7 The Ozonolysis of Organomercurials WILLIAM
L. WATERS,
PAUL E. PIKE, and JOSEPH G. RIVERA
Downloaded by UNIV OF MINNESOTA on August 28, 2013 | http://pubs.acs.org Publication Date: June 1, 1972 | doi: 10.1021/ba-1972-0112.ch007
University of Montana, Missoula, Mont. 59801
The
reaction
curials
of ozone
with
and alkylmercuric
carboxylic ondary,
acids,
ketones,
and tertiary
carbon—mercury
conditions
was the
cleavage
four-center
processes.
from
primary,
respectively. chief
of sec
Although reaction,
did occur in varying
degrees.
course
under pseudo first-order of positive
step.
is depicted
dialkylmer-
good yields
of
a build-up
in the rate-determining -mercury cleavage ozonolysis
and alcohols
study of the reaction indicated
produced
alkylmercurials,
scission
some carbon—carbon A kinetic
over 20 different
halides
The
mechanism
as a mixture
Although
of organomercurials
charge
somewhat does promise
on
for
carbon
of pure limited
rate carbon
S2 E
in
synthetic
and
scope, utility.
Τ η t h e s e a r c h for n e w s y n t h e t i c uses of o r g a n o m e r c u r i a l s a n d t h e olefin A
m e r c u r a t i o n reactions i n g e n e r a l , a t t e n t i o n w a s d r a w n to o z o n e as a
p o s s i b l e reactant. O r g a n o m e r c u r i a l s r e a c t r a p i d l y w i t h a v a r i e t y of e l e c t r o p h i l i c spe cies, a n d a recent b o o k b y J e n s e n a n d R i c k b o r n f u l l y describes the scope of these reactions ( I ) .
F o r e m o s t a m o n g the e l e c t r o p h i l i c reagents are
the halogens w h i c h cleave the carbon—mercury b o n d to p r o d u c e a l k y l m e r c u r i c h a l i d e s a n d / o r a l k y l h a l i d e s , d e p e n d i n g o n the t y p e of o r g a n o mercurial involved. fast
R Hg + Br 2
• RBr + RHgBr
2
^
slower
RHgBr + Br
> RBr +
2
HgBr
2
I n a d d i t i o n , p r o t i c acids also cleave o r g a n o m e r c u r i a l s to y i e l d the p r o t o n s u b s t i t u t e d p r o d u c t s analogous to those for h a l o g e n a t i o n above.
Finally,
m e r c u r i c salts also act as e l e c t r o p h i l i c reagents t o w a r d s o r g a n o m e r c u r i a l s . 78 In Ozone Reactions with Organic Compounds; Bailey, P.; Advances in Chemistry; American Chemical Society: Washington, DC, 1972.
7.
Ozonolysis
WATERS E T A L .
R Hg + 2
RHgBr +
of
HgBr
*HgBr
2RHgBr
2
R*HgBr +
2
where * H g = Several mechanisms c l e a v a g e reactions.
have
79
Organomercurials
been
203
HgBr
(2)
2
Hg
proposed
for
these
electrophilic
I n g e n e r a l , these m e c h a n i s m s r a n g e f r o m p u r e
S 1 E
to p u r e S 2 processes a l t h o u g h these t w o extreme m e c h a n i s m s are u s u a l l y E
Downloaded by UNIV OF MINNESOTA on August 28, 2013 | http://pubs.acs.org Publication Date: June 1, 1972 | doi: 10.1021/ba-1972-0112.ch007
r e s e r v e d f o r s p e c i a l cases.
R Hg +
S l: B
2
Y
R +
-» R — H g — R
RHgY
I
γ
(3)
X
RX R Hg +
Sd:
2
R—Hg—R
X — Y
•R
Χ—Y
Hg—R
X — Y
RX +
+
(4)
YHgR
R Four-Center
: R Hg + Χ—Y
>R
2
>R X + YHgR
H£
(5)
X S 2: E
R Hg + 2
R—X—Y
R—Hg—R
X — Y
X—Y
H g - R
RX +
(6)
YHgR
O z o n e has l o n g b e e n assigned the r o l e of e l e c t r o p h i l e i n a d d i t i o n a n d s u b s t i t u t i o n reactions
(2).
I n this respect the reagent has
r e p o r t e d to cleave v a r i o u s c a r b o n - m e t a l b o n d s
(Et) Sn 4
0
3
AcH +
been
(3-9).
( E t ) S n O + a peroxide 2
In Ozone Reactions with Organic Compounds; Bailey, P.; Advances in Chemistry; American Chemical Society: Washington, DC, 1972.
(7)
80
OZONE REACTIONS WITH ORGANIC COMPOUNDS
(Et) Pb
(Et) PbOH +
4
3
20°
+ AcH + Os
( E t ) «Si
AcOH + H 0 2
0
R Se
3
2
+ Et Si0 H + 3
2
0
3
2
RSeH +
2
(t-Pr) Hg
3
(8)
EtOH
R SeO
2
Downloaded by UNIV OF MINNESOTA on August 28, 2013 | http://pubs.acs.org Publication Date: June 1, 1972 | doi: 10.1021/ba-1972-0112.ch007
2
(Et) PbO + (Et) PbOEt
2(CH ) CO + 3
2
(Et Si) 0 3
2
aldehyde
HgO
(9)
(10)
(11)
A l t h o u g h reports of m e c h a n i s t i c studies are scarce f o r these reac tions, O u e l l e t t e a n d M a r k s d i d p r o p o s e a 1,3-dipolar attack b y ozone (10). T h e c o r r e s p o n d i n g i n t e r m e d i a t e w a s p r e d i c t e d to be a h y d r o t r i o x i d e of s i l i c o n .
-H R —Si 3
Ο-
-ο
/
Ο
->
[R —Si—Ο—Ο—OH] 3
(12)
T h e u n s t a b l e h y d r o t r i o x i d e c o u l d t h e n d e c o m p o s e via singlet or t r i p l e t o x y g e n ejection to f o r m the o b s e r v e d s i l a n o l p r o d u c t s The
(10).
Reaction
T h e cleavage of c a r b o n - m e t a l b o n d s b y o z o n e is i n t r i g u i n g . S t u d y was b e g u n to discover the scope of this r e a c t i o n u s i n g m e r c u r i a l s as the o r g a n o m e t a l l i c reagent. I t w a s h o p e d t h a t n o t o n l y w o u l d the cleavage m e c h a n i s m be c l a r i f i e d b u t also that a s y n t h e t i c a l l y u s e f u l m e t h o d of i n t r o d u c i n g o x y g e n f u n c t i o n a l i t y m i g h t be d e v e l o p e d . O z o n a t i o n of over 20 different o r g a n o m e r c u r i a l s r e s u l t e d i n a f a i r l y r a p i d d i s a p p e a r a n c e of o r g a n o m e t a l l i c s t a r t i n g m a t e r i a l , a c c o m p a n i e d b y a constant p r e c i p i t a t i o n of i n o r g a n i c m e r c u r y salts. A p r o d u c t s t u d y i n c h l o r o f o r m a n d m e t h y l e n e c h l o r i d e solvents at temperatures r a n g i n g f r o m —75° to + 2 5 ° C s h o w e d that m e r c u r y was r e p l a c e d b y a n o x y g e n c o n t a i n i n g m o i e t y i n a l l cases (11). A l t h o u g h these p r o d u c t s w e r e chiefly the analogous a l c o h o l , ketone, or a c i d f r o m the p a r e n t 3 ° , 2 ° , or 1° o r g a n o m e r c u r i a l r e s p e c t i v e l y , some c a r b o n - c a r b o n scission d i d occur.
In Ozone Reactions with Organic Compounds; Bailey, P.; Advances in Chemistry; American Chemical Society: Washington, DC, 1972.
7.
WATERS E T A L .
Ozonolysis
of
81
Organomercurials
T h i s was e s p e c i a l l y e v i d e n t at the h i g h e r temperatures a n d i n the case of the a l k y l m e r c u r i c h a l i d e s . A k i n e t i c s t u d y of the r e a c t i o n w a s also p e r f o r m e d i n w h i c h N M R o b t a i n e d rate d a t a w e r e c o r r e l a t e d w i t h m e r c u r i a l s t r u c t u r e changes
(12).
This study revealed a quite distinct reactivity order w h i c h , coupled w i t h a 1:1 reactant s t o i c h i o m e t r y , i n d i c a t e s a 1,3-dipolar e l e c t r o p h i l i c attack b y o z o n e via SL S 2 or four-center process. e
A l t h o u g h the exact m e c h a n i s m
was n o t c o n c l u s i v e l y p r o v e d , it is c e r t a i n that n e i t h e r the S 1 or S i E
E
Downloaded by UNIV OF MINNESOTA on August 28, 2013 | http://pubs.acs.org Publication Date: June 1, 1972 | doi: 10.1021/ba-1972-0112.ch007
processes w e r e o p e r a t i v e d u r i n g these reactions. Experimental Materials. G e n e r a l l y t h e o r g a n o m e r c u r i c h a l i d e s w e r e p r e p a r e d u s i n g the G r i g n a r d m e t h o d as o u t l i n e d b y M a r v e l et al. (13). The dialkylm e r c u r i a l s w e r e also s y n t h e s i z e d b y the G r i g n a r d p r o c e d u r e as o u t l i n e d b y G i l m a n a n d B r o w n (14). E x a c t s t r u c t u r a l i d e n t i f i c a t i o n of the o r g a n o m e r c u r i a l s was f a c i l i t a t e d b y c o r r e l a t i o n of N M R - o b t a i n e d Hg- H s p i n - s p i n c o u p l i n g d a t a w i t h l i t e r a t u r e values for s i m i l a r systems ( 1 5 , 1 6 ) . P r e l i m i n a r y i d e n t i f i c a t i o n was p e r f o r m e d b y the u s u a l c o m p a r i s o n of p h y s i c a l properties w i t h those for k n o w n c o m p o u n d s . Apparatus. T h e a p p a r a t u s u s e d i n these studies consisted of a W e l s b a c h T - 4 0 8 e l e c t r i c d i s c h a r g e o z o n a t o r c o n n e c t e d to three 2 0 0 - m l gas w a s h i n g bottles i n series. T h e first bottle w a s the r e a c t i o n vessel, a n d its t e m p e r a t u r e was m a i n t a i n e d at — 7 6 ° , 0 ° , or + 1 0 ° C . T h e s e c o n d b o t t l e was a c o l d t r a p for t h e m o r e v o l a t i l e products—e.g., a c e t o n e — w h i c h w e r e g e n e r a l l y s w e p t out of the r e a c t i o n vessel b y the l a r g e v o l u m e of 0 . T h e t h i r d b o t t l e c o n t a i n e d a n aqueous K I s o l u t i o n for t r a p p i n g a n y u n r e a c t e d 0 . A f t e r c o m p l e t i o n of a r e a c t i o n this s o l u t i o n c o u l d b e t i t r a t e d w i t h t h i o s u l f a t e f o r l i b e r a t e d I a n d thus u n r e a c t e d 0 . B y u s i n g Ο as the f e e d gas, a n 0 - 0 m i x t u r e , 3 - 4 % 0 b y w e i g h t , was p r o d u c e d b y the ozonator. F l o w rates w e r e adjusted to p r o d u c e 1 8 - 3 0 m m o l e s of 0 p e r h o u r . F o r the rate studies the a b o v e - m e n t i o n e d r e a c t i o n vessel was m o d i f i e d to a l l o w for r a p i d a n d p e r i o d i c r e m o v a l of s o l u t i o n a l i q u o t s d u r i n g the progress of the r e a c t i o n . 1 9 9
1
2
3
2
2
3
3
2
3
3
Procedure. P R O D U C T - D E T E R M I N I N G STUDIES. I n a t y p i c a l p r o d u c t d e t e r m i n i n g r u n 10 m m o l e s of o r g a n o m e r c u r i a l w e r e d i s s o l v e d i n ca. 50 m l of C H C 1 a n d p l a c e d i n the r e a c t i o n vessel. A f t e r the vessel w a s c o o l e d to the p r o p e r t e m p e r a t u r e , the 0 - 0 flow w a s started. I n a l l cases a n i m m e d i a t e w h i t e p r e c i p i t a t e a p p e a r e d . T h i s p r e c i p i t a t i o n was constant t h r o u g h o u t the entire ozonolysis p r o c e d u r e a n d i n fact w a s u s e d as a n e n d p o i n t d e t e r m i n a n t i n c e r t a i n cases. O z o n a t i o n w a s g e n e r a l l y h a l t e d after a l l of the o r g a n o m e r c u r i a l h a d r e a c t e d . T h e r e s u l t a n t w h i t e s o l i d was t h e n c o l l e c t e d , w a s h e d w i t h C H C 1 , d r i e d , a n d subjected to analysis b y p o w d e r x - r a y d i f f r a c t i o n w i t h a N o r e l c o a n a l y t i c a l x - r a y diffractometer. T h e C H C 1 s o l u t i o n was a n a l y z e d b y v a p o r phase c h r o m a t o g r a p h y (VPC) m e t h o d s u s i n g 6 ft X % i n c h 3 0 % C a r b o w a x or 6 ft X % i n c h 2 0 % S E - 3 0 c o l u m n s . R e t e n t i o n times of the r e a c t i o n p r o d u c t s w e r e m a t c h e d o n b o t h c o l u m n s w i t h p r e c a l i b r a t e d c h r o m a t o g r a p h s of k n o w n 2
2
3
2
2
2
2
2
In Ozone Reactions with Organic Compounds; Bailey, P.; Advances in Chemistry; American Chemical Society: Washington, DC, 1972.
82
OZONE REACTIONS W I T H ORGANIC COMPOUNDS
c o m p o u n d s . A n i n t e r n a l s t a n d a r d w a s a d d e d to the C H C 1 i n t e g r a t i o n purposes. 2
s o l u t i o n for
2
K I N E T I C STUDIES. I n a t y p i c a l k i n e t i c r u n 10 m m o l e s of o r g a n o m e r c u r i a l w e r e d i s s o l v e d i n 100 m l of C H C 1 a n d p l a c e d i n the r e a c t i o n vessel. T o this s o l u t i o n w e r e a d d e d 30 m m o l e s of C H N 0 as a n i n t e r n a l N M R s t a n d a r d . O z o n e flow rates w e r e d e t e r m i n e d a n d the m e r c u r i a l solution w a s t h e n o z o n i z e d at 0 ° C . A l i q u o t s w e r e p e r i o d i c a l l y w i t h d r a w n ( g e n e r a l l y , 8 - 1 0 samples t a k e n ) a n d s h a k e n w i t h a s o l i d m i x t u r e of ca. 0.1 g r a m K I a n d 0.1 g r a m N a S 0 . I n this m a n n e r excess 0 w a s i m m e d i a t e l y q u e n c h e d a n d the r e s u l t a n t I , w h i c h itself reacts w i t h o r g a n o m e r c u r i a l s at r o o m t e m p e r a t u r e , w a s q u i c k l y r e d u c e d . 3
3
2
2
2
3
3
Downloaded by UNIV OF MINNESOTA on August 28, 2013 | http://pubs.acs.org Publication Date: June 1, 1972 | doi: 10.1021/ba-1972-0112.ch007
2
E a c h a l i q u o t was a n a l y z e d w i t h o u t f u r t h e r w o r k - u p b y a n H A - 6 0 A n a l y t i c a l N M R S p e c t r o m e t e r , u s i n g the field s w e e p m e t h o d to e l i m i n a t e the u s u a l phase changes associated w i t h the f r e q u e n c y s w e e p m o d e . T h e r e l a t i v e integrals for C H N 0 a n d one set of resonance lines for the o r g a n o m e r c u r i a l w e r e r e p e a t e d 10 t i m e s a n d averaged. T h i s average v a l u e w a s c o m p a r e d w i t h the o r i g i n a l C H N 0 / o r g a n o m e r c u r i a l r a t i o to d e t e r m i n e the c o n c e n t r a t i o n of o r g a n o m e r c u r i a l at that t i m e . T h e s e a c t u a l concentrations, a l o n g w i t h the respective t i m e intervals f r o m f , w e r e s u b m i t t e d to a least-squares c o m p u t e r p r o g r a m . U s i n g a n I B M 1620 c o m p u t e r , the n a t u r a l l o g a r i t h m of t h e c o n c e n t r a t i o n w a s p l o t t e d vs. t i m e (ca. 10 p o i n t s ) to g i v e the best-fitting l i n e a r r e l a t i o n s h i p b e t w e e n the t w o v a r i a b l e s . F r o m this p l o t the least-squares slope, (/-intercept, absolute rate constant, a n d c o r r e l a t i o n coefficient of the l i n e w e r e determined. 3
2
3
2
0
O T H E R STUDIES. C e r t a i n ozonations w e r e c a r r i e d out u s i n g N as the c a r r i e r gas i n s t e a d of 0 . F o r these reactions the u s u a l s i l i c a g e l p r o c e d u r e (17) was u s e d . S i l i c a gel, 1 0 0 - 1 5 0 grams, 6 - 1 2 m e s h , w a s p l a c e d i n a 2 0 0 - m l s i d e - a r m c o l d t r a p a n d c o o l e d to — 76 ° C . O z o n e was i n t r o d u c e d i n t o this t r a p as the u s u a l 0 - 0 m i x t u r e . A f t e r the d e s i r e d a m o u n t of 0 h a d b e e n a d s o r b e d b y the s i l i c a g e l , the ozonator was d i s c o n n e c t e d a n d the c o l d t r a p flushed w i t h a m b i e n t t e m p e r a t u r e N for 5 m i n u t e s to r e m o v e a n y 0 . O z o n e was t h e n flushed s l o w l y f r o m the s i l i c a g e l b y g r a d u a l l y m o v i n g the t r a p v e r y short distances out of the d r y i c e — acetone b a t h w h i l e c o n t i n u i n g to flush w i t h N [ h a s t e n i n g this w a r m i n g procedure resulted i n a violent explosion]. 2
2
3
2
3
2
2
2
N e x t , a s t o i c h i o m e t r i c s t u d y was u n d e r t a k e n to d e t e r m i n e the n u m b e r of moles of 0 w h i c h r e a c t e d w i t h e a c h m o l e of o r g a n o m e r c u r i a l . T o a c c o m p l i s h this task the 0 flow rate was a c c u r a t e l y d e t e r m i n e d b y the K I - N a S 0 p r o c e d u r e . O z o n a t i o n of a m e r c u r i a l i n C H C 1 or C H C 1 w a s t h e n b e g u n . I n c l u d e d i n the r e a c t i o n m i x t u r e was a s m a l l a m o u n t of C H N 0 as a n N M R i n t e g r a t i o n s t a n d a r d . T h e r e a c t i o n w a s s t o p p e d s e v e r a l times to c h e c k the o r g a n o m e r c u r i a l c o n c e n t r a t i o n b y N M R spectroscopy. T h e a m o u n t of u n r e a c t e d o z o n e also h a d to b e c a l c u l a t e d at e a c h s a m p l i n g p e r i o d for the p r i m a r y a n d s e c o n d a r y a l k y l m e r c u r i c h a l i d e s . T h e 0 flow rate w a s also r e c h e c k e d at e a c h s a m p l i n g i n t e r v a l to ensure t h a t the d i s p e r s i o n tubes h a d not c l o g g e d . T h e n u m b e r of moles of r e a c t e d 0 w a s t h e n c o m p a r e d w i t h the n u m b e r of moles of reacted organomercurial. 3
3
2
3
2
3
2
2
2
3
3
In Ozone Reactions with Organic Compounds; Bailey, P.; Advances in Chemistry; American Chemical Society: Washington, DC, 1972.
3
7.
WATERS E T A L .
Ozonolysis
of
83
Organomercurials
Results Product Studies. T a b l e I outlines t h e o r g a n i c a n d i n o r g a n i c p r o d u c t s of the ozonolysis reactions. T h e ozonolysis p r o d u c t s of n - a l k y l m e r c u r i c h a l i d e s a n d d i - n - a l k y l m e r c u r i a l s w e r e a m i x t u r e of c a r b o x y l i c acids w h i c h h a d a c a r b o n c h a i n e q u a l to or shorter t h a n the a l k y l g r o u p of the p a r e n t organomercurial. O z o n o l y s i s of the s - a l k y l m e r c u r i c h a l i d e s a n d the d i - s - a l k y l m e r c u r i a l s p r o d u c e d the c o r e s p o n d i n g ketone. A l t h o u g h some c a r b o n - c a r b o n c l e a v -
Downloaded by UNIV OF MINNESOTA on August 28, 2013 | http://pubs.acs.org Publication Date: June 1, 1972 | doi: 10.1021/ba-1972-0112.ch007
age o c c u r r e d , i t was g e n e r a l l y less t h a n w i t h the r e a c t i o n of the p r i m a r y o r g a n o m e r c u r i a l s (see
R e a c t i o n s 13 a n d 14, T a b l e I ) .
I n p a r t i a l contrast
to the results of B o c k e m u l l e r a n d Pfeuffer ( R e a c t i o n 11),
the ozonation
of d i i s o p r o p y l m e r c u r y y i e l d e d acetic a c i d i n a d d i t i o n to acetone ( R e a c t i o n 14, T a b l e I ) . T e r t i a r y a l k y l m e r c u r i c h a l i d e s y i e l d e d a c o n s i d e r a b l e a m o u n t of the corresponding alcohol upon ozonation
( R e a c t i o n 17, T a b l e I ) .
Some
c a r b o n - c a r b o n cleavage a c c o m p a n i e d the m a i n r e a c t i o n i n this case as well. T h e i n o r g a n i c p r o d u c t s of the ozonolysis reactions w e r e d e t e r m i n e d for three different o r g a n o m e r c u r i a l s .
O z o n o l y s i s of
two
dialykylmer-
c u r i a l s p r o d u c e d a m i x t u r e of m e r c u r i c c h l o r i d e , m e r c u r o u s c h l o r i d e , a n d m e r c u r i c o x i d e ( R e a c t i o n s 3 a n d 14, T a b l e I ) w h i l e one a l k y l m e r c u r i c h a l i d e gave o n l y m e r c u r i c a n d m e r c u r o u s c h l o r i d e s ( R e a c t i o n 13, T a b l e I ) . A k n o w n m i x t u r e of the three salts w a s tested f o r its s t a b i l i t y to the r e a c t i o n c o n d i t i o n s . T h e salts w e r e o z o n i z e d as a s o l u t i o n / m i x t u r e w i t h m e t h y l e n e c h l o r i d e . P o w d e r x - r a y d i f f r a c t i o n s h o w e d n o difference i n the m e r c u r y salt m i x t u r e after a 2-hour o z o n a t i o n at 1 0 ° C . Carbon—Carbon
Cleavage.
As
mentioned
above,
carbon—carbon
cleavage
u s u a l l y a c c o m p a n i e d the " n o r m a l " carbon—mercury
reaction.
W h i l e this c h a i n - s h o r t e n i n g process was most p r o m i n e n t for
the n - a l k y l m e r c u r i c h a l i d e s w h i c h w e r e o z o n a t e d at 1 0 ° C
cleavage
(Reactions 1
a n d 6, T a b l e I ) , i t w a s r e d u c e d to a m u c h l o w e r l e v e l w h e n the d i - n a l k y l m e r c u r i a l s w e r e o z o n a t e d at — 7 6 ° C ( R e a c t i o n s 5 a n d 10, T a b l e I ) . A c t u a l l y e v e n less carbon—carbon scission o c c u r r e d d u r i n g the o z o n a t i o n of the d i - s - a l k y l m e r c u r i a l s h a l i d e s ( R e a c t i o n 14, T a b l e I ) a n d d u r i n g the p a r t i a l o z o n a t i o n of t h e f e r f - a l k y l m e r c u r i c h a l i d e s ( n o t l i s t e d ) . B y c o m p a r i s o n of the n - a l k y l m e r c u r i a l results alone, i t is possible to g e n e r a l i z e that b o t h h i g h e r o z o n a t i o n temperatures a n d the presence of a h a l o g e n l i g a n d o n m e r c u r y p r o m o t e carbon—carbon cleavage
during
the o z o n o l y s i s of the c a r b o n - m e r c u r y b o n d . A s a c h e c k of a possible r e a c t i o n p a t h w a y for the f o r m a t i o n of the shorter a c i d s d u r i n g o z o n a t i o n of n - a l k y l m e r c u r i a l s , p e n t a n o i c a c i d w a s o z o n i z e d for 4 hours at 10 ° C . T h e o z o n a t i o n w a s c a r r i e d out i n d i c h l o r o -
In Ozone Reactions with Organic Compounds; Bailey, P.; Advances in Chemistry; American Chemical Society: Washington, DC, 1972.
84
OZONE REACTIONS W I T H ORGANIC COMPOUNDS
m e t h a n e w h i c h c o n t a i n e d s m a l l amounts of m e r c u r i c c h l o r i d e a n d m e r curous
chloride.
O n l y starting material could
be
detected
by
VPC
analysis of the p r o d u c t m i x t u r e . I n another test of the r e a c t i o n p a t h w a y for c a r b o n - c a r b o n
cleavage,
the exit gas f r o m the r e a c t i o n vessel d u r i n g a 10 ° C o z o n a t i o n of p r o p y l m e r c u r i c b r o m i d e w a s passed t h r o u g h a B a ( O H )
n-
solution. This
2
s o l u t i o n s h o w e d a n almost i m m e d i a t e a n d constant p r e c i p i t a t i o n of B a C 0
3
d u r i n g ozonation. H o w e v e r , further investigation revealed that methylene chloride yielded C 0
2
at a b o u t the same rate at 10 ° C .
Hence,
after
Downloaded by UNIV OF MINNESOTA on August 28, 2013 | http://pubs.acs.org Publication Date: June 1, 1972 | doi: 10.1021/ba-1972-0112.ch007
d e t e r m i n i n g that F r e o n 114 d i d n o t react w i t h o z o n e at —76°C., the test was r e p e a t e d o n d i - n - p r o p y l m e r c u r y at the r e d u c e d t e m p e r a t u r e a n d i n the i n e r t solvent.
U n d e r these c o n d i t i o n s C 0
w a s s t i l l p r o d u c e d at a n
2
a p p r e c i a b l e rate. O n e final e x p e r i m e n t , h o w e v e r , p l a c e d the o r i g i n of the C0
2
b a c k i n t o a n u n d e c i d e d l i g h t . F o r m i c a c i d w a s o x i d i z e d s l o w l y to
C0
2
w h e n o z o n i z e d i n F r e o n 114 at — 76 ° C . T o define p r o p e r l y t h e role w h i c h 0
The Role of Oxygen.
2
played
i n these ozonolysis reactions, n i t r o g e n was o c c a s i o n a l l y u s e d as the c a r r i e r gas for ozone.
A f t e r o z o n i z i n g n - h e x y l m e r c u r i c b r o m i d e at 1 0 ° C
the u s u a l 0 - 0
2
3
Experimental).
m i x t u r e , the r e a c t i o n w a s r e p e a t e d w i t h 0 - N 3
with
2
(see
B y c o m p a r i n g the r e a c t i o n p r o d u c t s f r o m runs 6 a n d 7
( T a b l e I ) , it c a n b e r e a d i l y seen t h a t n o p r o d u c t differences exist w h e n N
2
is s u b s t i t u t e d for 0 . 2
I n a s i g n i f i c a n t l y different a p p r o a c h to the p r o b l e m , i s o p r o p y l m e r curic chloride was oxygenated i n C H C 1 of 0
2
at 10 ° C for 2 hours at 24 liters
3
p e r h o u r . A n a l y s i s ( V P C ) s h o w e d t h a t 4 % of the o r g a n o m e r c u r i a l
h a d r e a c t e d to g i v e acetone. Stoichiometry of Ozone Uptake.. T h e results of the s t o i c h i o m e t r y s t u d y are o u t l i n e d i n T a b l e I. Intermediate Products from Ozonolysis
of Organomercurials.
b o n u s of the N M R m e t h o d for k i n e t i c analysis of the
A
0 -organomer3
c u r i a l r e a c t i o n was the fact t h a t c e r t a i n 0 - r e a c t i v e i n t e r m e d i a t e s w e r e 3
o b s e r v e d d u r i n g ozonolysis of some of the o r g a n o m e r c u r i a l s . Diisopropylmercury
yielded
isopropylmercuric
chloride
and
iso-
p r o p y l a l c o h o l as w e l l as acetone. T h e first t w o p r o d u c t s gave acetone upon
further reaction w i t h
0 .
The
3
following
equation
appears
to
d e s c r i b e this s y s t e m :
0
[(CH ) CH] Hg—— 3
2
2
CHCl-
—•
(CH ) CO
(CH ) CH—OH 8
2
(CH ) CHOH 3
2
In Ozone Reactions with Organic Compounds; Bailey, P.; Advances in Chemistry; American Chemical Society: Washington, DC, 1972.
(13)
7.
WATERS E T A L .
Ozonolysis
of
85
Organomercurials
T h e b e l i e f that acetone w a s one of t h e i n i t i a l p r o d u c t s of t h e r e a c t i o n is s u p p o r t e d b y its e x t r e m e l y fast rate of f o r m a t i o n c o m p a r e d w i t h t h e rate of o x i d a t i o n of i s o p r o p y l a l c o h o l to acetone b y 0 - 0 . 3
2
A s t u d y of t h e i n t e r m e d i a t e p r o d u c t s f r o m t h e ozonolysis of i s o p r o p l y m e r c u r i c c h l o r i d e shows alcohol adequately
accounts
that t h e r a t e of b u i l d - u p of i s o p r o p y l
f o r t h e rate of acetone f o r m a t i o n .
The
r e a c t i o n sequence therefore appears to b e o n e of c a r b o n - m e r c u r y c l e a v age, f o l l o w e d b y o x i d a t i o n b y ozone. T h e tertiary alkylmercuric halide, ierf-butylmercuric chloride y i e l d e d Downloaded by UNIV OF MINNESOTA on August 28, 2013 | http://pubs.acs.org Publication Date: June 1, 1972 | doi: 10.1021/ba-1972-0112.ch007
o n l y tert-butyl
a l c o h o l as t h e p r i m a r y p r o d u c t .
It was not until a l l the
o r g a n o m e r c u r i a l h a d r e a c t e d that acetone a p p e a r e d as a r e a c t i o n p r o d u c t (see R e a c t i o n 17, T a b l e I ) . T h u s i t a g a i n is suggested that a n a l c o h o l is the i m m e d i a t e p r o d u c t of C - H g cleavage b y ozone, at least i n t h e case of a l k y l m e r c u r i c h a l i d e s . Results Kinetic Studies. T h e o z o n a t i o n rates of 10 a l k y l m e r c u r i c h a l i d e s w e r e d e t e r m i n e d i n c h l o r o f o r m at 0 ° C . T h e rate of o z o n e o x i d a t i o n of i s o p r o p y l a l c o h o l to acetone u n d e r i d e n t i c a l c o n d i t i o n s w a s also m e a s u r e d . A n a t t e m p t to measure t h e o z o n a t i o n rate of six d i a l k y l m e r c u r i a l s f a i l e d , h o w e v e r , because t h e r e a c t i o n w i t h R H g w a s m u c h too fast u n d e r these 2
conditions. T h e p r e v i o u s l y d e s c r i b e d m e t h o d u s e d to o b t a i n rate constants f o r these reactions i n v o l v e d the c o n t i n u o u s passage of a s t r e a m of 0 — 0 3
2
t h r o u g h t h e r e a c t i o n vessel. F o r t h e k i n e t i c s t u d y of t h e s l o w e r - r e a c t i n g alkylmercuric halides the 0
3
concentration remained saturated a n d there-
fore constant. T h i s w a s n o t true f o r t h e d i a l k y l m e r c u r i a l s , h o w e v e r , since t h e y r e a c t e d so fast w i t h ozone that a n 0
3
concentration approaching the
s a t u r a t i o n v a l u e c o u l d never b e r e a c h e d .
T h i s s i t u a t i o n w a s also b o r n e
o u t b y t h e consistent o b s e r v a t i o n t h a t t h e K I t r a p ( of t h e r e a c t i o n a p p a r a t u s ) b e c a m e c o l o r e d d u r i n g t h e d i a l k y l m e r c u r y ozonations o n l y after a l l of t h e m e r c u r i a l h a d r e a c t e d .
B y c o m p a r i s o n , t h e reactions of t h e
a l k y l m e r c u r i c h a l i d e s w e r e s l o w e n o u g h so t h a t i o d i n e w a s f o r m e d i n the K I t r a p s h o r t l y after s t a r t i n g t h e 0 - 0 3
flow.
2
I n t h e case of t h e a l k y l m e r c u r i c h a l i d e s , t h e rate e q u a t i o n appears as,
~
d [ R
(ti
g X ]
=
k
[
R
H
g
X
]
[
°
3 ]
(
1
4
)
S i n c e w e m a y c o n s i d e r / c [ 0 ] to b e constant after i n i t i a l s a t u r a t i o n is 3
a c h i e v e d , t h e i n t e g r a t e d rate expression is that i n E q u a t i o n 15.
In Ozone Reactions with Organic Compounds; Bailey, P.; Advances in Chemistry; American Chemical Society: Washington, DC, 1972.
OZONE REACTIONS
COMPOUNDS
Table I.
Products
Reaction Temperature,
Organomercurial 1. C H C H C H H g B r
10
2. C H C H C H H g B r
0
3. ( C H C H C H ) H g
10
4. ( C H C H C H ) H g
0
5. ( C H C H C H ) H g
-76
3
2
3
2
2
2
3
Downloaded by UNIV OF MINNESOTA on August 28, 2013 | http://pubs.acs.org Publication Date: June 1, 1972 | doi: 10.1021/ba-1972-0112.ch007
W I T H ORGANIC
2
3
2
2
3
2
2
2
2
2
2
6. C H ( C H ) H g B r
10
7. C H ( C H ) H g B r
10
8. [ C H ( C H ) ] H g
10
9. [ C H ( C H ) ] H g
0
10. [ C H ( C H ) ] H g
-76
3
2
3
5
2
3
5
2
3
2
3
2
5
5
6
2
2
2
11. ( C H ) C C H H g C l
10
12.
10
3
13.
3
2
(CH ) CH(CH ) HgBr 3
2
2
(CH ) CHHgCl 3
2
2
10
In Ozone Reactions with Organic Compounds; Bailey, P.; Advances in Chemistry; American Chemical Society: Washington, DC, 1972.
°C
7.
Ozonolysis
WATERS E T A L .
of
Organomercurials
of Ozonolysis"
Inorganic
Organic
Products
Products
44% C H C H C O O H 54% C H C O O H 3
2
3
48% C H C H C O O H 50% C H C O O H 3
2
3
45% HgCl 35% Hg Cl 20% HgO
64% C H C H C O O H 20% CH COOH 15% H C O O H 3
2
Downloaded by UNIV OF MINNESOTA on August 28, 2013 | http://pubs.acs.org Publication Date: June 1, 1972 | doi: 10.1021/ba-1972-0112.ch007
2
2
3
2
67% C H C H C O O H 19% C H C O O H 14% H C O O H 3
2
3
72% C H C H C O O H 16% C H C O O H 12% H C O O H 3
2
3
30% CH 40% CH 10% C H 5% C H
3 3 3 3
30% CH 40% CH 10% CH 5% C H 50% CH 25% CH 10% C H 10% C H 5% C H 70% CH 10% C H 5% CH
R H g B r , etc.)
( 2 ) m a y b e e x p l a i n e d b y a s s u m i n g that a less
In Ozone Reactions with Organic Compounds; Bailey, P.; Advances in Chemistry; American Chemical Society: Washington, DC, 1972.
94
OZONE REACTIONS W I T H ORGANIC COMPOUNDS
energetic t r a n s i t i o n state exists w h e n the d e v e l o p i n g p o s i t i v e c h a r g e o n m e r c u r y is m o r e f u l l y d i s p e r s e d .
H e n c e , b a s e d o n i n d u c t i v e a n d reso
n a n c e effects, one w o u l d expect the t r a n s i t i o n state for C - H g R or C - H g l c l e a v a g e to b e at a l o w e r e n e r g y l e v e l t h a n t h a t for C - H g C l
cleavage.
T h e a b o v e d i s c u s s i o n assumes the u s u a l i n d u c t i v e effect w h i c h h a l o gens h a v e o n c a r b o n i u m ions, b u t , of course, necessitates a r e v e r s a l of the u s u a l o r d e r for resonance effects. fluorine
I t is i m p o r t a n t to note t h a t w h i l e
c a n q u i t e effectively f o r m a p i b o n d w i t h c a r b o n , i t c a n n o t do so
w i t h the l a r g e m e r c u r y a t o m . T h u s , structures s u c h as 24 s h o u l d be i m Downloaded by UNIV OF MINNESOTA on August 28, 2013 | http://pubs.acs.org Publication Date: June 1, 1972 | doi: 10.1021/ba-1972-0112.ch007
p o r t a n t o n l y f o r the l a r g e r halogens.
+ - ^ C -
Hg-_^J=X
(24)
I n this same r e g a r d , the t r a n s i t i o n state for cleavage of the d i a l k y l m e r curials m u s t b e of r e l a t i v e l y l o w e r energy, solely as a result of the i n d u c t i v e effect of the a l k y l g r o u p since h y p e r c o n j u g a t i o n effects s h o u l d b e nonexistent here. F i n a l l y , i n this s t u d y , as w e l l as most others
( 2 ) , s u b s t i t u t i o n of
c a r b o n for h a l o g e n as t h e m e r c u r y l i g a n d p r o d u c e d a h u g e rate increase f o r e l e c t r o p h i l i c cleavage.
A l t h o u g h the P a u l i n g e l e c t r o n e g a t i v i t y values
for i o d i n e a n d c a r b o n are i d e n t i c a l , the b o n d s of these t w o atoms to m e r c u r y are t o t a l l y d i s s i m i l a r . H e n c e , comparisons of these t w o systems s h o u l d i n v o l v e a c o m p l e t e t r e a t m e n t of o r b i t a l t h e o r y before o n e arrives at a n y conclusions c o n c e r n i n g r e l a t i v e r e a c t i v i t i e s . T u r n i n g to the other h a l f of the k i n e t i c s t u d y — t h a t of r a t e effects f r o m changes of the R g r o u p i n R H g X — i n c r e a s e d s u b s t i t u t i o n o n the c a r b o n b o u n d to m e r c u r y c a u s e d a n a p p r e c i a b l e r e a c t i o n rate increase ( T a b l e I I I a n d sequence 17).
T h e s e results c e r t a i n l y i n d i c a t e t h e g e n
e r a t i o n of p a r t i a l p o s i t i v e c h a r g e o n c a r b o n i n the t r a n s i t i o n state of the carbon-mercury cleavage reaction. W h i l e such a positive charge b u i l d - u p m i g h t a p p e a r i m p o s s i b l e at first c o n s i d e r a t i o n of the f o u r g e n e r a l m e c h a nisms for e l e c t r o p h i l i c cleavage
( R e a c t i o n s 3 - 6 ) , m i n o r m o d i f i c a t i o n of
t w o of t h e m a d e q u a t e l y p r e d i c t s i t . Jensen a n d R i c k b o r n ( 2 ) d i s c u s s e d the p o s s i b i l i t y of t r a n s i t i o n states i n w h i c h the e l e c t r o p h i l i c species w a s p a r t i a l l y b o u n d to the σ o r b i t a l of carbon—mercury
bonds.
T h u s the f o u r t h " c e n t e r " of
the
four-center
b r o m i n a t i o n m e c h a n i s m w a s p i c t u r e d as t h e carbon—mercury b o n d itself, o r m o r e specifically, the c a r b o n sp
s
orbital (2).
In Ozone Reactions with Organic Compounds; Bailey, P.; Advances in Chemistry; American Chemical Society: Washington, DC, 1972.
7.
WATERS E T A L .
Ozonolysis
of
95
Organomercurials
+ δ /
Br
+
Hg
Br^ ^Br " Downloaded by UNIV OF MINNESOTA on August 28, 2013 | http://pubs.acs.org Publication Date: June 1, 1972 | doi: 10.1021/ba-1972-0112.ch007
8
(25)
T h e c a r b o n sp
a t o m i c o r b i t a l w a s d e p i c t e d as a s o l i d l i n e " i n d i c a t i n g
3
that its c h a r g e d e n s i t y is c h a n g e d p r i m a r i l y b y e l e c t r o n i c factors r a t h e r t h a n the a c t u a l m a k i n g a n d b r e a k i n g of the b o n d " (2).
I n a similar
f a s h i o n the same authors i l l u s t r a t e d the S 2 cleavage of a d i a l k y l m e r E
curial by X H g . +
7°^
8 •Hg—R +
(26)
Hg
8
+
\
X
T h e authors stated t h a t the p o s i t i v e c h a r g e w o u l d p r o b a b l y b e d i v i d e d b e t w e e n the three a t o m i c centers a n d t h a t e l e c t r o n - d o n a t i n g groups o n c a r b o n s h o u l d increase t h e cleavage rate. Mechanism. I n c o n s i d e r a t i o n of a possible m e c h a n i s m for
cleavage
of t h e c a r b o n - m e r c u r y b o n d b y o z o n e , i t s h o u l d b e possible to r u l e o u t the S 1 m e c h a n i s m ( R e a c t i o n 3 ) E
demands
altogether.
This mechanism clearly
t h e f o r m a t i o n of a c a r b a n i o n i n the r a t e - d e t e r m i n i n g step.
L i k e w i s e , the S i m e c h a n i s m for e l e c t r o p h i l i c cleavage seems i m p r o b a b l e E
In Ozone Reactions with Organic Compounds; Bailey, P.; Advances in Chemistry; American Chemical Society: Washington, DC, 1972.
96
OZONE REACTIONS W I T H ORGANIC COMPOUNDS
since the b i m o l e c u l a r r a t e - d e t e r m i n i n g step i n v o l v e s a s i m i l a r n e g a t i v e c h a r g e b u i l d - u p o n c a r b o n (4).
T h e t r a n s i t i o n state to s u c h i n t e r m e d i a t e s
w o u l d o b v i o u s l y p r o d u c e i n v e r t e d r e l a t i v e - r a t e orders f r o m t h a t s h o w n i n s e q u e n c e 17. O f the t w o r e m a i n i n g m e c h a n i s m s , the four-center a n d S 2 processes, E
no selection is possible b a s e d o n the d a t a c o l l e c t e d i n this s t u d y .
More
over, since t h e S 2 a n d S i m e c h a n i s m s are m e r e l y t h e t w o possible ex E
E
t r e m e versions of the four-center m e c h a n i s m , t h e exact " p u r i t y " of a n S 2 or f o u r - c e n t e r process c a n often not b e d e t e r m i n e d . O n e test w h i c h E
Downloaded by UNIV OF MINNESOTA on August 28, 2013 | http://pubs.acs.org Publication Date: June 1, 1972 | doi: 10.1021/ba-1972-0112.ch007
has b e e n u s e d to d e t e r m i n e the p a r t i c u l a r i n v o l v e m e n t of t h e n u c l e o p h i l i c p a r t of the a t t a c k i n g X - Y m o l e c u l e d u r i n g o r g a n o m e r c u r i a l c l e a v age reactions is to change the n a t u r e of Y s u c h t h a t it b e c o m e s a better or p o o r e r n u c l e o p h i l e ( 2 1 ) .
I f the r e a c t i o n rate r e m a i n s u n c h a n g e d , the
process is p u r e l y S 2—i.e., no i n t e r a c t i o n occurs b e t w e e n the Y
group
and mercury.
course
E
T h i s p r o c e d u r e of m e c h a n i s t i c d e t e r m i n a t i o n is of
i m p o s s i b l e f o r cleavage reagents s u c h as ozone. A t this p o i n t i n o u r studies w e f a v o r a
five-membered
cyclic transi
t i o n state, q u i t e analogous to the four-center t r a n s i t i o n state
(Reaction
5 ) , except t h a t n o σ b o n d s of the a t t a c k i n g e l e c t r o p h i l e are b r o k e n . f o u r t h b o n d i n g " c e n t e r " is the c a r b o n sp
B
The
o r b i t a l as i n structures 25
a n d 26.
\
—
8
+
c
8 -Hg-Cl +
/
(27)
I I
A l t h o u g h no
kinetic evidence
exists at this t i m e to i n c l u d e
n u c l e o p h i l i c o x y g e n i n s u c h a b o n d i n g process (i.e., S 2 vs. E
the
four-center),
i t is difficult to b e l i e v e that a n e g a t i v e l y c h a r g e d o x y g e n w o u l d n o t p a r t i c i p a t e i n the n e a r b y f o r m a t i o n of a p o s i t i v e l y c h a r g e d m e r c u r y a t o m . Such a
five-membered
c y c l i c t r a n s i t i o n state has b e e n p r o p o s e d f o r the
t r i i o d i d e cleavage of c a r b o n - m e r c u r y b o n d s ( 2 ) .
W h i l e s u c h a structure
is u n l i k e l y for the l i n e a r I ~ i o n , i t s h o u l d easily a c c o m m o d a t e the o z o n e 3
m o l e c u l e w h o s e b o n d i n g a n g l e is 116° p l a u s i b i l i t y of S t r u c t u r e 27 d e p e n d s
(12).
O f course the g e o m e t r i c a l
o n t h e degree of
carbon-mercury
In Ozone Reactions with Organic Compounds; Bailey, P.; Advances in Chemistry; American Chemical Society: Washington, DC, 1972.
7.
WATERS E T A L .
Ozonolysis
of
b o n d b r e a k i n g i n the t r a n s i t i o n state.
97
Organomercurials
M o d e l s s h o w that the e x t r e m e l y
l o n g c a r b o n - m e r c u r y b o n d ( 2 . 0 6 - 2 . 2 0 A ) (22)
n e e d not b e stretched too
m u c h i n o r d e r to p e r m i t a 1,3-dipolar attack b y o z o n e as p i c t u r e d . T h e exact c h r o n o l o g y of b o n d b r e a k i n g a n d b o n d m a k i n g is i m p o r tant i n c o n s i d e r i n g S t r u c t u r e 27 as the t r a n s i t i o n state f o r carbon—mercury cleavage.
T h e i n i t i a l attack b y o z o n e m u s t l i e o n the S 2 side of the E
c o n c e r t e d , four-center process i n o r d e r to a l l o w for the b u i l d - u p of some positive charge on carbon.
T h u s , the e l e c t r o p h i l i c o x y g e n s h o u l d h a v e
a c h i e v e d a greater degree of b o n d m a k i n g w i t h the c a r b o n sp
orbital
3
Downloaded by UNIV OF MINNESOTA on August 28, 2013 | http://pubs.acs.org Publication Date: June 1, 1972 | doi: 10.1021/ba-1972-0112.ch007
t h a n t h a t of the n u c l e o p h i l i c o x y g e n w i t h t h e m e r c u r y a t o m b y the t i m e S t r u c t u r e 27 is r e a c h e d . A t t e n t i o n is p a i d to this b o n d m a k i n g order b y the different lengths of p a r t i a l b o n d s i n S t r u c t u r e 27
(2).
T h e o v e r a l l i m p o r t a n c e of t r a n s i t i o n state 27 is that rate sequences 16 a n d 17 are a d e q u a t e l y e x p l a i n e d . It is o n l y this t y p e of energy m a x i m u m w h i c h p r e d i c t s p a r t i a l p o s i t i v e charge o n b o t h c a r b o n and m e r c u r y . As
a n alternate t r a n s i t i o n state, one m i g h t e n v i s i o n the r e s u l t of
i n i t i a l attack b y the 1,2-dipolar resonance
f o r m of o z o n e via
a four-
m e m b e r e d c y c l i c t r a n s i t i o n state.
Since this t r a n s i t i o n state c o u l d y i e l d a n i n t e r m e d i a t e w h i c h i n t u r n c o u l d c o n c e i v a b l y p r o d u c e the p r o d u c t s o b s e r v e d , i t cannot b e r u l e d out at this p o i n t . P e r h a p s after m o r e d a t a h a v e b e e n c o l l e c t e d c o n c e r n i n g the existence
of the analogous
Staudinger intermediates
(23)
from
olefin
reactions, i t w i l l b e possible to choose b e t w e e n the t w o r e a c t i o n p a t h w a y s . F o l l o w i n g the p r o p o s e d
t r a n s i t i o n state 27, a l i k e l y i n t e r m e d i a t e
w o u l d b e a t r i o x i d e s i m i l a r to that p r o p o s e d h y d r o g e n cleavage
(Reaction
b y O u e l l e t t e for s i l i c o n -
12).
In Ozone Reactions with Organic Compounds; Bailey, P.; Advances in Chemistry; American Chemical Society: Washington, DC, 1972.
98
OZONE REACTIONS W I T H ORGANIC COMPOUNDS
(29)
[—C—0—0—0—HgX]
/
A l t h o u g h this i n t e r m e d i a t e was n o t i s o l a t e d or e v e n d e t e c t e d b y N M R spectroscopy
( a t 31 ° C ) , its existence is i n f e r r e d f r o m the t y p e of o r g a n i c
a n d i n o r g a n i c p r o d u c t s f o r m e d i n the r e a c t i o n . F u t u r e l o w t e m p e r a t u r e N M R studies of the ozonolysis solutions w i l l b e d o n e to v e r i f y S t r u c t u r e 29.
Downloaded by UNIV OF MINNESOTA on August 28, 2013 | http://pubs.acs.org Publication Date: June 1, 1972 | doi: 10.1021/ba-1972-0112.ch007
The
trioxide
intermediate
may
decompose
by
many
pathways.
Results o b t a i n e d i n this p a p e r suggest that these d e c o m p o s i t i o n p a t h w a y s m i g h t e x p l a i n the t w o classes of m e r c u r y salts p r o d u c e d ( H g
2 +
and H g ) +
as w e l l as the t w o d i v i s i o n s of o r g a n i c p r o d u c t s f o r m e d ( w i t h a n d w i t h o u t carbon-carbon
scission).
T h i s p o s s i b i l i t y looks p a r t i c u l a r l y a t t r a c t i v e
w h e n the a c e t o n e / f o r m i c a c i d a n d H g C l / H g C l 2 ratios are c o m p a r e d i n 2
R e a c t i o n 13, T a b l e I.
2
H o w e v e r , b e f o r e e x t e n d i n g s p e c u l a t i o n o n this
matter, s e v e r a l f u t u r e experiments a n d t h e o r e t i c a l c a l c u l a t i o n s m u s t b e pursued.
A m o n g these w i l l b e a n effort to m e a s u r e q u a n t i t a t i v e l y t h e
a m o u n t a n d t y p e ( s i n g l e t or t r i p l e t ) of oxygen generated b y a n 0 / N 3
ozonolysis.
2
A l s o , t h e o r e t i c a l c o n s i d e r a t i o n w i l l b e g i v e n to the m e t a l o -
t r i o x y a l k a n e s i n l i g h t of p u b l i s h e d d a t a o n the k n o w n d i a l k y l t r i o x i d e systems (24,
25).
Synthetic U t i l i t y . O n e g o a l of this research w a s to investigate n e w s y n t h e t i c uses of o r g a n o m e r c u r i a l s . A l t h o u g h the s y n t h e t i c u t i l i t y of this r e a c t i o n has n o t b e e n
extensively i n v e s t i g a t e d , p r o d u c t s
s u c h as that
f r o m R e a c t i o n 16 i n T a b l e I d o suggest a possible u t i l i t y to
organic
chemists. T h u s , the p r e p a r a t i o n of α-alkoxyketones s h o u l d b e possible b y consecutive a l k o x y m e r c u r a t i o n a n d o z o n a t i o n reactions. OR' HgX
2
R2C = C H — R R'OH
R2C—CH—R HgX
OR
(30)
0; R 2—C—C—R Ο A n a t t e m p t to p r e p a r e α-diketones via consecutive
hydroxymercuration
a n d o z o n a t i o n f a i l e d , p r e s u m a b l y because of the p r o d u c t ' s extreme r e a c t i v i t y t o w a r d s ozone.
In Ozone Reactions with Organic Compounds; Bailey, P.; Advances in Chemistry; American Chemical Society: Washington, DC, 1972.
7.
WATERS E T A L .
Ozonolysis
of
Organomercurials
99
COOH Downloaded by UNIV OF MINNESOTA on August 28, 2013 | http://pubs.acs.org Publication Date: June 1, 1972 | doi: 10.1021/ba-1972-0112.ch007
COOH 90% A s t u d y is n o w u n d e r w a y to e v a l u a t e c o m p l e t e l y t h e f u t u r e synthetic r o l e o f t h e o x y m e r c u r a t i o n - o z o n o l y s i s sequence. Literature
Cited
1. Jensen, F. R., Rickborn, B., "Electrophilic Substitution of Organomercu rials," McGraw-Hill, New York, 1968. 2. Belew, J. S., "Oxidation," Vol. I, R. L. Augustine, Ed., p. 259, Marcel Dekkar, New York, 1969. 3. Aleksandrov, Yu. Α., Sheyanov, N. G., Shushunov, V. Α., Zh. Obshch. Khim. (1968) 38, 1352-6; CA (1968) 69, 77388q. 4. Aleksandrov, Yu. Α., Sheyanov, N. G., Zh. Obshch. Khim. (1966) 36, 953; CA (1966) 65, 8955e. 5. Emel'yanov, Β. V., Shemyakina, Ζ. N., Shvarov, V. N., Khim.Prom.(1968) 44, 498-500; CA (1968) 69, 7964y. 6. Aleksandrov, Yu. Α., Sheyanov, N. G., Zh. Obshch. Khim. (1969) 39, 141-3; CA (1969) 70, 96847a. 7. Spialter, L., Austin, J. D., Inorg. Chem. (1966) 5, 1975-8. 8. Ayrey, G., Barnard, D., Woodbridge, D. T.,J.Chem. Soc. (1962) 2089-99. 9. Bockemuller, W., Pfeuffer, L., Ann. (1939) 537, 178. 10. Ouellette, R. J., Marks, D. L.,J.Organometal. Chem. (1968) 11, 407-13. 11. Pike, P. E., Marsh, P. G., Erickson, R. E . , Waters, W. L . , Tetrahedron Letters (1970) 2679; Pike, P. E., MS Thesis, University of Montana (1970). 12. Rivera, J. T., MS Thesis, University of Montana (1971). 13. Marvel, C. S., Gauerke, C. G., Hill, E. L., J. Amer. Chem. Soc. (1925) 47, 3009-11. 14. Gilman, H., Brown, R. E., J. Amer. Chem. Soc. (1929) 51, 928. 15. Hatton, J. V., Schneider, W. G., Siebrand, W.,J.Chem. Phys. (1963) 39, 1330-6. 16. Kiefer, E. F., Waters, W. L., J. Amer. Chem. Soc. (1965) 87, 4401. 17. Bailey, P. S., Reader, A. M., Chem. Ind. (London) (1961) 1063. 18. Ref. 2, p. 98. 19. Brilkina, T. G., Shushunov, V. Α., "Reactions of Organometallic Compounds with Oxygen and Peroxides," Chemical Rubber Co. Press, Cleveland, 1966. 20. Hughes, E. D., Ingold, C. K., Roberts, R. M. G., J. Chem. Soc. (1964) 3900.
In Ozone Reactions with Organic Compounds; Bailey, P.; Advances in Chemistry; American Chemical Society: Washington, DC, 1972.
100
OZONE REACTIONS W I T H
ORGANIC
COMPOUNDS
21. Charmen, Η. Β., Hughes, E. D., Ingold, C. K., J. Chem. Soc. (1959) 2530. 22. Grdenic, D., Quart. Rev. (1965) 19, 303-28. 23. Story, P. R., Alford, J. Α., Ray, W.C.,Burgess, J. R., "Abstracts of Papers," 161st National Meeting, ACS, March 1971, PETR A13. 24. Bartlett, P. D., Günther, P.,J.Amer. Chem. Soc. (1966) 88, 3288. 25. Bensen, S. W., J. Amer. Chem. Soc. (1964) 86, 3922.
Downloaded by UNIV OF MINNESOTA on August 28, 2013 | http://pubs.acs.org Publication Date: June 1, 1972 | doi: 10.1021/ba-1972-0112.ch007
RECEIVED June 21, 1971. Supported by the National Science Foundation Grant No. GP-18317.
In Ozone Reactions with Organic Compounds; Bailey, P.; Advances in Chemistry; American Chemical Society: Washington, DC, 1972.