13 The Mutational Consequences of DNA Damage Induced by Benzo[a]pyrene Downloaded by PENNSYLVANIA STATE UNIV on May 16, 2013 | http://pubs.acs.org Publication Date: July 19, 1985 | doi: 10.1021/bk-1985-0283.ch013
ERIC EISENSTADT Department of Cancer Biology and Laboratory of Toxicology, Harvard School of Public Health, Boston, MA 02115 Induced mutagenesis i n Escherichia c o l i i s an active process involving proteins with DNA replication, re pair, and recombination functions. The available evi dence suggests that mutations are generated at sites where DNA has been damaged and that they arise v i a an error-prone repair activity. In an attempt to under stand what specific contributions to mutagenesis are made by DNA lesions, we have studied the mutational specificity of some carcinogens, such as benzo[a]pyrene and aflatoxin B1, whose chemical reactions with DNA are well-studied. Our results, obtained by monitoring the distribution of lacI nonsense mutations i n E. coli, suggest that the major mutational events induced by benzo[a]pyrene and aflatoxin B are base substitutions. The base substitutions are primarily transversions at G:C base pairs and the available evidence suggests that these mutations are induced by apurinic sites which are generated as secondary consequences of the initial al kylation event. The significance of these results i n the context of carcinogenesis i s briefly considered. 1
The h i g h f i d e l i t y w i t h w h i c h genomes a r e r e p l i c a t e d in v i v o and passed on t o daughter c e l l s i s a c h i e v e d by a r e p e r t o i r e o f a c t i v i t i e s which f u n c t i o n d u r i n g r e p l i c a t i o n , r e p a i r , and r e c o m b i n a t i o n (1^,2). These a c t i v i t i e s , which c o l l e c t i v e l y m a i n t a i n the s t r u c t u r a l and i n f o r m a t i o n a l i n t e g r i t y o f the DNA m o l e c u l e , a r e s e v e r e l y t e s t e d when the DNA t e m p l a t e i s damaged and becomes n o n - r e p l i c a b l e . Under these c i r c u m s t a n c e s , which o b t a i n , f o r example, when c e l l s a r e exposed t o such human c a r c i n o g e n s as U V - l i g h t (3) o r p o l y c y c l i c a r o m a t i c h y d r o carbons ( 4 ) , i t i s commonly observed t h a t the f r e q u e n c y o f m u t a t i o n i s enhanced by many o r d e r s o f magnitude. The c o r r e l a t i o n between t h e mutagenic and c a r c i n o g e n i c a c t i v i t y o f many p h y s i c a l and c h e m i c a l agents has been well-documented (_5). Recent o b s e r v a t i o n s even sug g e s t the p o s s i b i l i t y t h a t one s t e p i n t u m o r i g e n e s i s might l i t e r a l l y i n v o l v e the m u t a t i o n a l a l t e r a t i o n o f s p e c i f i c chromosomal genes (6-8). 0097-6156/ 85/ 0283-0327506.00/ 0 © 1985 American Chemical Society
In Polycyclic Hydrocarbons and Carcinogenesis; Harvey, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1985.
328
POLYCYCLIC HYDROCARBONS AND CARCINOGENESIS
I n t h i s c h a p t e r I w i l l r e v i e w some a s p e c t s o f mutagenesis mecha nisms and t h e m u t a t i o n a l consequences o f DNA damage g e n e r a t e d by ben zo [a] p y r e n e . The f o c u s w i l l be on knowledge d e r i v e d from i n v e s t i g a t i o n s i n v o l v i n g the bacterium E s c h e r i c h i a c o l i .
Downloaded by PENNSYLVANIA STATE UNIV on May 16, 2013 | http://pubs.acs.org Publication Date: July 19, 1985 | doi: 10.1021/bk-1985-0283.ch013
Mutagenesis i s an a c t i v e p r o c e s s 12. c o l i and e u k a r y o t i c c e l l s can respond t o DNA damage by i n d u c i n g the s y n t h e s i s o f s p e c i f i c gene p r o d u c t s ( 9 - 1 2 ) . The phenomenon o f gene i n d u c t i o n by DNA damage has been most t h o r o u g h l y d e s c r i b e d f o r 12. c o l i and has r e c e n t l y been reviewed by Walker ( 9 ) . Among t h e i n d u c i b l e r e s p o n s e s t o DNA damage i s the mutagenic r e p a i r p r o c e s s , whose e x i s t e n c e was f i r s t suggested o v e r 30 y e a r s ago by t h e e x p e r i ments o f W e i g l e ( 1 3 ) . W e i g l e showed t h a t U V - l i g h t was mutagenic t o b a c t e r i o p h a g e lamb da o n l y i f t h e U V - i r r a d i a t e d lambda were grown on b a c t e r i a w h i c h had a l s o been i r r a d i a t e d w i t h U V - l i g h t . I n o t h e r words, t h e UV treatment was n o t mutagenic p e r s e . F u r t h e r m o r e , he demonstrated t h a t i r r a d i ated lambda phage c o u l d be r e a c t i v a t e d by growing t h e phage on p r e i r r a d i a t e d b a c t e r i a . H i s r e s u l t s suggested t h e p o s s i b i l i t y t h a t bac t e r i a had an i n d u c i b l e system f o r DNA r e p a i r and mutagenesis w h i c h a c t e d on U V - i r r a d i a t e d lambda phage. The g e n e t i c s o f what i s now c a l l e d W e i g l e o r W - r e a c t i v a t i o n and W-mutagenesis i s now v e r y w e l l understood. Some twenty genes i n J2. c o l i — known c o l l e c t i v e l y as d i n genes (damage i n d u c i b l e ; 9,14) a r e c o o r d i n a t e l y r e g u l a t e d by t h e p r o d u c t s o f t h e genes recA and l e x A . The LexA p r o t e i n r e p r e s s e s d i n gene e x p r e s s i o n by b i n d i n g t o t h e o p e r a t o r r e g i o n o f each gene and p r e v e n t i n g i t s t r a n s c r i p t i o n i n t o RNA by RNA polymerase. Treatments w h i c h damage t h e c e l l ' s DNA o r o t h e r w i s e i n t e r f e r e w i t h DNA s y n t h e s i s , a c t i v a t e t h e RecA p r o t e i n ; a c t i v a t e d RecA p r o t e i n t h e n promotes t h e p r o t e o l y t i c i n a c t i v a t i o n o f LexA r e p r e s s o r ( 1 5 ) . Genes whose t r a n s c r i p t i o n had been r e p r e s s e d by LexA p r o t e i n c a n now be t r a n s c r i b e d and new p r o t e i n s c a n be s y n t h e s i z e d . The o v e r a l l response o f 12. c o l i t o DNA damage, w h i c h i s g e n e t i c a l l y r e g u l a t e d by t h e r e c A and l e x A l o c i , i s known as t h e SOS-response ( 1 6 , 1 7 ) . M u t a t i o n s i n e i t h e r recA o r l e x A c a n a b o l i s h t h e SOS-response and e l i m i n a t e b o t h W - r e a c t i v a t i o n and W-mutagenesis. These m u t a t i o n s a l s o e l i m i n a t e t h e m u t a b i l i t y o f t h e b a c t e r i a by U V - i r r a d i a t i o n ( 1 6 ) . The o b s e r v a t i o n t h a t UV mutagenesis depended on t h e SOS-response e s t a b l i s h e d t h a t m u t a t i o n s were n o t i n e v i t a b l e outcomes o f DNA damage and t h a t DNA damage r e q u i r e d p r o c e s s i n g by c e l l u l a r mechanisms i n o r der f o r m u t a t i o n s t o be r e c o v e r e d . What s p e c i f i c p r o c e s s e s r e g u l a t e d by t h e SOS-response a r e r e s p o n s i b l e f o r mutagenesis? A major c o n t r i b u t i o n towards answering t h i s q u e s t i o n was made by the i s o l a t i o n o f m u t a t i o n s w h i c h s p e c i f i c a l l y e l i m i n a t e d t h e m u t a b i l i t y o f 12. c o l i w i t h o u t a f f e c t i n g any o f t h e o t h e r components o f t h e SOS-response. M u t a t i o n s a t t h e umuDC l o c u s were i n d e p e n d e n t l y d i s covered by Kato and S h i n o u r a (18) and S t e i n b o r n (19) t o a b o l i s h t h e m u t a t i o n a l a f f e c t s o f DNA damage by U V - i r r a d i a t i o n . These mutants were a l s o shown t o be d e f e c t i v e i n W-mutagenesis (18,20) and W-react i v a t i o n (18,20). The b i o c h e m i c a l n a t u r e o f t h e a c t i v i t y performed by the umuDC gene p r o d u c t s i s n o t known. However, s e v e r a l o b s e r v a t i o n s suggest t h a t t h e f u n c t i o n o f t h e umuDC p r o t e i n s i s t o enhance some mode o f DNA r e p a i r , e i t h e r d i r e c t l y o r i n d i r e c t l y : 1) J2. c o l i c a r r y -
In Polycyclic Hydrocarbons and Carcinogenesis; Harvey, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1985.
13.
Mutational Consequences of DNA Damage
EISENSTADT
329
i n g t h e umuC36 a l l e l e i s more s e n s i t i v e t o t h e l e t h a l e f f e c t s o f UVi r r a d i a t i o n (18) and a n g e l i c i n p l u s near-UV ( 2 1 ) ; 2) P l a s m i d borne a n a l o g s o f the umuDC l o c u s (mucAB; 12) enhance W - r e a c t i v a t i o n and t h e resistance of b a c t e r i a to the l e t h a l e f f e c t s of U V - i r r a d i a t i o n (23); 3) As p r e v i o u s l y n o t e d , W - r e a c t i v a t i o n i n U v r b a c t e r i a i s e l i m i n a t e d by m u t a t i o n s a t the umuDC l o c u s ( 1 8 ) . Of t h e a p p r o x i m a t e l y twenty genes induced by DNA damage, the umuDC genes and t h e i r p r o d u c t s a r e the b e s t c a n d i d a t e s f o r d i r e c t p a r t i c i p a n t s i n the b i o c h e m i c a l p r o c e s s i n g o f DNA l e s i o n s t o m u t a t i o n s . The p r o c e s s i n g o f DNA damage i n °li umuDC gene p r o d u c t s and t h e a s s o c i a t e d p r o t e i n s r e g u l a t e d by t h e SOS-response i s c a l l e d SOS-processing (9) o r , sometimes, e r r o r - p r o n e r e p a i r ( 1 6 , 1 7 ) . Mutagenesis i n IS. c o l i , t h e r e f o r e , a p pears t o be a g e n e t i c a l l y and b i o c h e m i c a l l y a c t i v e p r o c e s s r e q u i r i n g the p a r t i c i p a t i o n o f i n d u c i b l e p r o t e i n s . Not a l l mutagenesis i n IS. c o l l i s dependent on S O S - p r o c e s s i n g . M u t a t i o n s may a r i s e q u i t e s i m p l y d u r i n g DNA r e p l i c a t i o n i f a base i s s u b s t i t u t e d by o r c o n v e r t e d t o a n o t h e r , i n c o r r e c t , base. Consider the consequence o f o x i d a t i v e d e a m i n a t i o n o f t h e base 5 - m e t h y l c y t o s i n e to thymine. R e p l i c a t i o n f o l l o w e d by daughter s t r a n d s e g r e g a t i o n w i l l r e s u l t i n a G:C base p a i r h a v i n g been mutated t o an A:T base p a i r . S i t e s c o n t a i n i n g 5 - m e t h y l c y t o s i n e a r e h o t s p o t s f o r G:C t o A:T t r a n s i t i o n s i n E. c o l i ( 2 4 ) . A l k y l a t i o n o f some bases a t the e x o c y c l i c oxygen atoms c a n l e a d to c h e m i c a l l y s t a b l e a l t e r a t i o n s i n t h e base p a i r i n g p r o p e r t i e s o f a base and, t h e r e b y , d i r e c t l y induce base m i s - p a i r i n g by DNA polymer a s e . A w e l l - s t u d i e d example o f t h i s i s t h e consequence o f a l k y l a t i n g guanine a t the 0-6 p o s i t i o n ( 2 5 - 2 7 ) . T h i s has t h e e f f e c t o f f r e e z i n g guanine i n i t s ( r a r e ) e n o l tautomer p e r m i t t i n g the G:T mismatch t o form i n p l a c e o f the u s u a l G:C base p a i r . A subsequent round o f DNA r e p l i c a t i o n l e a d s t o the g e n e r a t i o n o f a G:C t o A:T t r a n s i t i o n muta t i o n . These e x c e p t i o n s n o t w i t h s t a n d i n g , most DNA damaging agents i n duce mutations i n IS. c o l i v i a SOS-processing.
Downloaded by PENNSYLVANIA STATE UNIV on May 16, 2013 | http://pubs.acs.org Publication Date: July 19, 1985 | doi: 10.1021/bk-1985-0283.ch013
c
v
i
a t
n
e
How u n i v e r s a l i s t h e SOS-processing
system o f E. c o l i ?
The dependence o f m u t a t i o n on f u n c t i o n s i n v o l v i n g DNA r e p a i r seems t o be widespread among organisms. Many p r o k a r y o t i c s p e c i e s a r e i n h e r e n t l y non-mutable by U V - l i g h t b u t become mutable when p l a s m i d s encod i n g f o r f u n c t i o n s analogous t o the umuDC f u n c t i o n s a r e i n t r o d u c e d (e.g. 2 8 ) . Non-mutable mutants o f the y e a s t Saccharomyces c e r e v i s i a e have been i s o l a t e d and shown t o possess d e f e c t s which i m p l i c a t e DNA r e p a i r and r e c o m b i n a t i o n p r o c e s s e s ( s e e 29^ f o r a r e c e n t r e v i e w ) . F u r t h e r m o r e , t h e r e a r e many examples o f DNA r e p a i r s t r a t e g i e s which a r e common t o p r o k a r y o t i c and e u k a r y o t i c organisms ( n u c l e o t i d e e x c i s i o n r e p a i r , DNA g l y c o s y l a s e s , a p u r i n i c / a p y r i m i d i n i c e n d o n u c l e a s e s , 0 -methylguanine-DNA-methyl t r a n s f e r a s e ; 2,30). P u r i f i e d DNA p o l y merases from mammalian c e l l s and v i r u s e s behave s i m i l a r l y _in v i t r o t o IS. c o l i DNA polymerase when DNA damage i s encountered — r e p l i c a t i o n ceases a t t h e s i t e o f t h e l e s i o n ( 3 1 ) . Of c o u r s e , even i f ana logues o f SOS-processing a r e i d e n t i f i e d i n e u k a r y o t e s , t h e r e g u l a t i o n of these a c t i v i t i e s might d i f f e r i n d e t a i l from the scheme which ob t a i n s i n IS. c o l i (e.£. analogous f u n c t i o n s may be c o n s t i t u t i v e l y ex p r e s s e d ) . N o n e t h e l e s s , Ruby and S z o s t a k (10) have demonstrated t h e e x i s t e n c e o f DNA damage i n d u c i b l e l o c i i n j>. c e r e v i s i a e and e s t i m a t e
In Polycyclic Hydrocarbons and Carcinogenesis; Harvey, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1985.
330
POLYCYCLIC HYDROCARBONS AND CARCINOGENESIS
t h a t t h e r e may e x i s t as many as 80 such genes ( 1 1 ) . Shorpp e t a l . (12) have r e c e n t l y r e p o r t e d t h a t UV l i g h t enhances t h e s y n t h e s i s o f a t l e a s t e i g h t p r o t e i n s i n human f i b r o b l a s t c e l l s .
Downloaded by PENNSYLVANIA STATE UNIV on May 16, 2013 | http://pubs.acs.org Publication Date: July 19, 1985 | doi: 10.1021/bk-1985-0283.ch013
Are m u t a t i o n s d i s t r i b u t e d a t s i t e s o f DNA damage? The dependence o f mutagenesis on SOS p r o c e s s i n g r a i s e d q u e s t i o n s about t h e r o l e ( s ) p l a y e d by DNA l e s i o n s i n mutagenesis. Do DNA l e s i o n s s i m p l y t r i g g e r the SOS response by i n t e r f e r i n g w i t h DNA r e p l i c a t i o n t h e r e b y g e n e r a t i n g m u t a t i o n s i n d i r e c t l y v i a an e r r o r - p r o n e form o f DNA r e p l i c a t i o n ? Or do m u t a t i o n s a r i s e d i r e c t l y a t t h e s i t e s i n DNA where damage has been generated? The o b s e r v a t i o n s t h a t m u t a t i o n f r e q u e n c i e s a r e e l e v a t e d s e v e r a l f o l d above normal l e v e l s i n mutants w h i c h c o n s t i t u t i v e l y e x p r e s s t h e i r S O S - f u n c t i o n s (32) and t h a t the m u t a t i o n f r e q u e n c y o f u n i r r a d i ated phage i s e l e v a t e d by growing them on i r r a d i a t e d ( i . ^ e . SOS-in duced) b a c t e r i a ( 3 3 ) , have been i n v o k e d t o argue f o r the n o t i o n t h a t mutagenesis v i a SOS-processing may be i n d i r e c t . On the o t h e r hand, the o b s e r v a t i o n t h a t 95% o f the UV induced base s u b s t i t u t i o n m u t a t i o n s a r o s e a t the v e r y s i t e s ( p y r i m i d i n e - p y r i midine sequences) where the major f r a c t i o n o f UV damage i s d e p o s i t ed suggested t h a t a t l e a s t the UV i n d u c e d m u t a t i o n s were t a r g e t e d (24). Drake and B a l t z (34) and W i t k i n and Wermundsen (35) p r e s e n t e d arguments i n f a v o r o f the n o t i o n t h a t , f o r the most p a r t , SOS muta g e n e s i s was o c c u r r i n g a t s i t e s o f DNA damage. More r e c e n t e v i d e n c e , based on a n a l y z i n g the d i s t r i b u t i o n o f m u t a t i o n s w i t h i n the l a d gene of _E. c o l i , s t r o n g l y s u g g e s t s t h a t m u t a t i o n s a r i s i n g v i a SOS-process i n g a r e o c c u r r i n g a t the s i t e s o f DNA damage ( 3 6 , 3 7 ) . B r i e f l y , when one examines t h e spectrum o f m u t a t i o n s i n d u c e d by a v a r i e t y o f muta gens whose a c t i v i t y i s dependent on S O S - p r o c e s s i n g , one f i n d s t h a t both where the m u t a t i o n s a r e i n d u c e d and w h i c h m u t a t i o n s a r e induced depends on the mutagen. The observed d i f f e r e n c e s among mutagens a p p l y b o t h t o the m u t a t i o n a l e v e n t s t h a t a r e d i s t r i b u t e d non-randomly at o n l y a few s i t e s ( h o t s p o t s ) and t o e v e n t s t h a t a r e d i s t r i b u t e d randomly a t many d i f f e r e n t s i t e s w i t h i n t h e gene ( l o w f r e q u e n c y o c c u r r e n c e s o r LFO e v e n t s ) ( 3 6 ) . S i n c e each mutagenic t r e a t m e n t l e a v e s behind i t s own c h a r a c t e r i s t i c d i s t r i b u t i o n o f m u t a t i o n s w i t h i n t h e gene ( 3 7 ) , m u t a t i o n s g e n e r a t e d b y SOS-processing o f damaged DNA must be o c c u r r i n g a t the s i t e s o f damage. F u r t h e r m o r e , t h e r e c e n t s t u d y by M i l l e r and Low (38) on the d i s t r i b u t i o n o f m u t a t i o n s g e n e r a t e d by t u r n i n g on the SOS-response w i t h o u t DNA-damaging t r e a t m e n t s shows t h a t even these m u t a t i o n s a r e g e n e r a t e d a t s p e c i f i c s i t e s i n a gene as i f t h e y arose a t s i t e s where s p o n t a n e o u s l y g e n e r a t e d l e s i o n s o c c u r with a h i g h frequency. The w e l l c h a r a c t e r i z e d r e a c t i o n s o f c a r c i n o g e n s such as benzo[a]pyrene and a f l a t o x i n B^ w i t h DNA (39-50) suggested t o us t h a t an a n a l y s i s o f the k i n d s o f m u t a t i o n s t h e s e agents i n d u c e d c o u l d shed l i g h t on the c o n t r i b u t i o n o f s p e c i f i c DNA l e s i o n s t o mutagenesis. Such an a n a l y s i s c o u l d , i n t u r n , p r o v i d e c l u e s as t o w h i c h s p e c i f i c DNA l e s i o n s g e n e r a t e d by t h e s e agents were mutagenic. I would l i k e t o d e s c r i b e o u r i n v e s t i g a t i o n s , performed i n c o l l a b o r a t i o n w i t h J e f f r e y M i l l e r . To b e g i n , I w i l l b r i e f l y o u t l i n e t h e g e n e t i c system d e v e l o p e d by M i l l e r w h i c h p e r m i t s a r a p i d , r i g o r o u s d e t e r m i n a t i o n o f t h e p o s i t i o n and k i n d s o f mutants i n d u c e d i n a p a r t i c u l a r gene by DNA. damaging a g e n t s *
In Polycyclic Hydrocarbons and Carcinogenesis; Harvey, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1985.
Downloaded by PENNSYLVANIA STATE UNIV on May 16, 2013 | http://pubs.acs.org Publication Date: July 19, 1985 | doi: 10.1021/bk-1985-0283.ch013
13.
EISENSTADT
Mutational Consequences of DNA Damage
The
l a d system f o r a n a l y z i n g nonsense m u t a t i o n s I n E. c o l i
331
The l a d system has been d e s c r i b e d i n d e t a i l by M i l l e r ( 5 1 ) . The l a d gene product i s the r e p r e s s o r o f t h e l a c operon. C e l l s w h i c h have normal r e p r e s s o r a c t i v i t y a r e r e p r e s s e d f o r t h e s y n t h e s i s o f the l a c Z gene p r o d u c t , 3 - g a l a c t o s i d a s e , and t h e o t h e r p r o d u c t s o f t h e l a c operon. C e l l s w h i c h c a r r y m u t a t i o n s i n l a d w h i c h l e a d t o s y n t h e s i s of a d e f e c t i v e r e p r e s s o r p r o t e i n w i l l c o n s t i t u t i v e l y s y n t h e s i z e 3g a l a c t o s i d a s e . Such mutants can be s e l e c t e d by demanding growth o f b a c t e r i a on a medium c o n t a i n i n g a g a l a c t o s i d e a n a l o g such a s p h e n y l 0 - D - g a l a c t o s i d e ( P - g a l ) . P - g a l i s n o t i t s e l f an i n d u c e r o f t h e l a c operon. Thus, i t i s a s i m p l e m a t t e r t o t r e a t a p o p u l a t i o n o f b a c t e r i a l c e l l s w i t h a DNA damaging a g e n t , grow them o u t n o n - s e l e c t i v e l y t o p e r m i t p r o c e s s i n g o f DNA damage and p h e n o t y p i c e x p r e s s i o n , and t h e n p l a t e them on P - g a l t o s e l e c t f o r c e l l s c a r r y i n g m u t a t i o n s i n l a c l . A l a r g e c l a s s o f base s u b s t i t u t i o n mutants can be a n a l y z e d d i r e c t l y by s c r e e n i n g f o r s u p p r e s s i b l e m u t a t i o n s among t h e c o l l e c t i o n of l a c l mutants. The s u p p r e s s i b l e m u t a t i o n s a r e due t o w i l d - t y p e codons h a v i n g been mutated t o TAA, TAG, o r TGA. These nonsense c o dons a r e n o r m a l l y s i g n a l s f o r t h e t e r m i n a t i o n o f p r o t e i n s y n t h e s i s by ribosomes and c a n a r i s e v i a a l l s i n g l e base p a i r s u b s t i t u t i o n muta t i o n s w i t h t h e e x c e p t i o n o f t h e A:T t o G:C t r a n s i t i o n . Thus, a l l base p a i r s u b s t i t u t i o n s , e x c e p t f o r t h e one t r a n s i t i o n , can be moni t o r e d by c o l l e c t i n g nonsense m u t a t i o n s i n l a c l . There a r e o v e r 60 s i t e s i n l a c l a t w h i c h a s i n g l e base p a i r s u b s t i t u t i o n w i l l g e n e r a t e a nonsense codon. L a c l nonsense mutants can be i d e n t i f i e d u s i n g c l a s s i c a l b a c t e r i a l g e n e t i c methods. The e n t i r e gene has been sequenced ( 5 2 ) . The s i t e , and t h e r e f o r e , t h e base p a i r w h i c h has been mutated c a n be in dent i f l e d s i m p l y by mapping t h e p o s i t i o n o f t h e nonsense m u t a t i o n . T h i s can be a c c o m p l i s h e d by u s i n g an e x t e n s i v e s e t o f l a c l d e l e t i o n mutants ( 5 3 ) . Mapping t h e m u t a t i o n a l l o w s one t o determine w h i c h base p a i r s u b s t i t u t i o n has been g e n e r a t e d by a p a r t i c u l a r t r e a t m e n t . Thus, by i d e n t i f y i n g many nonsense m u t a t i o n s induced by a mutagen, a p i c t u r e emerges o f b o t h t h e mutagens s i t e s p e c i f i c i t y (where, w i t h i n the gene t h e m u t a t i o n s a r i s e ) and i t s mutagenic s p e c i f i c i t y (which p a r t i c u l a r base s u b s t i t u t i o n s a r e g e n e r a t e d ) . To d e t e r m i n e c l a s s e s of m u t a t i o n o t h e r than base p a i r s u b s t i t u t i o n s , i t i s p o s s i b l e t o g e n e t i c a l l y c r o s s a g i v e n l a c l a l l e l e o n t o s m a l l p l a s m i d o r phage m o l e c u l e s and d e t e r m i n e t h e sequence o f t h e mutant a l l e l e (54,55)• We have a p p l i e d t h e g e n e t i c system f o r a n a l y z i n g l a c l nonsense mutants t o t h e i n v e s t i g a t i o n o f t h e mutagenic s p e c i f i c i t y o f benzo[a]pyrene (56) and a f l a t o x i n B. ( 5 7 ) . The r e s u l t s o f our s t u d i e s have p r o v i d e d some i m p o r t a n t c l u e s as t o t h e c h e m i c a l n a t u r e o f t h e mutagenic l e s i o n s induced by b e n z o [ a ] p y r e n e . B e f o r e I d i s c u s s these r e s u l t s , I w i l l b r i e f l y summarize p r e v i o u s i n v e s t i g a t i o n s on the mu t a g e n i c i t y o f BPDE. The m u t a g e n i c i t y inves t igat ions
of benzo[a]pyrene d i o l e p o x i d e —
previous
C a r c i n o g e n s f i r s t began t o be e v a l u a t e d d i r e c t l y f o r mutagenic a c -
In Polycyclic Hydrocarbons and Carcinogenesis; Harvey, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1985.
Downloaded by PENNSYLVANIA STATE UNIV on May 16, 2013 | http://pubs.acs.org Publication Date: July 19, 1985 | doi: 10.1021/bk-1985-0283.ch013
332
POLYCYCLIC HYDROCARBONS AND CARCINOGENESIS
t i v i t y a g a i n s t microorganisms 35 y e a r s ago by B a r r e t t and Tatum ( 5 8 ) . However, the s y s t e m a t i c use of s e n s i t i v e m i c r o b i a l m u t a t i o n a s s a y s t o m o n i t o r the b i o l o g i c a l a c t i v i t y o f c a r c i n o g e n s was not a c h i e v e d u n t i l the r e a l i z a t i o n t h a t m e t a b o l i c a c t i v a t i o n o f c a r c i n o g e n s was e s s e n t i a l ( r e v i e w e d i n 5 9 ) . By the use of s u b - c e l l u l a r f r a c t i o n s d e r i v e d from l i v e r homogenates, i t became p o s s i b l e t o d e t e c t the mutagenic a c t i v i t y of benzo[a]pyrene and many o t h e r p o l y c y c l i c a r o m a t i c h y d r o carbons • The m u t a g e n i c i t y of benzo[a]pyrene f o r b a c t e r i a was demonstrated by Ames e t a l . ( 6 0 ) . They found t h a t i n the presence o f r a t l i v e r homogenates benzo[a]pyrene i n d u c e d b o t h f r a m e s h i f t and b a s e - p a i r sub s t i t u t i o n m u t a t i o n s . When the c h e m i s t r y of benzo[a]pyrene a c t i v a t i o n had been worked out and t h e u l t i m a t e c a r c i n o g e n i c form i d e n t i f i e d as a d i o l e p o x i d e , BPDE ( r e v i e w e d i n 61-62), s e v e r a l i n v e s t i g a t o r s ( 6 3 66) showed t h a t BPDE was an e x t r e m e l y p o t e n t mutagen, a l s o c a p a b l e o f i n d u c i n g b o t h f r a m e s h i f t and b a s e - p a i r s u b s t i t u t i o n m u t a t i o n s . McCann e t a l . (67) had shown t h a t benzo[a]pyrene was mutagenic f o r J5. typhimurium o n l y i f the b a c t e r i a c a r r i e d the m u t a t i o n enhancing p l a s mid pKMlOl whose a c t i v i t y was l a t e r shown by Walker (23) t o be en t i r e l y dependent on b a c t e r i a l r e c A and l e x A c o n t r o l l e d f u n c t i o n s . T h i s p r o v i d e d e a r l y e v i d e n c e t h a t the m u t a g e n i c i t y o f c a r c i n o g e n s such as b e n z o [ a ] p y r e n e was dependent on S O S - r e p a i r . L a t e r , I v a n o v i c and W e i n s t e i n (68) d i r e c t l y showed t h a t benzo[a]pyrene was mutagenic +
f o r JE. c o l i o n l y i f the b a c t e r i a were b o t h r e c A and l e x A * . Two q u e s t i o n s t h a t a r e r a i s e d by t h e s e o b s e r v a t i o n s a r e : 1) what i s the mutagenic s p e c i f i c i t y o f BPDE, i_.je. what k i n d s o f m u t a t i o n s are i n d u c e d by t r e a t i n g c e l l s w i t h BPDE? 2) what i s ( a r e ) the p r e - m u t a t i o n a l l e s i o n ( s ) g e n e r a t e d by BPDE which i s ( a r e ) r e s p o n s i b l e f o r mutations? The mutagenic
s p e c i f i c i t y o f BPDE
We have o b t a i n e d i m p o r t a n t c l u e s t o t h e s e q u e s t i o n s by d e t e r m i n i n g the spectrum of 185 nonsense m u t a t i o n s induced i n the l a c l gene o f IS. c o l i by BPDE. The r e s u l t s o f t h i s i n v e s t i g a t i o n (56) a r e summarized i n T a b l e s I t o I I I and i n F i g u r e 1. The r e s u l t s were s t r i k i n g . They showed t h a t t r a n s v e r s i o n m u t a t i o n s a t G:C base p a i r s were the domi nant i n d u c e d e v e n t , a l t h o u g h , o t h e r s u b s t i t u t i o n s , i n p a r t i c u l a r A:T to T:A t r a n s v e r s i o n were c l e a r l y i n d u c e d , but a t l o w e r f r e q u e n c i e s . The s p e c i f i c i t y of i n d u c t i o n o f G:C t o T:A was most c l e a r l y seen by examining the m u t a t i o n s o c c u r r i n g a t the TAC codons f o r t y r o s i n e ( T a ble I I I ) . A t t h e s e s i t e s , b o t h G:C t o T:A m u t a t i o n s ( y i e l d i n g TAA, ochre nonsense mutants) and G:C t o C:G ( y i e l d i n g TAG, amber nonsense mutants) t r a n s v e r s i o n s are m o n i t o r a b l e . T a b l e I I I c l e a r l y shows t h a t at the two t y r o s i n e codons where m u t a t i o n s were w e l l - i n d u c e d t h e r e i s a s t r i k i n g p r e f e r e n c e f o r one m u t a t i o n a l event over the o t h e r . We have not d i r e c t l y determined t h e r e l a t i v e f r e q u e n c i e s o f f r a m e s h i f t m u t a t i o n s and o t h e r m u t a t i o n a l e v e n t s i n comparison t o the base s u b s t i t u t i o n m u t a t i o n s . However, based on the h i g h f r e q u e n c y o f nonsense m u t a t i o n s (11%) among a l l l a c l mutants induced by BPDE and because nonsense m u t a t i o n s a r e m o n i t o r a b l e a t l e s s than o n e - f i f t h o f the l a c l codons and, even t h e n , o n l y v i a c e r t a i n base p a i r s u b s t i t u t i o n s , we b e l i e v e t h a t base s u b s t i t u t i o n s account f o r a major f r a c t i o n o f m u t a t i o n s induced by BPDE.
In Polycyclic Hydrocarbons and Carcinogenesis; Harvey, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1985.
13.
EISENSTADT
Mutational Consequences of DNA Damage
333
T a b l e I . Summary of Base S u b s t i t u t i o n Events Generated by BPDE
Downloaded by PENNSYLVANIA STATE UNIV on May 16, 2013 | http://pubs.acs.org Publication Date: July 19, 1985 | doi: 10.1021/bk-1985-0283.ch013
Substitution
No. o f Available Sites
No. o f Sites Found
T o t a l No. o f Occurrences
% of Analyzed Mutations
G:C t o A:T
26
12
22
12
G:C t o T:A
23
21
123
66
A:T t o T:A
15
33
18
9
A:T t o C:G
5
3
4
2
G:C t o C:G
3
2
3
2
Total
72
47
185
Amber
36
26
96
Ochre
36
21
89
What i s ( a r e ) the p r e - m u t a t i o n a l
l e s i o n ( s ) i n d u c e d by BPDE?
BPDE r e a c t s a t s e v e r a l d i f f e r e n t s i t e s on DNA t o g e n e r a t e s e v e r a l k i n d s o f l e s i o n s a t t h e N2 (43-45) and N7 (46,47) p o s i t i o n s o f guan i n e , a p u r i n i c s i t e s ( 4 8 , 4 9 ) , and s t r a n d b r e a k s ( 5 0 ) . Which o f t h e s e l e s i o n s a r e r e s p o n s i b l e f o r t h e t r a n s v e r s i o n m u t a t i o n s a t G:C s i t e s ? E v i d e n c e d e r i v e d from a number o f e x p e r i m e n t s s u g g e s t s t h e h y p o t h e s i s t h a t a p u r i n i c s i t e s g e n e r a t e d by BPDE r e a c t i o n s w i t h DNA a r e r e s p o n s i b l e f o r the transversion mutations: 1. When we examined t h e mutagenic s p e c i f i c i t y a f l a t o x i n B^, a c a r c i n o g e n w h i c h s p e c i f i c a l l y r e a c t s w i t h t h e N7 atom o f guanine ( 3 9 4 2 ) , we found v i r t u a l l y o n l y G:C t o T:A t r a n s v e r s i o n s were i n d u c e d ( 5 7 ) ; N7 p u r i n e adducts can i n d u c e d e p u r i n a t i o n by d e s t a b i l i z i n g t h e N - g l y c o s y l i c bond ( 6 9 ) . 2. The work o f Loeb and K u n k e l and t h e i r c o l l e a g u e s (70-72) h a s c l e a r l y e s t a b l i s h e d t h a t a p u r i n i c s i t e s i n DNA a r e mutageniC.; t h e y s p e c i f i c a l l y cause t r a n s v e r s i o n m u t a t i o n s , due t o a s t r o n g p r e f e r e n c e f o r t h e i n c o r p o r a t i o n o f adenine r e s i d u e s d u r i n g bypass o f a p u r i n i c s i t e s i n t e m p l a t e DNA. Thus, A:T t o T:A and G:C t o T:A t r a n s v e r s i o n s a r e t h e major mutagenic outcome g e n e r a t e d by d e p u r i n a t i o n o f DNA. 3. R e c e n t l y , Sage and H a s e l t i n e (49) have q u a n t i t a t i v e l y d e t e r mined t h e spectrum o f DNA l e s i o n s i n d u c e d by r e a c t i o n s o f BPDE w i t h DNA. They found t h a t a l k a l i - l a b i l e l e s i o n s account f o r about 40% o f the DNA a d d u c t s . There was a s t r i k i n g c o r r e l a t i o n between t h e muta t i o n f r e q u e n c i e s induced by BPDE i n l a c l and t h e f r e q u e n c i e s o f a l k a l i s e n s i t i v e l e s i o n s a t G, A, and C r e s i d u e s . Apurinic/apyrimidinic s i t e s a r e common a l k a l i - s e n s i t i v e l e s i o n s . E a r l i e r work by D r i n k w a t e r e t a l . ( 4 8 ) had a l s o shown t h a t t r e a t m e n t o f DNA w i t h BPDE gen erated a p u r i n i c / a p y r i m i d i n i c s i t e s .
In Polycyclic Hydrocarbons and Carcinogenesis; Harvey, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1985.
334
POLYCYCLIC HYDROCARBONS AND CARCINOGENESIS Table I I .
Downloaded by PENNSYLVANIA STATE UNIV on May 16, 2013 | http://pubs.acs.org Publication Date: July 19, 1985 | doi: 10.1021/bk-1985-0283.ch013
Base Substitutions
D i s t r i b u t i o n o f l a c l Nonsense M u t a t i o n s Induced by BPDE
Site
No. Independent Occurrences
Site
No. Independent Occurrences 0 0 0 0 0 3 3 2 1 1 0 0
G:C - A:T
A5 *A6 A9 *A15 A16 A19 A21 A23 A24 A26 A31 A33 *A34 A35
0 5 0 0 0 1 2 0 1 0 1 1 1 0
09 010 Oil 013 017 021 024 027 028 029 034 035
G:C - T:A„ G:C - C:G
A2 A7 A10
7 5 5
A12 A13 A17 A20 A25 A27 A28
18 5 5 5 4 5 3
03,A1 06 07 „ 08, A8 014 015 019 020 025 026 030,A29 031 032 036
#
12,1 0 0 4,0 2 7 4 12 0 4 1,2 2 1 12
#
(13)
(4)
(3)
2 5 0 (0) 0*>A3^ 05,A4 2 (2) 0 012 6 0 018,A14 1 (1) 4 A 023,A22^ 0 (0) 033,A30 1 (1) S i t e s a t w h i c h nonsense m u t a t i o n s a r e d e t e c t e d a r e i d e n t i f i e d by t h e i r amber (A) o r o c h r e (0) a l l e l e s ( C o u l o n d r e and M i l l e r , 1977). The 8 t y r o s i n e codons i n l a c l each have two nonsense a l l e l e s , one amber and one o c h r e . The amber a l l e l e s a t t h e s e s i t e s a r e marked by the symbols # and @. * S i t e s c o n t a i n i n g 5 - m e t h y l c y t o s i n e s (CCAGG). These a r e spontaneous l a c l hotspots.
A:T - T:A A:T - C:G
0
All A18 A32 A36
2 4 1 8
01
&
0 2
L
0 1 6
L
0
2
2
L
In Polycyclic Hydrocarbons and Carcinogenesis; Harvey, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1985.
13.
EISENSTADT
Table I I I .
Downloaded by PENNSYLVANIA STATE UNIV on May 16, 2013 | http://pubs.acs.org Publication Date: July 19, 1985 | doi: 10.1021/bk-1985-0283.ch013
Site
BPDE-Induced M u t a t i o n s a t the Three TAC T y r o s i n e Codons i n the l a c l Gene
coding p o s i t i o n
^,03
tyr 7
A8,08 A29,030 Total
335
Mutational Consequences of DNA Damage
# o f independent o c c u r r e n c e s o f : TAC - TAA TAC - TAA (GC - CG) (GC - TA)
12
1
t y r 47
4
0
tyr
1
2
17
3
273
Both amber and o c h r e m u t a t i o n s can be g e n e r a t e d a t t h e s e s i t e s , a l l o w i n g b o t h G:C t o T:A and G:C t o C:G t r a n s v e r s i o n s t o be monitored.
Thus, w h i l e BPDE and a f l a t o x i n might g e n e r a t e G:C t o T:A t r a n s v e r s i o n s v i a d i f f e r e n t pathways, i t i s r e a s o n a b l e t o c o n s i d e r the h y p o t h e s i s t h a t t h e r e i s a common mechanism by w h i c h t h e y i n d u c e t h i s m u t a t i o n and t h a t , t h e r e f o r e the t r a n s v e r s i o n m u t a t i o n s induced by BPDE r e s u l t , not from the major adduct t o the N2 atom o f guanine but from the g e n e r a t i o n o f a p u r i n i c s i t e s i n DNA. These secondary l e s i o n s might be g e n e r a t e d s p o n t a n e o u s l y o r v i a the a c t i v i t y of DNA g l y c o s y l a s e s (2_, 3 0 ) . An a l t e r n a t i v e h y p o t h e s i s i s t h a t b u l k y l e s i o n s i n g e n e r a l , the N2 adduct among them, may be n o n i n f o r m a t i o n a l s i t e s o p p o s i t e w h i c h adenines a r e p r e f e r e n t i a l l y i n s e r t e d d u r i n g r e p l i c a t i o n a f t e r DNA damage. Other m o l e c u l a r g e n e t i c s t u d i e s on the m u t a g e n i c i t y o f BPDE The g e n e t i c system we used t o s t u d y the mutagenic s p e c i f i c i t y o f BPDE l i m i t s one t o a n a l y z i n g base s u b s t i t u t i o n m u t a t i o n s . What i s known about the a b i l i t y o f BPDE t o i n d u c e o t h e r c a t e g o r i e s o f m u t a t i o n ? As mentioned above, r e s u l t s from the Ames t e s t r e v e a l e d t h a t b e n z o [ a ] p y rene and i t s d i o l e p o x i d e were c a p a b l e o f i n d u c i n g f r a m e s h i f t muta t i o n s (60,63,64). More r e c e n t l y , Mizusawa and co-workers (73-76) have i n v e s t i g a t e d the m u t a t i o n a l consequences o f m o d i f y i n g p l a s m i d DNA i n v i t r o w i t h BPDE. I n a s e r i e s o f s t u d i e s t h e y have shown t h a t : _ 1. p l a s m i d m o l e c u l e s a r e i n a c t i v a t e d (become n o n - r e p l i c a b l e ) i n Uvr b a c t e r i a by 1 c o v a l e n t adduct (73,76) per m o l e c u l e ; t h i s r e s u l t i s i n p e r f e c t agreement w i t h an e a r l i e r r e p o r t by Hsu eit a l . (77) w h i c h had demonstrated t h a t one m o l e c u l e o f bound BPDE was s u f f i c i e n t
In Polycyclic Hydrocarbons and Carcinogenesis; Harvey, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1985.
Downloaded by PENNSYLVANIA STATE UNIV on May 16, 2013 | http://pubs.acs.org Publication Date: July 19, 1985 | doi: 10.1021/bk-1985-0283.ch013
POLYCYCLIC HYDROCARBONS AND CARCINOGENESIS
GC-^AT
10-,
I
I
20p
GC-^TA
10 +
A
I II I ,l I ll GC-^CG
AT-^TA
IX AT-^CG
10r
oL 100
200
300
AMINO ACID RESIDUE F i g u r e 1. The f r e q u e n c i e s o f amber m u t a t i o n s i n t h e l a c l gene i n d u c e d by BPDE. S o l i d b a r s , i n d i v i d u a l s i t e s a t w h i c h we d e t e c t e d m u t a t i o n s ; open b a r s , s i t e s a t w h i c h we d i d not detect mutations; a s t e r i s k s ( i n a ) , s i t e s a t which the t a r g e t codon c o n t a i n s 5 - m e t h y l c y t o s i n e .
In Polycyclic Hydrocarbons and Carcinogenesis; Harvey, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1985.
Downloaded by PENNSYLVANIA STATE UNIV on May 16, 2013 | http://pubs.acs.org Publication Date: July 19, 1985 | doi: 10.1021/bk-1985-0283.ch013
13.
EISENSTADT
Mutational Consequences of DNA Damage
337
to i n h i b i t t h e r e p l i c a t i o n o f s i n g l e m o l e c u l e o f t h e s i n g l e s t r a n d e d b a c t e r i o p h a g e 0X174. 2. BPDE-induced m u t a t i o n s i n p l a s m i d borne genes c a n be depen dent on umuC ( 7 5 ) ; 3. m u t a t i o n s induced by BPDE i n c l u d e t r a n s v e r s i o n , t r a n s i t i o n , and f r a m e s h i f t m u t a t i o n s ( 7 4 , 7 6 ) . Wei e t a l . ( 7 8 ) c h a r a c t e r i z e d m u t a t i o n s r e s u l t i n g from a l k y l a t i o n o f a 10-base p a i r o l i g o n u c l e o t i d e w i t h BPDE. D e l e t i o n m u t a t i o n s were t h e major m u t a t i o n a l event d e t e c t e d . The number o f m u t a t i o n s a n a l y z e d i n each o f t h e s e i n v e s t i g a t i o n s was t o o s m a l l ( o n l y 7 t o 8) t o p e r m i t drawing f i r m c o n c l u s i o n s about m u t a t i o n a l and s i t e s p e c i f i c i t i e s . However, t h e r e s u l t s suggest t h a t , under some c i r c u m s t a n c e s , BPDE c a n i n d u c e many d i f f e r e n t k i n d s of m u t a t i o n s . F u t u r e s t u d i e s on t h e g e n e t i c e f f e c t s o f BPDE To r i g o u r o u s l y e s t a b l i s h t h e g e n e t i c consequences r e s u l t i n g from BP adduct t o t h e N2 p o s i t i o n o f g u a n i n e , t h e approach t a k e n by Essigman and h i s c o l l e a g u e s (79,80) w i l l be r e q u i r e d . They have been d e v e l o p i n g t e c h n i q u e s f o r p l a c i n g d e f i n e d c h e m i c a l l e s i o n s i n t o p l a s m i d DNA at pre-determined s i t e s a t which m u t a t i o n s c a n be m o n i t o r e d . If a BP adduct can be " b u i l t " i n t o DNA a t t h e N2 o f g u a n i n e , i t s b i o l o g i c a l and g e n e t i c e f f e c t s can be d e t e r m i n e d . I t would be i n t e r e s t i n g t o know i f t h e m u t a t i o n a l consequences of DNA l e s i o n s i n mammalian c e l l s were t h e same as t h o s e w h i c h o b t a i n i n b a c t e r i a . Methods f o r r e t r i e v i n g and sequencing m u t a t i o n s i n mam m a l i a n c e l l s and t h e i r v i r u s e s a r e now b e i n g developed ( 8 1 - 8 3 ) . I f y e a s t , a e u k a r y o t i c m i c r o o r g a n i s m , c a n be c o n s i d e r e d r e p r e s e n t a t i v e of h i g h e r e u k a r y o t e s , then j u d g i n g from t h e o b s e r v a t i o n s t h a t t h e m u t a t i o n a l s p e c t r a f o r U V - i r r a d i a t i o n and 4 - n i t r o q u i n o l i n e - l - o x i d e t r e a t m e n t a r e i d e n t i c a l f o r y e a s t (84) and b a c t e r i a ( 8 5 ) , t h e spec trum o f m u t a t i o n s induced by BPDE i n mammalian c e l l s c o u l d w e l l r e semble those induced i n IS. c o l i . I s t h e m u t a g e n i c i t y o f BPDE d i r e c t l y r e s p o n s i b l e f o r i t s carcinogenicity? Though one i s f a r from b e i n g a b l e t o make a d e f i n i t i v e s t a t e m e n t , t h e r e a r e some i n d i c a t i o n s t h a t t h e answer t o t h i s q u e s t i o n might be no. Recent experiments w i t h mammalian c e l l c u l t u r e systems, w h i c h a l l o w one t o s t u d y t h e p r o g r e s s i o n o f c e l l s from a s t a t e where t h e i r growth i s n o r m a l l y r e g u l a t e d t o a t u m o r i g e n i c s t a t e have r e v e a l e d t h a t t h e t r a n s f o r m a t i o n p r o c e s s r e q u i r e s a t l e a s t two s t e p s ( 8 6 - 8 8 ) • The f i r s t s t e p , which i s induced f o l l o w i n g exposure t o a c a r c i n o g e n ( X - r a y s : 86,88; 3 - m e t h y l c h o l a n t h r e n e : 8 7 ) , o c c u r s w i t h a v e r y h i g h f r e q u e n c y and s e e m i n g l y a f f e c t s e v e r y exposed c e l l i n t h e t r e a t e d p o p u l a t i o n . The f r e q u e n c y o f t h e i n i t i a l event i m p l i e s t h a t i t i s not a m u t a t i o n a l event b u t r a t h e r an e p i g e n e t i c one r e l a t e d , perhaps, to t h e responses i n d u c e d by DNA damage i n IS. c o l i and S* c e r e v i s i a e . The second event i s a v e r y r a r e event c o n s i s t e n t w i t h t h e p o s s i b i l i t y t h a t i t might be m u t a t i o n a l i n n a t u r e . However, s i n c e t h e second event o c c u r s many c e l l g e n e r a t i o n s a f t e r t h e exposure t o DNA damaging a g e n t s , i t seems h i g h l y improbable t h a t i t o c c u r s as a d i r e c t conse quence o f r e p a i r i n g t h e i n i t i a l DNA damage. Thus, t h e l i n k between
In Polycyclic Hydrocarbons and Carcinogenesis; Harvey, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1985.
338
POLYCYCLIC HYDROCARBONS AND CARCINOGENESIS
c a r c i n o g e n e s i s and mutagenesis may s i m p l y be t h a t t h e two p r o c e s s e s o r i g i n a t e from t h e same s t a r t i n g p o i n t , namely DNA damage. Acknowledgments
Downloaded by PENNSYLVANIA STATE UNIV on May 16, 2013 | http://pubs.acs.org Publication Date: July 19, 1985 | doi: 10.1021/bk-1985-0283.ch013
Work i n my l a b o r a t o r y has been supported by g r a n t s from t h e NIH. I am i n d e b t e d t o many o f my p r e s e n t and former c o l l e a g u e s , i n p a r t i c u l a r t o D r s . A . J . Warren and P.L. F o s t e r f o r t h e i r work on the muta g e n i c s p e c i f i c i t y o f c h e m i c a l c a r c i n o g e n s and t o D r . J.H. M i l l e r f o r h i s c o l l a b o r a t i v e e f f o r t i n s t u d y i n g t h e mutagenic s p e c i f i c i t y o f b e n z o [ a ] p y r e n e and a f l a t o x i n B^.
Literature Cited 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21. 22. 23. 24. 25. 26.
Loeb, L.A.; Kunkel, T.A. Annu. Rev. Biochem. 1982, 52, 429-57. Lindahl, T. Annu. Rev. Biochem. 1982, 51, 61-87. Robbins, J.H.; Kraemer, K.H.; Lutzner, M.A.; Festoff, B.W.; Coon, H.G. Ann. Int'l. Med. 1974, 80, 221-48. IARC Monographs on the evaluation of the carcinogenic risk of chemicals to humans, Vol 32, International Agency for Research on Cancer, France, 1983. McCann, J.; Choi, E.; Ames, B.N. Proc. Natl. Acad. Sci. USA 1975, 72, 5135-9. Tabin, C.J.; Bradley, S.M.; Bargman, C.I.; Weinberg, R.A.; Papageorge, A.G.; Scolnick, E.M.; Dhar, R.; Lowy, D.R.; Chang, E.H. Nature 1982, 300, 143-9. Reddy, E.P.; Reynolds, R.K.; Santos, E.; Barbacid, M. Nature 1982, 300, 149-52. Taparowsky, E.; Suard, Y.; Fasano, J.; Shimizu, K.; Goldfarb, M.; Wigler, M. Nature 1982, 300, 762-5. Walker, G.C. Microbiol. Rev. 1984, 48, 60-93. Ruby, S.W.; Szostak, J.W.; Murray, A.W. Methods in Enzymology 1983, 101, 253-68. Ruby, S.W.; Szostak, J.W. Mol. Cell. Biol. 1985, 5, 75-84. Schorpp, M.; Mallick, U.; Rahmsdorf, H.J.; Herrbick, P. Cell 1984, 37, 861-8. Weigle, J.J. Proc. Natl. Acad. Sci. USA 1953, 39, 628-36. Kenyon, C.J.; Walker, G.C. Proc. Natl. Acad. Sci. USA 1980, 77, 2819-23. Little, J.W. Proc. Natl. Acad. Sci. USA 1984, 81, 1375-9. Defais, M.; Fauquet, P.; Radman, M.; Errera, M. Virology 1971, 43, 495-503. Witkin, E. Bacteriol. Rev. 1976, 40, 869-907. Kato, T.; Shinoura, Y. Molec. Gen. Genet. 1977, 156, 121-31. Steinborn, G. Molec. Gen. Genet. 1978, 165, 87-93. Walker, G.C.; Dobson, P.P. Mol. Gen. Genet. 1979, 172, 17-24. Miller, S.; Eisenstadt, E., unpublished observation Perry, K.L.; Walker, G.C. Nature 1982, 300, 278-81. Walker, G.C. Mol. Gen. Genet. 1977, 152, 93-103. Coulondre, C.; Miller, J.H.; Farabaugh, P.J.; Gilbert, W. Nature 1978, 274, 775-80. Gerchman, L.L.; Ludlum, D.B.; Biochim. Biophys. Acta. 1973, 308, 310-16. Singer, B.; Fraenkel-Conrat, H.; Kusmierek, J.T. Proc. Natl. Acad. Sci. USA 1978, 75, 1722-6.
In Polycyclic Hydrocarbons and Carcinogenesis; Harvey, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1985.
Downloaded by PENNSYLVANIA STATE UNIV on May 16, 2013 | http://pubs.acs.org Publication Date: July 19, 1985 | doi: 10.1021/bk-1985-0283.ch013
13. EISENSTADT Mutational Consequences of DNA Damage
339
27. Snow, E.T.; Foote, R.S.; Mitra, S. J. Biol. Chem. 1984, 259, 8095-100. 28. Hofemeister, J.; Kohler, H.; Filippov, V.D. Mol. Gen. Genet. 1979, 176, 265-73. 29. Haynes, R.H.; Kunz, B.A. In "The Molecular Biology of the Yeast Saccharomyces"; Strathern, J.N.; Jones, E.W.; Broach, J.R., Ed.; Cold Spring Harbor Laboratory: Cold Spring Harbor, 1981; pp. 371-414. 30. Linn, S.M.; Roberts, R.J., Ed.; "Nucleases", Cold Spring Harbor Laboratory: Cold Spring Harbor, 1982. 31. Strauss, B.; Rabkin, S.; Sagher, D.; Moore, P. Biochimie 1982, 64, 829-38. 32. Witkin, E.M. Proc. Natl. Acad. Sci. USA 1974, 71, 1930-4. 33. Quillardet, P.; Devoret, R. Biochimie 1982, 64, 789-96. 34. Drake, J.W.; Baltz, R.H. Annu. Rev. Biochem. 1976, 45, 11-37. 35. Witkin, E.M.; Wermundsen, I.E. Cold Spring Harbor Symp. Quant. Biol. 43, 881-6. 36. Foster, P.L.; Eisenstadt, E.; Cairns, J. Nature 1982, 299, 365-7. 37. Miller, J.H. Cell 1982, 31, 5-7. 38. Miller, J.H.; Low, K.B. Cell 1984, 37, 675-82. 39. Essigman, J.M.; Croy, R.G.; Nadzan, A.M.; Busby, W.F., Jr.; Reinhold, V.N.; Buchi, G.; Wogan, G.N. Proc. Natl. Acad. Sci. 1977, 74, 1870-4. 40. Lin, J.K.; Miller, J.H.; Miller, E.C. Cancer Res. 1977, 37, 4430-8. 41. Martin, C.N.; Garner, R.C. Nature 1977, 267, 863-5. 42. Croy, R.G.; Essigman, J.M.; Reinhold, V.N.; Wogan, G.N. Proc. Natl. Acad. Sci USA 1978, 75, 1745-9. 43. Jeffrey, A.M.; Weinstein, I.B.; Jennette, K.W.; Grzeskowiak, K.; Nakanishi, K.; Harvey, R.G.; Autrup, H.; Harris, C. Nature 1977, 269, 348-50. 44. Jeffrey, A.M.; Grzeskowiak, K.; Weinstein, I.B.; Nakanishi, K.; Roller, P.; Harvey, R.G. Science 1979, 206, 1309-11. 45. Meehan, T.; Straub, K.; Calvin, M. Nature 1977, 269, 725-7. 46. King, H.W.S.; Osborne, M.R.; Brookes, P. Chem. Biol. Interact. 1979, 24, 345-53. 47. Osborne, M.R.; Jacobs, S.; Harvey, R.G.; Brookes, P. Carcinogenesis 1981, 2, 553-8. 48. Drinkwater, N.R.; Miller, E.C.; Miller J.A. Biochemistry 1980, 19, 5087-92. 49. Sage, E.; Haseltine, W.A. J. Biol. Chem. 1984, 259, 11098-102. 50. Haseltine, W.A.; Lo, K.M.; D'Andrea, A.D. Science 1980, 209, 929-31. 51. Miller, J.H. In "The Operon"; Miller, J.H.; Reznikoff, W.S., Ed.; Cold Spring Harbor Laboratory: Cold Spring Harbor, 1980; pp. 31-88. 52. Farabaugh, P.J. Nature 1978, 274, 765-9. 53. Schmeissner, U.; Ganem, D.; Miller, J.H. J. Mol. Biol. 1977, 109, 303-26. 54. Calos, M.P.; Johnsrud, L.; Miller, J.H. Cell 1978, 13, 411-8. 55. Schaaper, R.; Glickman, B., personal communication. 56. Eisenstadt, E.; Warren, A.J.; Porter, J.; Atkins, D.; Miller, J.H. Proc. Natl. Acad. Sci. USA 1982, 79, 1945-9.
In Polycyclic Hydrocarbons and Carcinogenesis; Harvey, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1985.
Downloaded by PENNSYLVANIA STATE UNIV on May 16, 2013 | http://pubs.acs.org Publication Date: July 19, 1985 | doi: 10.1021/bk-1985-0283.ch013
340
POLYCYCLIC HYDROCARBONS AND CARCINOGENESIS
57. Foster, P.L.; Eisenstadt, E.; Miller, J.H. Proc. Natl. Acad. Sci. USA 1983, 80, 2695-8. 58. Barrett, R.W.; Tatum, E.L. Cancer Research 1951, 11, 234. 59. Miller, E. Cancer Res. 1978, 38, 1479-96. 60. Ames, B.N.; Durston, W.E.; Yamasaki, E.; Lee, F.D. Proc. Natl. Acad. Sci. USA 1973, 70, 2281-5. 61. Conney, A.H. Cancer Res. 1982, 42, 4875-4917. 62. Harvey, R.G. Acc. Chem. Res. 1981, 14, 218-26. 63. Wood, A.W.; Wislocki, P.G.; Chang, R.L.; Levin, W.; Lu, A.Y.H.; Yagi, H.; Hernandez, O.; Jerina, D.M.; Conney, A.H. Cancer Res. 1976, 36, 3358-66. 64. Malaveille, C.; Kuroki, T.; Sims, P.; Grover, P.L.; Bartsch, H. Mutat. Res. 1977, 313-26. 65. Huberman, A.; Sachs, L.; Yang, S.K.; Gelboin, H.V. Proc. Natl. Acad. Sci. USA 1976, 73, 607-11. 66. Newbold, R.F.; Brookes, P. Nature (London) 1976, 261, 52-54. 67. McCann, J.; Spingarn, N.E.; Kobori, J.; Ames, B.N. Proc. Natl. Acad. Sci. USA 1975, 72, 979-83. 68. Ivanovic, V.; Weinstein, I.B. Cancer Res. 1980, 40, 3508-11. 69. Shapiro, R. Prog. Nucleic Acid Res. Mol. Biol. 1968, 8, 73-112. 70. Schaaper, R.M.; Loeb, L.A. Proc. Natl. Acad. Sci. USA 1981, 78, 1773-7. 71. Schaaper, R.M.; Glickman, B.W.; Loeb, L.A. Cancer Res. 1982, 42, 3480-2. 72. Kunkel, T.A. Proc. Natl. Acad. Sci. USA 1984, 81, 1494-1498. 73. Mizusawa, H.; Lee, C-H.; Kakefuda, T. Mutat. Res. 1981, 82, 47-57. 74. Mizusawa, H.; Lee, C-H.; Kakefuda, T.; McKenney, K.; Shimatake, H.; Rosenberg, M. Proc. Natl. Acad. Sci. USA 1981, 78, 6817-20. 75. Mizusawa, H.; Chakrabarti, S.; Seidman, M. J. Bacteriol. 1983, 156, 926-30. 76. Chakrabarti, S.; Mizusawa, H.; Seidman, M. Mutat. Res. 1984, 126, 127-37. 77. Hsu, W-T.; Lin, E.J.S.; Harvey, R.G.; Weiss, S.B. Proc. Natl. Acad. Sci. USA 1977, 74, 3335-9. 78. Wei, S-J.C.; Desai, S.M.; Harvey, R.G.; Weiss, S.B. Proc. Natl. Acad. Sci. USA 1984, 81, 5936-3940. 79. Fowler, K.W.; Büchi, G.; Essigman, J.M. J. Am. Chem. Soc. 1982, 1051-4. 80. Green, C.L.; Loechler, E.L.; Fowler, K.W.; Essigman, J.M. Proc. Natl. Acad. Sci. USA 1984, 81, 13-7. 81. Razzaque, A.; Mizusawa, H.; Seidman, M.M. Proc. Natl. Acad. Sci. USA 1983, 80, 3010-4. 82. Calos, M.; Lebkowski, J.S.; Botehan, M.R. Proc. Natl. Acad. Sci. USA 1983, 80, 3015-9. 83. Bourre, F.; Sarasin, A. Nature 1983, 305, 68-70. 84. Prakash, L.; Sherman, F. J. Mol. Biol. 1973, 79, 65-82. 85. Coulondre, C.; Miller, J. J. Mol. Biol. 1977, 117, 577-606. 86. Kennedy, A.R.; Fox, M.; Murphy, G.; Little, J.B. Proc. Natl. Acad. Sci. USA 1980, 77, 7262-6. 87. Fernandez, A.; Mondal, S.; Heidelberger, C. Proc. Natl. Acad. Sci. USA 1980, 77, 7272-6. 88. Kennedy, A.R.; Cairns, J.; Little, J.B. Nature 1984, 307, 85-5. RECEIVED May 2, 1985 In Polycyclic Hydrocarbons and Carcinogenesis; Harvey, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1985.