6 The Ozone-Hydrosilane Reaction: A Mechanistic Study
Downloaded by CORNELL UNIV on July 27, 2016 | http://pubs.acs.org Publication Date: June 1, 1972 | doi: 10.1021/ba-1972-0112.ch006
LEONARD SPIALTER, LEROY PAZDERNIK, WILLIAM A. SWANSIGER, GLEN R. BUELL, FREEBURGER
STANLEY BERNSTEIN, and MICHAEL E.
Chemical Research Laboratory, Aerospace Research Laboratories, Wright-Patterson AFB, Ohio 45433
The reaction
of a hydrosilane
quantitative
conversion
moiety.
The
mechanism
elucidated.
It involves
ozone (acting
3
silanol.
·OΗ
radical
Extensive of
mono-,
di-,
bond
rapid,
the
Si-OH
has now
been
silicon
of
atom,
fol
attack by the
bound
and decomposition
into
recombine
concerning properties and
to
complexation
the
electrophilic hydrogen,
other structure-dependent number
with
pair which
data
Si-H
of this conversion
as a nucleophile)
ozone upon the hydridic R Si·
the
a fast, reversible
lowed by rate-determining a
with ozone results in the
of
the
to produce
relative
in the
trihydrosilanes
ozonation are
the
rates
and of a
presented.
* T p h e use of o z o n e as a n o x i d a n t f o r o r g a n i c substrates has b e e n k n o w n A
f o r s e v e r a l decades, a n d the s c o p e a n d m e c h a n i s m ( s ) of these o x i d a
tions h a v e e x p e r i e n c e d c o n s i d e r a b l e i n v e s t i g a t i o n (1,
2).
H o w e v e r , it
was n o t u n t i l 1962 t h a t the i n i t i a l r e p o r t of the o z o n e o x i d a t i o n t i o n ) of organosilanes a p p e a r e d
(3).
(ozona
I n 1965, i t w a s d i s c o v e r e d t h a t
ozone w o u l d rapidly, cleanly, a n d quantitatively convert an S i - Η moiety to the c o r r e s p o n d i n g s i l a n o l ( S i - O H ) (4).
S u b s e q u e n t i n v e s t i g a t i o n s of
this r e a c t i o n e l u c i d a t e d its s c o p e a n d r e s u l t e d i n suggested m e c h a n i s t i c p a t h w a y s (5-11).
A l t h o u g h the o z o n a t i o n of the C - H b o n d is r e l a t i v e l y
s l o w a n d y i e l d s , i n g e n e r a l , a m i x t u r e of p r o d u c t s ( I , 12-15),
that of the
S i — H b o n d is r a p i d a n d affords o n l y s i l a n o l . T h e p r e s e n t p a p e r describes a r a t i o n a l m e c h a n i s m f o r t h e o z o n a t i o n of the S i — H b o n d .
D u r i n g the
i n v e s t i g a t i o n , c o n s i d e r a b l e d a t a c o n c e r n i n g s u b s t i t u e n t e l e c t r o n i c effects o n s i l i c o n w e r e a c c u m u l a t e d a n d are d e s c r i b e d .
Their implications i n
o r g a n o s i l i c o n c h e m i s t r y are also d i s c u s s e d . 65
Bailey; Ozone Reactions with Organic Compounds Advances in Chemistry; American Chemical Society: Washington, DC, 1972.
66
OZONE REACTIONS W I T H ORGANIC COMPOUNDS
Downloaded by CORNELL UNIV on July 27, 2016 | http://pubs.acs.org Publication Date: June 1, 1972 | doi: 10.1021/ba-1972-0112.ch006
Experimental Materials. Solvents u s e d i n c l u d e d hexane, c a r b o n t e t r a c h l o r i d e , a n d m e t h y l e n e c h l o r i d e , a l l of s p e c t r o q u a l i t y a n d f u r t h e r p u r i f i e d b y s a t u r a tion w i t h ozone followed b y nitrogen p u r g i n g a n d distillation. F o r ozone g e n e r a t i o n , o x y g e n gas, d r i e d b y passage t h r o u g h a d r y ice-acetone c o l d t r a p , was i n t r o d u c e d i n t o a W e l s b a c h m o d e l T - 2 3 l a b o r a t o r y ozonator o p e r a t e d at 10 volts a n d 7 p s i g . T h e effluent gas, a b o u t 4 % ozone i n o x y g e n , w a s passed t h r o u g h a n adjustable s t r e a m splitter for flow c o n t r o l a n d t h e n b u b b l e d t h r o u g h a saturator c o n t a i n i n g the solvent also b e i n g u s e d i n the r e a c t i o n system. ( F o r the experiments w i t h oxygen-free ozone, the o z o n e was first s e l e c t i v e l y a d s o r b e d f r o m the ozonator effluent s t r e a m o n t o s i l i c a g e l at — 77 ° C a n d t h e n d e s o r b e d b y w a r m i n g a n d e l u t i o n b y a d r y a r g o n stream. ) T h e h y d r o s i l a n e reagents u s e d , w h e r e a v a i l a b l e , w e r e o b t a i n e d f r o m c o m m e r c i a l s u p p l i e r s s u c h as P i e r c e C h e m i c a l ( R o c k f o r d , 111.), P e n i n s u l a r C h e m Research (Gainesville, F l a . ) , and Matheson, Coleman and Bell ( N o r w o o d , O h i o ) . O t h e r s w e r e s y n t h e s i z e d b y the l i t h i u m a l u m i n u m h y d r i d e or d e u t e r i d e ( A l f a C h e m i c a l , B e v e r l y , M a s s . ) r e d u c t i o n of a p p r o p r i a t e o r g a n i c c h l o r o - or fluorosilane, either p u r c h a s e d f r o m the a b o v e - m e n t i o n e d sources or s y n t h e s i z e d b y c o n v e n t i o n a l routes i n v o l v i n g o r g a n o m a g n e s i u m or - l i t h i u m condensations w i t h halosilanes. A l l s u c h c o m p o u n d s w e r e at least 9 8 % p u r e as d e t e r m i n e d b y v a p o r - p h a s e c h r o m a t o g r a p h y ( V P C ) . S t r u c t u r a l i d e n t i t y was e s t a b l i s h e d b y m o l e c u l a r analysis, i n f r a r e d , a n d N M R s p e c t r o s c o p y w h e r e necessary. A new compound synthesized was 2,2'-biphenylenylsilane, b y L i A l H r e d u c t i o n of 2 , 2 - b i p h e n y l e n y l d i f l u o r o s i l a n e ( p r o v i d e d b y A n d e r son C h e m i c a l D i v i s i o n , Stauffer C h e m i c a l C o . , A d r i a n , M i c h . ) w i t h m.p. 3 6 . 6 ° C , b . p . 8 6 ° C (0.31 m m . ) . Anal C a l c d for S i C H : S i , 15.41; C , 79.06; H , 5.53. F o u n d ( G a l b r a i t h M i c r o a n a l y t i c a l L a b , K n o x v i l l e , T e n n . ) : S i 15.12; C , 78.92; H , 5.61. Ozone Competition Reaction Procedures. I n t h e r e l a t i v e rate studies, t h e s o l v e n t - s a t u r a t e d ozone—oxygen s t r e a m was passed into a glass b u b b l e r r e a c t o r vessel c h a r g e d w i t h 4 m l of a b o u t 4 X 1 0 " M c o n c e n t r a t i o n of e a c h of the t w o silanes to b e c o m p e t i t i v e l y o z o n i z e d as w e l l as of a n inert s a t u r a t e d a l i p h a t i c h y d r o c a r b o n to f u n c t i o n as i n t e r n a l s t a n d a r d . ( F o r e x a m p l e , n - u n d e c a n e w a s u s e d for the t r i b u t y l s i l a n e / t r i h e x y l s i l a n e s t u d y . ) T h e effluent f r o m the r e a c t o r passed t h r o u g h a s o l v e n t - f i l l e d b u b b l e c o u n t e r to v i s u a l i z e t h e flow. T h e i n l e t s t r e a m splitter m e n t i o n e d e a r l i e r w a s a d j u s t e d to a l l o w 2 - 4 h o u r s for e a c h run's c o m p l e t i o n , as d e t e r m i n e d b y experience. T h e t e m p e r a t u r e w a s c o n t r o l l e d at 0 ° C i n b o t h the saturator a n d the reactor b y a h ice b a t h . T o f o l l o w the course of the r e a c t i o n , s m a l l (0.1 m l ) a l i q u o t s w e r e p e r i o d i c a l l y r e m o v e d a n d a n a l y z e d b y gas c h r o m a t o g r a p h y o n a 150-ft 0.1 i n c h i d c a p i l l a r y c o l u m n c o a t e d w i t h D o w - C o r n i n g D C - 5 5 0 silicone. P e a k areas w e r e d e t e r m i n e d a n d c o n v e r t e d to c o n c e n t r a t i o n values b y reference to the area of the i n t e r n a l s t a n d a r d p e a k . F r o m the u n r e a c t e d f r a c t i o n ( S i ) ^/ ( S i ) , of e a c h p a i r e d c o m p e t i n g silane S i at s a m p l i n g t i m e t was c o m p u t e d the r e l a t i v e r a t e constant fc i, the r a t i o of the c o r r e s p o n d i n g first o r d e r ( i n s i l a n e ) rate constants, b y the e a r l i e r r e p o r t e d ( 5 , 11) equation: 4
1 2
1 0
2
0
re
Bailey; Ozone Reactions with Organic Compounds Advances in Chemistry; American Chemical Society: Washington, DC, 1972.
6.
spiALTER E T A L .
The
Table I.
Ozone-Ηydrosilane
Relative R a t e / S a *
Silane
&rel
T r i s ( p e r h y d r o - l - n a p h t h y 1) s i l a n e Tricyclohexylsilane tert-Butyldicyclohexylsilane Trihexylsilane Tributylsilane Triethylsilane 3 , 3 , 3 - T r i f l u o r o p r o p y l d i m e t h y lsilane D i c h l o r o m e t h y l d i m e t h y lsilane Tris(3,3,3-trifluoropropyl)silane Phenyldimethylsilane Diisopropylsilane Chloromethyldimethylsilane Diphenylmethylsilane Triphenylsilane Dibutylsilane Triethoxysilane Phenylmethylsilane 2 , 2 - D i p h e n y l e n y lsilane Diphenylsilane Cyclohexylsilane Dibenzylsilane H e x y lsilane Phenylsilane
Downloaded by CORNELL UNIV on July 27, 2016 | http://pubs.acs.org Publication Date: June 1, 1972 | doi: 10.1021/ba-1972-0112.ch006
c
Correlation 4
Σσ*
l0g fc l
Λ
re
378 236 226 115 100 84 51.7 41.7 35.6 30.7 28.5 23.6 23.0 23.0 21.7 19.0 12.0 9.6 7.9 3.65 3.31 3.04 2.10
67
Reaction
4
Σσ*
d)U
b a c k d o n a t i o n f r o m the substituent i n t o the v a c a n t 3d o r b i t a l s of s i l i c o n (21,
r e s u l t i n g i n p a r t i a l c a n c e l l a t i o n of the i n d u c t i v e e l e c t r o n - w i t h
22),
d r a w i n g p o w e r of the g r o u p .
Downloaded by CORNELL UNIV on July 27, 2016 | http://pubs.acs.org Publication Date: June 1, 1972 | doi: 10.1021/ba-1972-0112.ch006
I n this research, since the silanes i n c l u d e d m o n o - , d i - , a n d t r i h y d r o species, the s u m of all four σ* values w a s t a k e n as i n d i c a t i v e of the t o t a l e l e c t r o n i c e n v i r o n m e n t of s i l i c o n . W h e n t h e l o g a r i t h m s of t h e r e l a t i v e 4
rates ( l o g excellent
fc i) re
w e r e p l o t t e d against 2 σ *
(Table
I and Figure 1),
c o r r e l a t i o n was o b s e r v e d for m o s t substituents
(vide
an
infra).
L e a s t - s q u a r e s analysis of the d a t a afforded E q u a t i o n 1. log A w =
-1.2513 Σα* +
Substituents w h o s e s t a n d a r d T a f t removed
o| -4
2.2166
σ*
(1)
values p r o d u c e d
points
far
f r o m the p l o t of F i g u r e 1 i n c l u d e d p h e n y l , c h l o r o m e t h y l , d i -
I
I
0
.4
I 4
.8
I
1.2
Σσ* Figure
1.
Hydrosilane-ozone
rate/Σσ*
correlation
Bailey; Ozone Reactions with Organic Compounds Advances in Chemistry; American Chemical Society: Washington, DC, 1972.
I
1.6
6.
The Ozone-Ηydrosïlane
SPIALTER E T A L .
Table II.
N e w asi* Values
β l-C
-.26 -.01 -.01 .01 .05 .09 .18
H -»
1 0
i r
F3C—CH2—CH2—
C1 CH2,2'-Biphenylenyl Phenyl C H 0C1CH 2
2
5
2
69
Reaction
σ*'
σ* —as»*
0.32 1.94
0.33 1.95
0.60 1.35 1.05
0.55 1.26 .87
e
d e
T h i s paper. M i x t u r e of 1-decalinyl isomers o b t a i n e d b y c a t a l y t i c hydrogénation of 1 - n a p h t h y l on silcon (δ). T h i s value is p r o b a b l y well b e h a v e d a n d equal to σ*. I n exact agreement w i t h value of A t t r i d g e . S u b s t a n t i a l l y different from calculated value of 0.75 for C H 0 - , whose standard σ* is 1.35 (see text). ' S t a n d a r d T a f t values (20, 29). α
Downloaded by CORNELL UNIV on July 27, 2016 | http://pubs.acs.org Publication Date: June 1, 1972 | doi: 10.1021/ba-1972-0112.ch006
6
c
d
e
3
chloromethyl,
ethoxy,
a n d 3,3,-trifluoropropyl.
These
points
may
be
b r o u g h t i n t o c o r r e l a t i o n b y r e d e f i n i n g the substituent constant as a i * , S
w h o s e v a l u e m a y b e d e d u c e d f r o m fc i. T a b l e I I lists the v a l u e s of re
σ$*
thus d e r i v e d . T h e factor w h i c h these substituents h a v e i n c o m m o n is the presence of u n s h a r e d e l e c t r o n p a i r s or Π-electrons close to the s i l i c o n atom. T h e v a l u e of σ ΐ* for p h e n y l , 0.05, δ
agrees w i t h t h a t c a l c u l a t e d f o r
p h e n y l f r o m the S i - Η s t r e t c h i n g f r e q u e n c y t w e e n the latter a n d 0.60, a t t r i b u t e d to (p —> d)li
This discrepany
(21).
be
the " n o r m a l " σ* for p h e n y l , has also b e e n
b a c k b o n d i n g (21, 23-25).
H o w e v e r , the h e r e -
o b s e r v e d a i * for ethoxy, —0.09, does n o t agree w i t h the v a l u e of S
0.75
d e r i v e d f r o m V Î-H stretch for m e t h o x y a l t h o u g h t h e i r σ* values are q u i t e S
similar—1.35
a n d 1.45,
respectively.
I n d e e d , a l l of the " e l e c t r o n - r i c h "
substituents i n d i c a t e a n e a r c a n c e l l a t i o n of i n d u c t i v e a n d
mesomeric
effects. H o w e v e r , alternate explanations of the s o - c a l l e d (p - » d)U d o n a t i o n exist (26, Improved
back
27).
u n d e r s t a n d i n g a n d treatment of
the p h e n y l case
was
d e v e l o p e d f r o m the r e c o g n i t i o n that the d e r i v e d a i * ( C H - ) is almost 6
S
5
identical w i t h the "standard" H a m m e t t σ value, a parameter containing both mesomeric
and inductive contributions.
Since p u b l i s h e d data on
the fc ei of o z o n a t i o n of s u b s t i t u t e d p h e n y l d i m e t h y l s i l a n e s w e r e a v a i l a b l e r
(11),
a n d i n c l u d e d the
common
point, phenyldimethylsilane,
simple
m a t h e m a t i c a l m a n i p u l a t i o n c o u l d b r i n g these a n d the present d a t a o n to t h e same scale. W h e n the H a m m e t t σ f o r t h e s u b s t i t u t e d p h e n y l s was 4
u s e d i n the 2σ* c a l c u l a t i o n , a l l of the c o m p o u n d s c o r r e l a t e d w e l l w i t h E q u a t i o n 1. A c o m p a r i s o n of the f o u n d a * ( X - C H - ) a n d t h e i r H a m m e t t σ values ( 2 9 ) appears i n T a b l e I I I . S i
6
4
Bailey; Ozone Reactions with Organic Compounds Advances in Chemistry; American Chemical Society: Washington, DC, 1972.
70
OZONE REACTIONS W I T H
ORGANIC
COMPOUNDS
I n essence, t h e n , t h e e l e c t r o n i c e n v i r o n m e n t of the s i l i c o n c a n d e s c r i b e d b y a substituent v a l u e ,
w h i c h is ( a )
σ* i f the substituent is a n a l k y l g r o u p , ( b )
be
e q u a l to the T a f t
e q u a l to the H a m m e t t σ i f
t h e substituent is p h e n y l or s u b s t i t u t e d p h e n y l , a n d ( c )
for substituents
b e a r i n g u n s h a r e d e l e c t r o n p a i r s close t o the s i l i c o n , e a c h σ * m u s t b e 81
individually determined. T h e σ * 8
v a l u e s c o m p u t e d i n this s t u d y a p p e a r
in Table II. Reaction Mechanism. T h e p r o p o s e d m e c h a n i s m for t h e o z o n e - h y d r o silane r e a c t i o n ( 7 )
s h o w n i n E q u a t i o n 2, as d e d u c e d b y a n a l y z i n g a n d
c o r r e l a t i n g d a t a o n r e l a t i v e rates, substituent effects, d e u t e r i u m isotope
Downloaded by CORNELL UNIV on July 27, 2016 | http://pubs.acs.org Publication Date: June 1, 1972 | doi: 10.1021/ba-1972-0112.ch006
effects, l o w t e m p e r a t u r e N M R , a n d u l t r a v i o l e t spectroscopy for a r a n g e of h y d r o s i l a n e s , is a m u l t i s t e p one as f o l l o w s : 0
R Si—H
+
3
p r i m a r y ) exactly
A l t h o u g h this e x p l a n a t i o n s h o u l d n o t
fortuitous
coincidence
required
makes
be it
unattractive. A s e c o n d p o s s i b i l i t y is t h a t the o z o n e forms some k i n d of
complex
w i t h the silane before attack o n the h y d r o g e n . F r o m this c o m p l e x , a l l h y d r o g e n s are e q u a l l y accessible, a n d the d e c o m p o s i t i o n is first o r d e r i n complex.
I n t h e h o p e of o b s e r v i n g s u c h a c o m p l e x a t i o n , the u l t r a v i o l e t
s p e c t r a of o z o n e / s i l a n e m i x t u r e s i n c a r b o n t e t r a c h l o r i d e w e r e e x a m i n e d (33).
A l t h o u g h n o s p e c t r a l b a n d s a t t r i b u t a b l e to a s i l i c o n - o z o n e
complex
w e r e f o u n d , i t w a s o b s e r v e d t h a t any s i l i c o n - c o n t a i n i n g species c a t a l y z e d the d e c o m p o s i t i o n
of ozone.
T h a t is, n o t o n l y t r i e t h y l s i l a n e , b u t t r i -
e t h y l s i l a n o l a n d t e t r a m e t h y l s i l a n e as w e l l , destroy o z o n e i n c a r b o n t e t r a c h l o r i d e . T h i s r e s u l t i n d i c a t e s a n association of the o z o n e w i t h the s i l i c o n a t o m , regardless of t h e f u n c t i o n a l i t y of the s i l i c o n species types e x a m i n e d )
3
( w i t h i n the
a n d c o m p l e t e l y i n d e p e n d e n t of the s i l i c o n substrate's
4
Bailey; Ozone Reactions with Organic Compounds Advances in Chemistry; American Chemical Society: Washington, DC, 1972.
6.
spiALTER E T A L .
The Ozone-Η y drosilane
73
Reaction
a b i l i t y to enter i n t o a subsequent t r a n s f o r m a t i o n r e a c t i o n . I n v i e w of the electropositive n a t u r e of s i l i c o n , the n u c l e o p h i l i c association of ozone w i t h t h e s i l i c o n is the l i k e l y c a n d i d a t e for a s u i t a b l e i n t e r m e d i a t e .
Possible
models for this t y p e of i n t e r a c t i o n r a n g e f r o m one of w e a k electrostatic a t t r a c t i o n , 3, to a f u l l y p e n t a c o o r d i n a t e s i l i c o n species, 4. I n a n a t t e m p t to observe
the c o m p l e x ,
a l o w temperature N M R
i n v e s t i g a t i o n of mixtures of o z o n e w i t h t r i e t h y l s i l a n o l a n d w i t h t e t r a methylsilane were conducted.
A t — 57 ° C i n m e t h y l e n e c h l o r i d e , there
was no d i s c e r n i b l e change i n the p r o t o n N M R of either t r i e t h y l s i l a n o l or t e t r a m e t h y l s i l a n e as the o z o n e c o n c e n t r a t i o n of the r e s u l t i n g b l u e
Downloaded by CORNELL UNIV on July 27, 2016 | http://pubs.acs.org Publication Date: June 1, 1972 | doi: 10.1021/ba-1972-0112.ch006
solutions was i n c r e a s e d to the p o i n t of s a t u r a t i o n . T w o possible e x p l a n a tions for these results a r e : ( a ) the c o m p l e x exists i n e q u i b r i u m w i t h the silane a n d ozone, a n d the a c t u a l c o n c e n t r a t i o n of c o m p l e x is too to be d e t e c t e d b y N M R (less t h a n 5%
small
i n this e x p e r i m e n t ) , or ( b )
c h e m i c a l shifts of the silane protons are not a l t e r e d b y
the
complexation.
O f the t w o explanations, the first seems the m o r e reasonable, p a r t i c u l a r l y if the c o m p l e x has m o r e of the character of 4 t h a n of 3. T h e exact n a t u r e of the c o m p l e x is i m p o s s i b l e to d e t e r m i n e at this t i m e , b u t one significant o b s e r v a t i o n is that o p t i c a l l y a c t i v e p e r h y d r o - l - n a p h t h y l p h e n y l m e t h y l s i l a n o l undergoes s l o w r a c e m i z a t i o n u p o n s t a n d i n g at r o o m t e m p e r a t u r e i n a pentane—ozone s o l u t i o n . T h i s is consistent w i t h r e v e r s i b l e c o m p l e x a t i o n to a species h a v i n g some p e n t a c o o r d i n a t e character f r o m w h i c h r a c e m i z a t i o n m a y o c c u r via p s e u d o r o t a t i o n
(34).
T h e s e d a t a suggest that the i n i t i a l step i n t h e r e a c t i o n of w i t h the S i - Η b o n d is the r e v e r s i b l e f o r m a t i o n of a s i l i c o n - o z o n e plex.
ozone com
T h i s cannot be the rate step since ρ w o u l d h a v e to b e p o s i t i v e
( n u c l e o p h i l i c a t t a c k ) a n d no p r i m a r y isotope effect w o u l d b e p r e d i c t e d . T o e l i m i n a t e the s t a t i s t i c a l factor for the d i - a n d t r i h y d r o s i l a n e s , attack b y o z o n e o n the h y d r i d i c p r o t o n f r o m w i t h i n the c o m p l e x m u s t be m u c h m o r e f a v o r a b l e t h a n d i r e c t encounter a n d r e a c t i o n w i t h
uncomplexed
ozone and S i - H . Step(s) B i and B — H y d r o g e n Abstraction. H o w t h e o z o n a t i o n p r o 2
ceeds f r o m t h e c o m p l e x is n o w c o n s i d e r e d . I f d i r e c t σ-bond i n s e r t i o n ( 1 ) is e l i m i n a t e d o n the basis of isotope effects as discussed above, t h e n 5 a n d 6 are the v i a b l e alternatives. T h e t r a n s i t i o n state 5 c o u l d collapse to f o r m the s i l i c o n h y d r o p e r o x i d e 7, w h i l e t r a n s i t i o n state 6 c o u l d collapse to f o r m the s i l i c o n h y d r o t r i o x i d e 8 ( p a t h B i ) ; a l t e r n a t i v e l y , 6 c o u l d collapse d i r e c t l y to i o n o r r a d i c a l p a i r s ( p a t h B ) . 2
T h e transformation
5 - » 7 is n o t m e a n t to suggest that a t o m i c o x y g e n is the other p r o d u c t . S i n c e the r e a c t i o n o r d e r i n o z o n e has n o t b e e n d e t e r m i n e d , the fate of the other o x y g e n a t o m ( s ) is m o o t .
Bailey; Ozone Reactions with Organic Compounds Advances in Chemistry; American Chemical Society: Washington, DC, 1972.
74
OZONE REACTIONS W I T H ORGANIC COMPOUNDS
R Si
H
3
^
0
3
0—0 7
5
•0-0 RsSic' Downloaded by CORNELL UNIV on July 27, 2016 | http://pubs.acs.org Publication Date: June 1, 1972 | doi: 10.1021/ba-1972-0112.ch006
R si00H
\0
R3S1OOOH
R Si(+or«) 8
I f t h e r e a c t i o n is f o u r - c e n t e r e d should be formed.
(5 - »
7),
0
2
(-or-)OH
a silicon hydroperoxide
T h e r e a c t i o n of t r i e t h y l s i l a n e w i t h o z o n e w a s m o n i -
t o r e d b y N M R at — 5 7 ° C .
T h e o n l y species o b s e r v e d u n d e r these c o n d i -
tions w e r e t h e silane a n d the s i l a n o l ; n o e v i d e n c e f o r a h y d r o p e r o x i d e i n t e r m e d i a t e w h i c h m i g h t h a v e b e e n stable at t h a t t e m p e r a t u r e
(35)
w a s detected, a n d c h e m i c a l tests for peroxides p r o v e d n e g a t i v e ( 5 , 6 ) . A s the c o n c e n t r a t i o n of o z o n e w a s i n c r e a s e d f r o m z e r o to s a t u r a t i o n , the s p e c t r u m of the silane c o m p l e t e l y d i s a p p e a r e d w i t h the c o n c u r r e n t a p p e a r a n c e of the s i l a n o l N M R s p e c t r u m . I f the r e a c t i o n is be formed.
five-centered
( 6 - » 8 ) , a silicon hydrotrioxide may
S i n c e there has b e e n n o p r e v i o u s r e p o r t of a s i l i c o n h y d r o -
t r i o x i d e , the s t a b i l i t y of a species s u c h as 8 u n d e r these c o n d i t i o n s c a n o n l y b e e s t i m a t e d . A m o n g c a r b o n analogs, the r e p o r t e d d i a l k y l t r i o x i d e s h a v e o n l y m a r g i n a l s t a b i l i t y at l o w temperatures hydrotrioxides, proposed a n d ethers
(38),
(36, 3 7 ) ,
and alkyl
as i n t e r m e d i a t e s i n the o z o n a t i o n of
d e c o m p o s e at ca.
— 10°C.
alcohols
A d m i t t e d l y , speculative
e x t r a p o l a t i o n b a s e d o n t h e c o m p a r a t i v e stabilities of other types of s i l i c o n a n d c a r b o n analogs suggests t h a t a s i l i c o n h y d r o t r i o x i d e 8, s h o u l d have b e e n o b s e r v a b l e i f i t h a d b e e n present, b u t this r e q u i r e m e n t is d e b a t a b l e . Steps C and D — T h e N a t u r e of the Recombining Fragments. a s s u m p t i o n of the i n t e r m e d i a c y of a
five-center
Upon
t r a n s i t i o n state, the q u e s -
t i o n t h e n arises as to h o w 6 ( o r 8 ) d e c o m p o s e s to the s i l a n o l . T h e b r e a k d o w n c o u l d b e via r a d i c a l or i o n p a i r s . T h e l a r g e p r i m a r y isotope effect suggests a r a d i c a l p a t h w a y ( 1 2 ) . ozonation
of
optically
active
F u r t h e r i n s i g h t w a s g a i n e d f r o m the
perhydro-l-naphthylphenylmethylsilane,
w h i c h y i e l d s the s i l a n o l 1 0 w i t h r e t e n t i o n of c o n f i g u r a t i o n ( E q u a t i o n 3 ) . P r o l o n g e d exposure of 1 0 to o z o n e causes r a c e m i z a t i o n , b u t t h e p r o d u c t
Bailey; Ozone Reactions with Organic Compounds Advances in Chemistry; American Chemical Society: Washington, DC, 1972.
6.
spiALTER E T A L .
The Ozone-Ηydrosilane
75
Reaction
10
i n i t i a l l y has r e t a i n e d its c o n f i g u r a t i o n . P r e s u m a b l y , the silane 9 is also Downloaded by CORNELL UNIV on July 27, 2016 | http://pubs.acs.org Publication Date: June 1, 1972 | doi: 10.1021/ba-1972-0112.ch006
r a c e m i z e d b y o z o n e (via faster.
R e t e n t i o n of
t r a t e d (39)
c o m p l e x a t i o n ) , b u t t h e rate of o z o n i z a t i o n is
configuration b y
s i l y l r a d i c a l s has b e e n
whereas the o p t i c a l p r o p e r t i e s ( i n d e e d , the v e r y
of t r i v a l e n t s i l i c o n i u m ions h a v e n o t b e e n established.
demon-
existence)
F o r this reason,
d e c o m p o s i t i o n of 6 ( o r 8 ) t h r o u g h a r a d i c a l p a i r w i t h subsequent, r a p i d r e c o m b i n a t i o n is the m e c h a n i s m w h i c h appears most c o m p a t i b l e
with
the e x p e r i m e n t a l observations. Conclusions W h e n a l l the m e c h a n i s t i c e v i d e n c e is t a k e n i n t o c o n s i d e r a t i o n , the f o l l o w i n g r e a c t i o n sequence appears to best satisfy the d a t a . T h e silane undergoes
reversible complexation
(A)
w i t h the ozone, the
b e i n g present i n o n l y s m a l l concentrations.
complex
T h e rate step t h e n i n v o l v e s
e l e c t r o p h i l i c attack o n the h y d r i d i c h y d r o g e n , p a s s i n g t h r o u g h a
five-
center t r a n s i t i o n state. T h i s m a y d e c o m p o s e to either a s i l y l h y d r o t r i o x i d e ( B i ) or d i r e c t l y to the r a d i c a l p a i r ( B ) . 2
T h e silyl hydrotrioxide, if pres
ent, m u s t d e c o m p o s e r a p i d l y to the r a d i c a l p a i r ( C ) . then r e c o m b i n e s
This radical pair
w i t h r e t e n t i o n of c o n f i g u r a t i o n to afford t h e u l t i m a t e
p r o d u c t , the s i l a n o l ( D ) . W i t h r e g a r d to the
five-center
t r a n s i t i o n state, K e n n e t h W i b e r g ( Y a l e
U n i v e r s i t y ) has k i n d l y p o i n t e d out to us t h a t the m a g n i t u d e of the isotope effect supports the
five-centered
activated complex w h i c h w e have postu
l a t e d . I n the s m a l l e r r i n g complexes, the v i b r a t i o n a l m o d e c o n v e r t e d to the r e a c t i o n c o o r d i n a t e is a b e n d i n g m o d e , w h i c h w o u l d n o t p r o d u c e a l a r g e isotope
effect.
s t r e t c h i n g m o d e s are
I n the
five-centered
converted,
complex,
both bending
a n d the l a r g e isotope
and
effect is
not
F i n a l l y , a referee has suggested t h a t 8 c o u l d d e c a y to p r o d u c t
via
unexpected. a concerted pathway (i)
[p. 7 6 ] .
A l t h o u g h s u c h a p a t h w a y cannot
be
r u l e d out, w e f e e l that t h e l a r g e isotope effect suggests the r a d i c a l p a i r , probably from B . 2
B o t h i a n d the r a d i c a l m e c h a n i s m w o u l d p r o c e e d w i t h
r e t e n t i o n of c o n f i g u r a t i o n .
Bailey; Ozone Reactions with Organic Compounds Advances in Chemistry; American Chemical Society: Washington, DC, 1972.
76
OZONE REACTIONS W I T H ORGANIC
R Si—Ο—0 3
R SiOH + 0 3
COMPOUNDS
2
(i)
Η—0
Downloaded by CORNELL UNIV on July 27, 2016 | http://pubs.acs.org Publication Date: June 1, 1972 | doi: 10.1021/ba-1972-0112.ch006
Literature Cited 1. Long, L.Jr.,Chem. Rev. (1940) 27, 437. 2. Bailey, P. S., Chem. Rev. (1958) 58, 925. 3. Barry, A. J., Beck, H. N., "Inorganic Polymers," pp. 221, 236, 256, 296, Academic, New York, 1962. 4. Spialter, L., Austin, J. D., J. Amer. Chem. Soc. (1965) 87, 4406. 5. Austin, J. D., Spialter, L., ADVAN. CHEM. SER. (1968) 77, 26-31. 6. Spialter, L., Austin, J. D., Inorg. Chem. (1966) 5, 1975. 7. Spialter, L., Pazdernik, L., Bernstein, S., Swansiger, W. Α., Buell, G. R., Freeburger, M. E., J. Amer. Chem. Soc. (1971) 93, 5682. 8. Spialter, L., Swansiger, W. Α., J. Amer. Chem. Soc. (1968) 90, 2187. 9. Spialter, L., Swansiger, W. Α., "Resumes of Communications," Second Inter national Symposium on Organosilicon Chemistry, Bordeaux, pp. 183-184, 1968. 10. Spialter, L., Swansiger, W. Α., Pazdernik, L., Freeburger, M. E., J. Organometal. Chem. (1971) 27, C25. 11. Ouellette, R. J., Marks, D. L.,J.Organometal. Chem. (1968) 11, 407. 12. Batterbee, J. E., Bailey, P. S.,J.Org. Chem. (1967) 32, 3899. 13. Erickson, R. E., Hanson, R. T., Harkins, J., J. Amer. Chem. Soc. (1968) 90, 6777. 14. Erickson, R. E., Bakalik, D., Richards, C., Scanlon, M., Huddleston, G., J. Org. Chem. (1966) 31, 461. 15. White, H. M., Bailey, P. S., J. Amer. Chem. Soc. (1965) 30, 3037. 16. Becsey, J., Berke, L., Callan, J. R., J. Chem. Ed. (1968) 45, 728. 17. Ponomarenko, V. Α., Egorov, Yu P., Izvest. Akad. Nauk S.S.S.R., Otdel. Khim. Nauk (1960) 1133. 18. Smith, A. L., Angelotti, N.C.,Spectrochim. Acta (1959) 15, 412. 19. Thompson, H. W., Spectrochim. Acta (1960) 16, 238. 20. Newman, M. S., Ed., "Steric Effects in Organic Chemistry," p. 619, Wiley, New York, 1956. 21. Attridge, C. J., J. Organometal. Chem. (1958) 13, 259. 22. Egorochkin, A. N., Vyazankin, N. S., Dokl. Akad. Nauk S.S.S.R., (1970) 193, 590. 23. Alt, H., Bock, H., Tetrahedron (1969) 25, 4825. 24. Bock, H., Alt, H., Chem. Ber. (1970) 103, 1784. 25. Bock, H., Alt, H., J. Amer. Chem. Soc. (1970) 92, 1569. 26. Pitt, C. G., J. Organometal Chem. (1970) 24, C35. 27. Ramsey, B. G., "Electronic Transitions in Organometalloids," pp. 76ff, Aca demic, New York, 1969. 28. McDaniel, D. H., Brown, H. C., J. Org. Chem. (1958) 23, 420; see also Ref. 29, p. 87. 29. Hine, J., "Physical Organic Chemistry," 2nd ed., p. 97, McGraw-Hill, New York, 1962. 30. Westheimer, F. H., Chem. Rev. (1961) 61, 265. 31. Melander, L., "Isotope Effects on Reaction Rates," p. 20, Ronald Press, New York, 1960. 32. Seyferth, D., Damrauer, R., Mui, J. Y.-P., Jula, T. F., J. Amer. Chem. Soc. (1968) 90, 2944.
Bailey; Ozone Reactions with Organic Compounds Advances in Chemistry; American Chemical Society: Washington, DC, 1972.
6.
SPIALTER
E T AL.
The Ozone-Hydrosilane
Reaction
77
33. Nakagawa, T . W., Andrews, L . J., Keefer, R. M., J. Amer. Chem. Soc. (1960) 82, 269. 34. Muetterties, E. L., Accounts Chem. Res. (1970) 3, 266. 35. Dannley, R. L., Jalics, G.,J.Org. Chem. (1965) 30, 2417. 36. Bartlett, P. D., Guaraldi, G.,J.Amer. Chem. Soc. (1967) 89, 4799. 37. Mill, T., Stringham, R. S., J. Amer. Chem. Soc. (1968) 90, 1064. 38. Murray, R. W., Lumma, W. C., Lin, J. W.-P., J. Amer. Chem. Soc. (1970) 92, 3205. 39. Brook, A. G., Duff, J. M.,J.Amer. Chem. Soc. (1969) 91, 2118. 1971.
Downloaded by CORNELL UNIV on July 27, 2016 | http://pubs.acs.org Publication Date: June 1, 1972 | doi: 10.1021/ba-1972-0112.ch006
R E C E I V E D May 20,
Bailey; Ozone Reactions with Organic Compounds Advances in Chemistry; American Chemical Society: Washington, DC, 1972.