i n l a d w h i c h l e a d t o s y n t h e s i s of a d e f e c t i v e r e p r e s s o r p r o t e i n w i l l c o n s t i t u t i v e l y s y n t h e s i z e 3g a l a c t o s i d a s e . Such mutants can be s e l e c t e d by demanding growth o f b a c t e r i a on a medium c o n t a i n i n g a g a l a c t o s i d e a n a l o g such a s p h e n y l 0 - D - g a l a c t o s i d e ( P - g a l ) . P - g a l i s n o t i t s e l f an i n d u c e r o f t h e l a c operon. Thus, i t i s a s i m p l e m a t t e r t o t r e a t a p o p u l a t i o n o f b a c t e r ­ i a l c e l l s w i t h a DNA damaging a g e n t , grow them o u t n o n - s e l e c t i v e l y t o p e r m i t p r o c e s s i n g o f DNA damage and p h e n o t y p i c e x p r e s s i o n , and t h e n p l a t e them on P - g a l t o s e l e c t f o r c e l l s c a r r y i n g m u t a t i o n s i n l a c l . A l a r g e c l a s s o f base s u b s t i t u t i o n mutants can be a n a l y z e d d i ­ r e c t l y by s c r e e n i n g f o r s u p p r e s s i b l e m u t a t i o n s among t h e c o l l e c t i o n of l a c l mutants. The s u p p r e s s i b l e m u t a t i o n s a r e due t o w i l d - t y p e codons h a v i n g been mutated t o TAA, TAG, o r TGA. These nonsense c o dons a r e n o r m a l l y s i g n a l s f o r t h e t e r m i n a t i o n o f p r o t e i n s y n t h e s i s by ribosomes and c a n a r i s e v i a a l l s i n g l e base p a i r s u b s t i t u t i o n muta­ t i o n s w i t h t h e e x c e p t i o n o f t h e A:T t o G:C t r a n s i t i o n . Thus, a l l base p a i r s u b s t i t u t i o n s , e x c e p t f o r t h e one t r a n s i t i o n , can be moni­ t o r e d by c o l l e c t i n g nonsense m u t a t i o n s i n l a c l . There a r e o v e r 60 s i t e s i n l a c l a t w h i c h a s i n g l e base p a i r s u b s t i t u t i o n w i l l g e n e r a t e a nonsense codon. L a c l nonsense mutants can be i d e n t i f i e d u s i n g c l a s s i c a l b a c t e r ­ i a l g e n e t i c methods. The e n t i r e gene has been sequenced ( 5 2 ) . The s i t e , and t h e r e f o r e , t h e base p a i r w h i c h has been mutated c a n be in­ dent i f l e d s i m p l y by mapping t h e p o s i t i o n o f t h e nonsense m u t a t i o n . T h i s can be a c c o m p l i s h e d by u s i n g an e x t e n s i v e s e t o f l a c l d e l e t i o n mutants ( 5 3 ) . Mapping t h e m u t a t i o n a l l o w s one t o determine w h i c h base p a i r s u b s t i t u t i o n has been g e n e r a t e d by a p a r t i c u l a r t r e a t m e n t . Thus, by i d e n t i f y i n g many nonsense m u t a t i o n s induced by a mutagen, a p i c t u r e emerges o f b o t h t h e mutagens s i t e s p e c i f i c i t y (where, w i t h i n the gene t h e m u t a t i o n s a r i s e ) and i t s mutagenic s p e c i f i c i t y (which p a r t i c u l a r base s u b s t i t u t i o n s a r e g e n e r a t e d ) . To d e t e r m i n e c l a s s e s of m u t a t i o n o t h e r than base p a i r s u b s t i t u t i o n s , i t i s p o s s i b l e t o g e n e t i c a l l y c r o s s a g i v e n l a c l a l l e l e o n t o s m a l l p l a s m i d o r phage m o l e c u l e s and d e t e r m i n e t h e sequence o f t h e mutant a l l e l e (54,55)• We have a p p l i e d t h e g e n e t i c system f o r a n a l y z i n g l a c l nonsense mutants t o t h e i n v e s t i g a t i o n o f t h e mutagenic s p e c i f i c i t y o f benzo[a]pyrene (56) and a f l a t o x i n B. ( 5 7 ) . The r e s u l t s o f our s t u d i e s have p r o v i d e d some i m p o r t a n t c l u e s as t o t h e c h e m i c a l n a t u r e o f t h e mutagenic l e s i o n s induced by b e n z o [ a ] p y r e n e . B e f o r e I d i s c u s s these r e s u l t s , I w i l l b r i e f l y summarize p r e v i o u s i n v e s t i g a t i o n s on the mu­ t a g e n i c i t y o f BPDE. The m u t a g e n i c i t y inves t igat ions

of benzo[a]pyrene d i o l e p o x i d e —

previous

C a r c i n o g e n s f i r s t began t o be e v a l u a t e d d i r e c t l y f o r mutagenic a c -

In Polycyclic Hydrocarbons and Carcinogenesis; Harvey, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1985.

Downloaded by PENNSYLVANIA STATE UNIV on May 16, 2013 | http://pubs.acs.org Publication Date: July 19, 1985 | doi: 10.1021/bk-1985-0283.ch013

332

POLYCYCLIC HYDROCARBONS AND CARCINOGENESIS

t i v i t y a g a i n s t microorganisms 35 y e a r s ago by B a r r e t t and Tatum ( 5 8 ) . However, the s y s t e m a t i c use of s e n s i t i v e m i c r o b i a l m u t a t i o n a s s a y s t o m o n i t o r the b i o l o g i c a l a c t i v i t y o f c a r c i n o g e n s was not a c h i e v e d u n t i l the r e a l i z a t i o n t h a t m e t a b o l i c a c t i v a t i o n o f c a r c i n o g e n s was e s s e n ­ t i a l ( r e v i e w e d i n 5 9 ) . By the use of s u b - c e l l u l a r f r a c t i o n s d e r i v e d from l i v e r homogenates, i t became p o s s i b l e t o d e t e c t the mutagenic a c t i v i t y of benzo[a]pyrene and many o t h e r p o l y c y c l i c a r o m a t i c h y d r o ­ carbons • The m u t a g e n i c i t y of benzo[a]pyrene f o r b a c t e r i a was demonstrated by Ames e t a l . ( 6 0 ) . They found t h a t i n the presence o f r a t l i v e r homogenates benzo[a]pyrene i n d u c e d b o t h f r a m e s h i f t and b a s e - p a i r sub­ s t i t u t i o n m u t a t i o n s . When the c h e m i s t r y of benzo[a]pyrene a c t i v a t i o n had been worked out and t h e u l t i m a t e c a r c i n o g e n i c form i d e n t i f i e d as a d i o l e p o x i d e , BPDE ( r e v i e w e d i n 61-62), s e v e r a l i n v e s t i g a t o r s ( 6 3 66) showed t h a t BPDE was an e x t r e m e l y p o t e n t mutagen, a l s o c a p a b l e o f i n d u c i n g b o t h f r a m e s h i f t and b a s e - p a i r s u b s t i t u t i o n m u t a t i o n s . McCann e t a l . (67) had shown t h a t benzo[a]pyrene was mutagenic f o r J5. typhimurium o n l y i f the b a c t e r i a c a r r i e d the m u t a t i o n enhancing p l a s mid pKMlOl whose a c t i v i t y was l a t e r shown by Walker (23) t o be en­ t i r e l y dependent on b a c t e r i a l r e c A and l e x A c o n t r o l l e d f u n c t i o n s . T h i s p r o v i d e d e a r l y e v i d e n c e t h a t the m u t a g e n i c i t y o f c a r c i n o g e n s such as b e n z o [ a ] p y r e n e was dependent on S O S - r e p a i r . L a t e r , I v a n o v i c and W e i n s t e i n (68) d i r e c t l y showed t h a t benzo[a]pyrene was mutagenic +

f o r JE. c o l i o n l y i f the b a c t e r i a were b o t h r e c A and l e x A * . Two q u e s t i o n s t h a t a r e r a i s e d by t h e s e o b s e r v a t i o n s a r e : 1) what i s the mutagenic s p e c i f i c i t y o f BPDE, i_.je. what k i n d s o f m u t a t i o n s are i n d u c e d by t r e a t i n g c e l l s w i t h BPDE? 2) what i s ( a r e ) the p r e - m u t a t i o n a l l e s i o n ( s ) g e n e r a t e d by BPDE which i s ( a r e ) r e s p o n s i b l e f o r mutations? The mutagenic

s p e c i f i c i t y o f BPDE

We have o b t a i n e d i m p o r t a n t c l u e s t o t h e s e q u e s t i o n s by d e t e r m i n i n g the spectrum of 185 nonsense m u t a t i o n s induced i n the l a c l gene o f IS. c o l i by BPDE. The r e s u l t s o f t h i s i n v e s t i g a t i o n (56) a r e summarized i n T a b l e s I t o I I I and i n F i g u r e 1. The r e s u l t s were s t r i k i n g . They showed t h a t t r a n s v e r s i o n m u t a t i o n s a t G:C base p a i r s were the domi­ nant i n d u c e d e v e n t , a l t h o u g h , o t h e r s u b s t i t u t i o n s , i n p a r t i c u l a r A:T to T:A t r a n s v e r s i o n were c l e a r l y i n d u c e d , but a t l o w e r f r e q u e n c i e s . The s p e c i f i c i t y of i n d u c t i o n o f G:C t o T:A was most c l e a r l y seen by examining the m u t a t i o n s o c c u r r i n g a t the TAC codons f o r t y r o s i n e ( T a ­ ble I I I ) . A t t h e s e s i t e s , b o t h G:C t o T:A m u t a t i o n s ( y i e l d i n g TAA, ochre nonsense mutants) and G:C t o C:G ( y i e l d i n g TAG, amber nonsense mutants) t r a n s v e r s i o n s are m o n i t o r a b l e . T a b l e I I I c l e a r l y shows t h a t at the two t y r o s i n e codons where m u t a t i o n s were w e l l - i n d u c e d t h e r e i s a s t r i k i n g p r e f e r e n c e f o r one m u t a t i o n a l event over the o t h e r . We have not d i r e c t l y determined t h e r e l a t i v e f r e q u e n c i e s o f f r a m e s h i f t m u t a t i o n s and o t h e r m u t a t i o n a l e v e n t s i n comparison t o the base s u b s t i t u t i o n m u t a t i o n s . However, based on the h i g h f r e q u e n c y o f nonsense m u t a t i o n s (11%) among a l l l a c l mutants induced by BPDE and because nonsense m u t a t i o n s a r e m o n i t o r a b l e a t l e s s than o n e - f i f t h o f the l a c l codons and, even t h e n , o n l y v i a c e r t a i n base p a i r s u b s t i t u ­ t i o n s , we b e l i e v e t h a t base s u b s t i t u t i o n s account f o r a major f r a c ­ t i o n o f m u t a t i o n s induced by BPDE.

In Polycyclic Hydrocarbons and Carcinogenesis; Harvey, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1985.

13.

EISENSTADT

Mutational Consequences of DNA Damage

333

T a b l e I . Summary of Base S u b s t i t u t i o n Events Generated by BPDE

Downloaded by PENNSYLVANIA STATE UNIV on May 16, 2013 | http://pubs.acs.org Publication Date: July 19, 1985 | doi: 10.1021/bk-1985-0283.ch013

Substitution

No. o f Available Sites

No. o f Sites Found

T o t a l No. o f Occurrences

% of Analyzed Mutations

G:C t o A:T

26

12

22

12

G:C t o T:A

23

21

123

66

A:T t o T:A

15

33

18

9

A:T t o C:G

5

3

4

2

G:C t o C:G

3

2

3

2

Total

72

47

185

Amber

36

26

96

Ochre

36

21

89

What i s ( a r e ) the p r e - m u t a t i o n a l

l e s i o n ( s ) i n d u c e d by BPDE?

BPDE r e a c t s a t s e v e r a l d i f f e r e n t s i t e s on DNA t o g e n e r a t e s e v e r a l k i n d s o f l e s i o n s a t t h e N2 (43-45) and N7 (46,47) p o s i t i o n s o f guan­ i n e , a p u r i n i c s i t e s ( 4 8 , 4 9 ) , and s t r a n d b r e a k s ( 5 0 ) . Which o f t h e s e l e s i o n s a r e r e s p o n s i b l e f o r t h e t r a n s v e r s i o n m u t a t i o n s a t G:C s i t e s ? E v i d e n c e d e r i v e d from a number o f e x p e r i m e n t s s u g g e s t s t h e h y p o t h e s i s t h a t a p u r i n i c s i t e s g e n e r a t e d by BPDE r e a c t i o n s w i t h DNA a r e r e s p o n ­ s i b l e f o r the transversion mutations: 1. When we examined t h e mutagenic s p e c i f i c i t y a f l a t o x i n B^, a c a r c i n o g e n w h i c h s p e c i f i c a l l y r e a c t s w i t h t h e N7 atom o f guanine ( 3 9 4 2 ) , we found v i r t u a l l y o n l y G:C t o T:A t r a n s v e r s i o n s were i n d u c e d ( 5 7 ) ; N7 p u r i n e adducts can i n d u c e d e p u r i n a t i o n by d e s t a b i l i z i n g t h e N - g l y c o s y l i c bond ( 6 9 ) . 2. The work o f Loeb and K u n k e l and t h e i r c o l l e a g u e s (70-72) h a s c l e a r l y e s t a b l i s h e d t h a t a p u r i n i c s i t e s i n DNA a r e mutageniC.; t h e y s p e c i f i c a l l y cause t r a n s v e r s i o n m u t a t i o n s , due t o a s t r o n g p r e f e r e n c e f o r t h e i n c o r p o r a t i o n o f adenine r e s i d u e s d u r i n g bypass o f a p u r i n i c s i t e s i n t e m p l a t e DNA. Thus, A:T t o T:A and G:C t o T:A t r a n s v e r s i o n s a r e t h e major mutagenic outcome g e n e r a t e d by d e p u r i n a t i o n o f DNA. 3. R e c e n t l y , Sage and H a s e l t i n e (49) have q u a n t i t a t i v e l y d e t e r ­ mined t h e spectrum o f DNA l e s i o n s i n d u c e d by r e a c t i o n s o f BPDE w i t h DNA. They found t h a t a l k a l i - l a b i l e l e s i o n s account f o r about 40% o f the DNA a d d u c t s . There was a s t r i k i n g c o r r e l a t i o n between t h e muta­ t i o n f r e q u e n c i e s induced by BPDE i n l a c l and t h e f r e q u e n c i e s o f a l k a ­ l i s e n s i t i v e l e s i o n s a t G, A, and C r e s i d u e s . Apurinic/apyrimidinic s i t e s a r e common a l k a l i - s e n s i t i v e l e s i o n s . E a r l i e r work by D r i n k ­ w a t e r e t a l . ( 4 8 ) had a l s o shown t h a t t r e a t m e n t o f DNA w i t h BPDE gen­ erated a p u r i n i c / a p y r i m i d i n i c s i t e s .

In Polycyclic Hydrocarbons and Carcinogenesis; Harvey, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1985.

334

POLYCYCLIC HYDROCARBONS AND CARCINOGENESIS Table I I .

Downloaded by PENNSYLVANIA STATE UNIV on May 16, 2013 | http://pubs.acs.org Publication Date: July 19, 1985 | doi: 10.1021/bk-1985-0283.ch013

Base Substitutions

D i s t r i b u t i o n o f l a c l Nonsense M u t a t i o n s Induced by BPDE

Site

No. Independent Occurrences

Site

No. Independent Occurrences 0 0 0 0 0 3 3 2 1 1 0 0

G:C - A:T

A5 *A6 A9 *A15 A16 A19 A21 A23 A24 A26 A31 A33 *A34 A35

0 5 0 0 0 1 2 0 1 0 1 1 1 0

09 010 Oil 013 017 021 024 027 028 029 034 035

G:C - T:A„ G:C - C:G

A2 A7 A10

7 5 5

A12 A13 A17 A20 A25 A27 A28

18 5 5 5 4 5 3

03,A1 06 07 „ 08, A8 014 015 019 020 025 026 030,A29 031 032 036

#

12,1 0 0 4,0 2 7 4 12 0 4 1,2 2 1 12

#

(13)

(4)

(3)

2 5 0 (0) 0*>A3^ 05,A4 2 (2) 0 012 6 0 018,A14 1 (1) 4 A 023,A22^ 0 (0) 033,A30 1 (1) S i t e s a t w h i c h nonsense m u t a t i o n s a r e d e t e c t e d a r e i d e n t i f i e d by t h e i r amber (A) o r o c h r e (0) a l l e l e s ( C o u l o n d r e and M i l l e r , 1977). The 8 t y r o s i n e codons i n l a c l each have two nonsense a l l e l e s , one amber and one o c h r e . The amber a l l e l e s a t t h e s e s i t e s a r e marked by the symbols # and @. * S i t e s c o n t a i n i n g 5 - m e t h y l c y t o s i n e s (CCAGG). These a r e spontaneous l a c l hotspots.

A:T - T:A A:T - C:G

0

All A18 A32 A36

2 4 1 8

01

&

0 2

L

0 1 6

L

0

2

2

L

In Polycyclic Hydrocarbons and Carcinogenesis; Harvey, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1985.

13.

EISENSTADT

Table I I I .

Downloaded by PENNSYLVANIA STATE UNIV on May 16, 2013 | http://pubs.acs.org Publication Date: July 19, 1985 | doi: 10.1021/bk-1985-0283.ch013

Site

BPDE-Induced M u t a t i o n s a t the Three TAC T y r o s i n e Codons i n the l a c l Gene

coding p o s i t i o n

^,03

tyr 7

A8,08 A29,030 Total

335

Mutational Consequences of DNA Damage

# o f independent o c c u r r e n c e s o f : TAC - TAA TAC - TAA (GC - CG) (GC - TA)

12

1

t y r 47

4

0

tyr

1

2

17

3

273

Both amber and o c h r e m u t a t i o n s can be g e n e r a t e d a t t h e s e s i t e s , a l l o w i n g b o t h G:C t o T:A and G:C t o C:G t r a n s v e r s i o n s t o be monitored.

Thus, w h i l e BPDE and a f l a t o x i n might g e n e r a t e G:C t o T:A t r a n s v e r s i o n s v i a d i f f e r e n t pathways, i t i s r e a s o n a b l e t o c o n s i d e r the h y p o t h e s i s t h a t t h e r e i s a common mechanism by w h i c h t h e y i n d u c e t h i s m u t a t i o n and t h a t , t h e r e f o r e the t r a n s v e r s i o n m u t a t i o n s induced by BPDE r e s u l t , not from the major adduct t o the N2 atom o f guanine but from the g e n e r a t i o n o f a p u r i n i c s i t e s i n DNA. These secondary l e s i o n s might be g e n e r a t e d s p o n t a n e o u s l y o r v i a the a c t i v i t y of DNA g l y c o s y l a s e s (2_, 3 0 ) . An a l t e r n a t i v e h y p o t h e s i s i s t h a t b u l k y l e ­ s i o n s i n g e n e r a l , the N2 adduct among them, may be n o n i n f o r m a t i o n a l s i t e s o p p o s i t e w h i c h adenines a r e p r e f e r e n t i a l l y i n s e r t e d d u r i n g r e p ­ l i c a t i o n a f t e r DNA damage. Other m o l e c u l a r g e n e t i c s t u d i e s on the m u t a g e n i c i t y o f BPDE The g e n e t i c system we used t o s t u d y the mutagenic s p e c i f i c i t y o f BPDE l i m i t s one t o a n a l y z i n g base s u b s t i t u t i o n m u t a t i o n s . What i s known about the a b i l i t y o f BPDE t o i n d u c e o t h e r c a t e g o r i e s o f m u t a t i o n ? As mentioned above, r e s u l t s from the Ames t e s t r e v e a l e d t h a t b e n z o [ a ] p y ­ rene and i t s d i o l e p o x i d e were c a p a b l e o f i n d u c i n g f r a m e s h i f t muta­ t i o n s (60,63,64). More r e c e n t l y , Mizusawa and co-workers (73-76) have i n v e s t i g a t e d the m u t a t i o n a l consequences o f m o d i f y i n g p l a s m i d DNA i n v i t r o w i t h BPDE. I n a s e r i e s o f s t u d i e s t h e y have shown t h a t : _ 1. p l a s m i d m o l e c u l e s a r e i n a c t i v a t e d (become n o n - r e p l i c a b l e ) i n Uvr b a c t e r i a by 1 c o v a l e n t adduct (73,76) per m o l e c u l e ; t h i s r e s u l t i s i n p e r f e c t agreement w i t h an e a r l i e r r e p o r t by Hsu eit a l . (77) w h i c h had demonstrated t h a t one m o l e c u l e o f bound BPDE was s u f f i c i e n t

In Polycyclic Hydrocarbons and Carcinogenesis; Harvey, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1985.

Downloaded by PENNSYLVANIA STATE UNIV on May 16, 2013 | http://pubs.acs.org Publication Date: July 19, 1985 | doi: 10.1021/bk-1985-0283.ch013

POLYCYCLIC HYDROCARBONS AND CARCINOGENESIS

GC-^AT

10-,

I

I

20p

GC-^TA

10 +

A

I II I ,l I ll GC-^CG

AT-^TA

IX AT-^CG

10r

oL 100

200

300

AMINO ACID RESIDUE F i g u r e 1. The f r e q u e n c i e s o f amber m u t a t i o n s i n t h e l a c l gene i n d u c e d by BPDE. S o l i d b a r s , i n d i v i d u a l s i t e s a t w h i c h we d e t e c t e d m u t a t i o n s ; open b a r s , s i t e s a t w h i c h we d i d not detect mutations; a s t e r i s k s ( i n a ) , s i t e s a t which the t a r g e t codon c o n t a i n s 5 - m e t h y l c y t o s i n e .

In Polycyclic Hydrocarbons and Carcinogenesis; Harvey, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1985.

Downloaded by PENNSYLVANIA STATE UNIV on May 16, 2013 | http://pubs.acs.org Publication Date: July 19, 1985 | doi: 10.1021/bk-1985-0283.ch013

13.

EISENSTADT

Mutational Consequences of DNA Damage

337

to i n h i b i t t h e r e p l i c a t i o n o f s i n g l e m o l e c u l e o f t h e s i n g l e s t r a n d e d b a c t e r i o p h a g e 0X174. 2. BPDE-induced m u t a t i o n s i n p l a s m i d borne genes c a n be depen­ dent on umuC ( 7 5 ) ; 3. m u t a t i o n s induced by BPDE i n c l u d e t r a n s v e r s i o n , t r a n s i t i o n , and f r a m e s h i f t m u t a t i o n s ( 7 4 , 7 6 ) . Wei e t a l . ( 7 8 ) c h a r a c t e r i z e d m u t a t i o n s r e s u l t i n g from a l k y l a ­ t i o n o f a 10-base p a i r o l i g o n u c l e o t i d e w i t h BPDE. D e l e t i o n m u t a t i o n s were t h e major m u t a t i o n a l event d e t e c t e d . The number o f m u t a t i o n s a n a l y z e d i n each o f t h e s e i n v e s t i g a t i o n s was t o o s m a l l ( o n l y 7 t o 8) t o p e r m i t drawing f i r m c o n c l u s i o n s about m u t a t i o n a l and s i t e s p e c i f i c i t i e s . However, t h e r e s u l t s suggest t h a t , under some c i r c u m s t a n c e s , BPDE c a n i n d u c e many d i f f e r e n t k i n d s of m u t a t i o n s . F u t u r e s t u d i e s on t h e g e n e t i c e f f e c t s o f BPDE To r i g o u r o u s l y e s t a b l i s h t h e g e n e t i c consequences r e s u l t i n g from BP adduct t o t h e N2 p o s i t i o n o f g u a n i n e , t h e approach t a k e n by Essigman and h i s c o l l e a g u e s (79,80) w i l l be r e q u i r e d . They have been d e v e l o p ­ i n g t e c h n i q u e s f o r p l a c i n g d e f i n e d c h e m i c a l l e s i o n s i n t o p l a s m i d DNA at pre-determined s i t e s a t which m u t a t i o n s c a n be m o n i t o r e d . If a BP adduct can be " b u i l t " i n t o DNA a t t h e N2 o f g u a n i n e , i t s b i o l o ­ g i c a l and g e n e t i c e f f e c t s can be d e t e r m i n e d . I t would be i n t e r e s t i n g t o know i f t h e m u t a t i o n a l consequences of DNA l e s i o n s i n mammalian c e l l s were t h e same as t h o s e w h i c h o b t a i n i n b a c t e r i a . Methods f o r r e t r i e v i n g and sequencing m u t a t i o n s i n mam­ m a l i a n c e l l s and t h e i r v i r u s e s a r e now b e i n g developed ( 8 1 - 8 3 ) . I f y e a s t , a e u k a r y o t i c m i c r o o r g a n i s m , c a n be c o n s i d e r e d r e p r e s e n t a t i v e of h i g h e r e u k a r y o t e s , then j u d g i n g from t h e o b s e r v a t i o n s t h a t t h e m u t a t i o n a l s p e c t r a f o r U V - i r r a d i a t i o n and 4 - n i t r o q u i n o l i n e - l - o x i d e t r e a t m e n t a r e i d e n t i c a l f o r y e a s t (84) and b a c t e r i a ( 8 5 ) , t h e spec­ trum o f m u t a t i o n s induced by BPDE i n mammalian c e l l s c o u l d w e l l r e ­ semble those induced i n IS. c o l i . I s t h e m u t a g e n i c i t y o f BPDE d i r e c t l y r e s p o n s i b l e f o r i t s carcinogenicity? Though one i s f a r from b e i n g a b l e t o make a d e f i n i t i v e s t a t e m e n t , t h e r e a r e some i n d i c a t i o n s t h a t t h e answer t o t h i s q u e s t i o n might be no. Recent experiments w i t h mammalian c e l l c u l t u r e systems, w h i c h a l l o w one t o s t u d y t h e p r o g r e s s i o n o f c e l l s from a s t a t e where t h e i r growth i s n o r m a l l y r e g u l a t e d t o a t u m o r i g e n i c s t a t e have r e v e a l e d t h a t t h e t r a n s f o r m a t i o n p r o c e s s r e q u i r e s a t l e a s t two s t e p s ( 8 6 - 8 8 ) • The f i r s t s t e p , which i s induced f o l l o w i n g exposure t o a c a r c i n o g e n ( X - r a y s : 86,88; 3 - m e t h y l c h o l a n t h r e n e : 8 7 ) , o c c u r s w i t h a v e r y h i g h f r e q u e n c y and s e e m i n g l y a f f e c t s e v e r y exposed c e l l i n t h e t r e a t e d p o p u l a t i o n . The f r e q u e n c y o f t h e i n i t i a l event i m p l i e s t h a t i t i s not a m u t a t i o n a l event b u t r a t h e r an e p i g e n e t i c one r e l a t e d , perhaps, to t h e responses i n d u c e d by DNA damage i n IS. c o l i and S* c e r e v i s i a e . The second event i s a v e r y r a r e event c o n s i s t e n t w i t h t h e p o s s i b i l i t y t h a t i t might be m u t a t i o n a l i n n a t u r e . However, s i n c e t h e second event o c c u r s many c e l l g e n e r a t i o n s a f t e r t h e exposure t o DNA damaging a g e n t s , i t seems h i g h l y improbable t h a t i t o c c u r s as a d i r e c t conse­ quence o f r e p a i r i n g t h e i n i t i a l DNA damage. Thus, t h e l i n k between

In Polycyclic Hydrocarbons and Carcinogenesis; Harvey, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1985.

338

POLYCYCLIC HYDROCARBONS AND CARCINOGENESIS

c a r c i n o g e n e s i s and mutagenesis may s i m p l y be t h a t t h e two p r o c e s s e s o r i g i n a t e from t h e same s t a r t i n g p o i n t , namely DNA damage. Acknowledgments

Downloaded by PENNSYLVANIA STATE UNIV on May 16, 2013 | http://pubs.acs.org Publication Date: July 19, 1985 | doi: 10.1021/bk-1985-0283.ch013

Work i n my l a b o r a t o r y has been supported by g r a n t s from t h e NIH. I am i n d e b t e d t o many o f my p r e s e n t and former c o l l e a g u e s , i n p a r t i c u ­ l a r t o D r s . A . J . Warren and P.L. F o s t e r f o r t h e i r work on the muta­ g e n i c s p e c i f i c i t y o f c h e m i c a l c a r c i n o g e n s and t o D r . J.H. M i l l e r f o r h i s c o l l a b o r a t i v e e f f o r t i n s t u d y i n g t h e mutagenic s p e c i f i c i t y o f b e n z o [ a ] p y r e n e and a f l a t o x i n B^.

Literature Cited 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21. 22. 23. 24. 25. 26.

Loeb, L.A.; Kunkel, T.A. Annu. Rev. Biochem. 1982, 52, 429-57. Lindahl, T. Annu. Rev. Biochem. 1982, 51, 61-87. Robbins, J.H.; Kraemer, K.H.; Lutzner, M.A.; Festoff, B.W.; Coon, H.G. Ann. Int'l. Med. 1974, 80, 221-48. IARC Monographs on the evaluation of the carcinogenic risk of chemicals to humans, Vol 32, International Agency for Research on Cancer, France, 1983. McCann, J.; Choi, E.; Ames, B.N. Proc. Natl. Acad. Sci. USA 1975, 72, 5135-9. Tabin, C.J.; Bradley, S.M.; Bargman, C.I.; Weinberg, R.A.; Papageorge, A.G.; Scolnick, E.M.; Dhar, R.; Lowy, D.R.; Chang, E.H. Nature 1982, 300, 143-9. Reddy, E.P.; Reynolds, R.K.; Santos, E.; Barbacid, M. Nature 1982, 300, 149-52. Taparowsky, E.; Suard, Y.; Fasano, J.; Shimizu, K.; Goldfarb, M.; Wigler, M. Nature 1982, 300, 762-5. Walker, G.C. Microbiol. Rev. 1984, 48, 60-93. Ruby, S.W.; Szostak, J.W.; Murray, A.W. Methods in Enzymology 1983, 101, 253-68. Ruby, S.W.; Szostak, J.W. Mol. Cell. Biol. 1985, 5, 75-84. Schorpp, M.; Mallick, U.; Rahmsdorf, H.J.; Herrbick, P. Cell 1984, 37, 861-8. Weigle, J.J. Proc. Natl. Acad. Sci. USA 1953, 39, 628-36. Kenyon, C.J.; Walker, G.C. Proc. Natl. Acad. Sci. USA 1980, 77, 2819-23. Little, J.W. Proc. Natl. Acad. Sci. USA 1984, 81, 1375-9. Defais, M.; Fauquet, P.; Radman, M.; Errera, M. Virology 1971, 43, 495-503. Witkin, E. Bacteriol. Rev. 1976, 40, 869-907. Kato, T.; Shinoura, Y. Molec. Gen. Genet. 1977, 156, 121-31. Steinborn, G. Molec. Gen. Genet. 1978, 165, 87-93. Walker, G.C.; Dobson, P.P. Mol. Gen. Genet. 1979, 172, 17-24. Miller, S.; Eisenstadt, E., unpublished observation Perry, K.L.; Walker, G.C. Nature 1982, 300, 278-81. Walker, G.C. Mol. Gen. Genet. 1977, 152, 93-103. Coulondre, C.; Miller, J.H.; Farabaugh, P.J.; Gilbert, W. Nature 1978, 274, 775-80. Gerchman, L.L.; Ludlum, D.B.; Biochim. Biophys. Acta. 1973, 308, 310-16. Singer, B.; Fraenkel-Conrat, H.; Kusmierek, J.T. Proc. Natl. Acad. Sci. USA 1978, 75, 1722-6.

In Polycyclic Hydrocarbons and Carcinogenesis; Harvey, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1985.

Downloaded by PENNSYLVANIA STATE UNIV on May 16, 2013 | http://pubs.acs.org Publication Date: July 19, 1985 | doi: 10.1021/bk-1985-0283.ch013

13. EISENSTADT Mutational Consequences of DNA Damage

339

27. Snow, E.T.; Foote, R.S.; Mitra, S. J. Biol. Chem. 1984, 259, 8095-100. 28. Hofemeister, J.; Kohler, H.; Filippov, V.D. Mol. Gen. Genet. 1979, 176, 265-73. 29. Haynes, R.H.; Kunz, B.A. In "The Molecular Biology of the Yeast Saccharomyces"; Strathern, J.N.; Jones, E.W.; Broach, J.R., Ed.; Cold Spring Harbor Laboratory: Cold Spring Harbor, 1981; pp. 371-414. 30. Linn, S.M.; Roberts, R.J., Ed.; "Nucleases", Cold Spring Harbor Laboratory: Cold Spring Harbor, 1982. 31. Strauss, B.; Rabkin, S.; Sagher, D.; Moore, P. Biochimie 1982, 64, 829-38. 32. Witkin, E.M. Proc. Natl. Acad. Sci. USA 1974, 71, 1930-4. 33. Quillardet, P.; Devoret, R. Biochimie 1982, 64, 789-96. 34. Drake, J.W.; Baltz, R.H. Annu. Rev. Biochem. 1976, 45, 11-37. 35. Witkin, E.M.; Wermundsen, I.E. Cold Spring Harbor Symp. Quant. Biol. 43, 881-6. 36. Foster, P.L.; Eisenstadt, E.; Cairns, J. Nature 1982, 299, 365-7. 37. Miller, J.H. Cell 1982, 31, 5-7. 38. Miller, J.H.; Low, K.B. Cell 1984, 37, 675-82. 39. Essigman, J.M.; Croy, R.G.; Nadzan, A.M.; Busby, W.F., Jr.; Reinhold, V.N.; Buchi, G.; Wogan, G.N. Proc. Natl. Acad. Sci. 1977, 74, 1870-4. 40. Lin, J.K.; Miller, J.H.; Miller, E.C. Cancer Res. 1977, 37, 4430-8. 41. Martin, C.N.; Garner, R.C. Nature 1977, 267, 863-5. 42. Croy, R.G.; Essigman, J.M.; Reinhold, V.N.; Wogan, G.N. Proc. Natl. Acad. Sci USA 1978, 75, 1745-9. 43. Jeffrey, A.M.; Weinstein, I.B.; Jennette, K.W.; Grzeskowiak, K.; Nakanishi, K.; Harvey, R.G.; Autrup, H.; Harris, C. Nature 1977, 269, 348-50. 44. Jeffrey, A.M.; Grzeskowiak, K.; Weinstein, I.B.; Nakanishi, K.; Roller, P.; Harvey, R.G. Science 1979, 206, 1309-11. 45. Meehan, T.; Straub, K.; Calvin, M. Nature 1977, 269, 725-7. 46. King, H.W.S.; Osborne, M.R.; Brookes, P. Chem. Biol. Interact. 1979, 24, 345-53. 47. Osborne, M.R.; Jacobs, S.; Harvey, R.G.; Brookes, P. Carcinogenesis 1981, 2, 553-8. 48. Drinkwater, N.R.; Miller, E.C.; Miller J.A. Biochemistry 1980, 19, 5087-92. 49. Sage, E.; Haseltine, W.A. J. Biol. Chem. 1984, 259, 11098-102. 50. Haseltine, W.A.; Lo, K.M.; D'Andrea, A.D. Science 1980, 209, 929-31. 51. Miller, J.H. In "The Operon"; Miller, J.H.; Reznikoff, W.S., Ed.; Cold Spring Harbor Laboratory: Cold Spring Harbor, 1980; pp. 31-88. 52. Farabaugh, P.J. Nature 1978, 274, 765-9. 53. Schmeissner, U.; Ganem, D.; Miller, J.H. J. Mol. Biol. 1977, 109, 303-26. 54. Calos, M.P.; Johnsrud, L.; Miller, J.H. Cell 1978, 13, 411-8. 55. Schaaper, R.; Glickman, B., personal communication. 56. Eisenstadt, E.; Warren, A.J.; Porter, J.; Atkins, D.; Miller, J.H. Proc. Natl. Acad. Sci. USA 1982, 79, 1945-9.

In Polycyclic Hydrocarbons and Carcinogenesis; Harvey, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1985.

Downloaded by PENNSYLVANIA STATE UNIV on May 16, 2013 | http://pubs.acs.org Publication Date: July 19, 1985 | doi: 10.1021/bk-1985-0283.ch013

340

POLYCYCLIC HYDROCARBONS AND CARCINOGENESIS

57. Foster, P.L.; Eisenstadt, E.; Miller, J.H. Proc. Natl. Acad. Sci. USA 1983, 80, 2695-8. 58. Barrett, R.W.; Tatum, E.L. Cancer Research 1951, 11, 234. 59. Miller, E. Cancer Res. 1978, 38, 1479-96. 60. Ames, B.N.; Durston, W.E.; Yamasaki, E.; Lee, F.D. Proc. Natl. Acad. Sci. USA 1973, 70, 2281-5. 61. Conney, A.H. Cancer Res. 1982, 42, 4875-4917. 62. Harvey, R.G. Acc. Chem. Res. 1981, 14, 218-26. 63. Wood, A.W.; Wislocki, P.G.; Chang, R.L.; Levin, W.; Lu, A.Y.H.; Yagi, H.; Hernandez, O.; Jerina, D.M.; Conney, A.H. Cancer Res. 1976, 36, 3358-66. 64. Malaveille, C.; Kuroki, T.; Sims, P.; Grover, P.L.; Bartsch, H. Mutat. Res. 1977, 313-26. 65. Huberman, A.; Sachs, L.; Yang, S.K.; Gelboin, H.V. Proc. Natl. Acad. Sci. USA 1976, 73, 607-11. 66. Newbold, R.F.; Brookes, P. Nature (London) 1976, 261, 52-54. 67. McCann, J.; Spingarn, N.E.; Kobori, J.; Ames, B.N. Proc. Natl. Acad. Sci. USA 1975, 72, 979-83. 68. Ivanovic, V.; Weinstein, I.B. Cancer Res. 1980, 40, 3508-11. 69. Shapiro, R. Prog. Nucleic Acid Res. Mol. Biol. 1968, 8, 73-112. 70. Schaaper, R.M.; Loeb, L.A. Proc. Natl. Acad. Sci. USA 1981, 78, 1773-7. 71. Schaaper, R.M.; Glickman, B.W.; Loeb, L.A. Cancer Res. 1982, 42, 3480-2. 72. Kunkel, T.A. Proc. Natl. Acad. Sci. USA 1984, 81, 1494-1498. 73. Mizusawa, H.; Lee, C-H.; Kakefuda, T. Mutat. Res. 1981, 82, 47-57. 74. Mizusawa, H.; Lee, C-H.; Kakefuda, T.; McKenney, K.; Shimatake, H.; Rosenberg, M. Proc. Natl. Acad. Sci. USA 1981, 78, 6817-20. 75. Mizusawa, H.; Chakrabarti, S.; Seidman, M. J. Bacteriol. 1983, 156, 926-30. 76. Chakrabarti, S.; Mizusawa, H.; Seidman, M. Mutat. Res. 1984, 126, 127-37. 77. Hsu, W-T.; Lin, E.J.S.; Harvey, R.G.; Weiss, S.B. Proc. Natl. Acad. Sci. USA 1977, 74, 3335-9. 78. Wei, S-J.C.; Desai, S.M.; Harvey, R.G.; Weiss, S.B. Proc. Natl. Acad. Sci. USA 1984, 81, 5936-3940. 79. Fowler, K.W.; Büchi, G.; Essigman, J.M. J. Am. Chem. Soc. 1982, 1051-4. 80. Green, C.L.; Loechler, E.L.; Fowler, K.W.; Essigman, J.M. Proc. Natl. Acad. Sci. USA 1984, 81, 13-7. 81. Razzaque, A.; Mizusawa, H.; Seidman, M.M. Proc. Natl. Acad. Sci. USA 1983, 80, 3010-4. 82. Calos, M.; Lebkowski, J.S.; Botehan, M.R. Proc. Natl. Acad. Sci. USA 1983, 80, 3015-9. 83. Bourre, F.; Sarasin, A. Nature 1983, 305, 68-70. 84. Prakash, L.; Sherman, F. J. Mol. Biol. 1973, 79, 65-82. 85. Coulondre, C.; Miller, J. J. Mol. Biol. 1977, 117, 577-606. 86. Kennedy, A.R.; Fox, M.; Murphy, G.; Little, J.B. Proc. Natl. Acad. Sci. USA 1980, 77, 7262-6. 87. Fernandez, A.; Mondal, S.; Heidelberger, C. Proc. Natl. Acad. Sci. USA 1980, 77, 7272-6. 88. Kennedy, A.R.; Cairns, J.; Little, J.B. Nature 1984, 307, 85-5. RECEIVED May 2, 1985 In Polycyclic Hydrocarbons and Carcinogenesis; Harvey, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1985.