The Reaction Chemistry of Superoxide Ion in Aprotic Media

philic displacement of chloride ion; the relative SN2 second-order rate ... 4 x 10 2 0. (5) prompted numerous investigations of its reaction chemistry...
0 downloads 0 Views 2MB Size
24 The Reaction Chemistry of Superoxide Ion in Aprotic Media D O N A L D T. SAWYER, E D W A R D J. N A N N I , JR., and J U L I A N L . R O B E R T S , JR. Downloaded by PENNSYLVANIA STATE UNIV on May 10, 2012 | http://pubs.acs.org Publication Date: June 1, 1982 | doi: 10.1021/ba-1982-0201.ch024

University of California, Department of Chemistry, Riverside, C A 92521

Superoxide ion (O -) is a strong Brönsted base, an effective nucleophile, and a moderate one-electron reducing agent. In the presence of O - polychloro hydrocarbons, are rapidly degraded via a primary nucleophilic displacement of chloride ion; the relative S 2 second-order rate constants for the chloromethanes are CCl > CHCl > CH Cl > CH Cl , with an approximate value of 1300 M s for CCl in DMF at 25°C. Combination of O - with basic substrates such as hydrophenazines, reduced flavins, and hydroxylamine yields substrate oxidation products via direct transfer of one, two, or three hydrogen atoms to O - from the reduced substrate. Superoxide ion reacts with the cation radical of methyl viologen (MV ) via a primary radical-radical coupling process to yield a diamagnetic adduct. The latter decomposes, apparently via a peroxide intermediate, to products that may represent the biological toxins of methyl viologen. A similar radical coupling reaction occurs between a neutral flavin radical and O - to yield a flavoperoxide anion. The latter is an effective reaction mimic for flavοoxygenases. When O - and reduced tran­ sition metal ions are combined, an overall redox process occurs via either direct electron transfer or a series of disproportionation steps. The kinetics and mechanisms of these processes have been studied in relation to those for the superoxide dismutases. 2

2

N

4

3

3

2

2

-1 -1

4

2

2

+

2

2

I h e e l e c t r o n transfer r e d u c t i o n o f d i o x y g e n y i e l d s s u p e r o x i d e i o n ( 0 " ) as a p r i m a r y p r o d u c t i n b i o l o g i c a l ( I ) as w e l l as c h e m i c a l systems (2). T h i s redox process has b e e n c h a r a c t e r i z e d b y electro­ c h e m i c a l s t u d i e s i n a p r o t i c s o l v e n t s s u c h as d i m e t h y l f o r m a m i d e 2

0065-2393/82/0201-0585$06.00 © 1982 A m e r i c a n C h e m i c a l Society In Electrochemical and Spectrochemical Studies of Biological Redox Components; Kadish, K.; Advances in Chemistry; American Chemical Society: Washington, DC, 1982.

BIOLOGICAL REDOX COMPONENTS

586 (DMF)

(3) a n d b y p u l s e

radiolysis studies

m o l a l i t y as t h e s t a n d a r d state for 0 0

2

(4) (for

unit

0 ") 2

EDMF= - 0 . 6 0 V VS. N H E ] E° ' = -0.17 V J

+ e-*±(V

H

Downloaded by PENNSYLVANIA STATE UNIV on May 10, 2012 | http://pubs.acs.org Publication Date: June 1, 1982 | doi: 10.1021/ba-1982-0201.ch024

and

2

i n water

m U

j

2 0

F i g u r e 1 is a s u m m a r y o f t h e r e d u c t i o n p o t e n t i a l s for d i o x y g e n a n d its r e d u c t i o n p r o d u c t s i n a q u e o u s m e d i a for a c i d i c , n e u t r a l , a n d b a s i c conditions. T h e s e data represent a best estimate from the considera­ tion o f pulse radiolysis, electrochemical, spectrophotometry, and c a l o r i m e t r i c m e a s u r e m e n t s (4-9), and*are b a s e d o n ρ Κ v a l u e s o f 4 . 6 9 for H 0 · (4) a n d 11.9 for H O (8). α

2

2

z

T h e l i m i t e d lifetime o f superoxide ion i n aqueous solutions, b e c a u s e o f r a p i d h y d r o l y s i s a n d d i s p r o p o r t i o n a t i o n [(4) a n d F i g u r e 1], H Or

+

+ ( V Η0 ·

+ Η 0 · -* 0 2

2

20 - + 2 H 2

+

+ H0 "

2

Η 0 · + Η 0 · -» 0 2

pK

2

2

+ H 0 2

*± H 0 2

2

5

k

4

+ 0

2

(2)

= 1.0 x 1 0 M ^ s "

3

2

= 4.69 8

k

2

a

= 8.6 x 1 0 M ' V Kp„

7

= 4 x 10

1

(3)

1

(4)

2 0

(5)

p r o m p t e d n u m e r o u s i n v e s t i g a t i o n s o f its r e a c t i o n c h e m i s t r y i n a p r o t i c solvents. I n s u c h solvents (and i n the absence o f p r o t i c substrates a n d t r a c e l e v e l s o f m e t a l i o n s ) s u p e r o x i d e i o n is s t a b l e , w i t h a h a l f - l i f e o f m o r e t h a n 8 h at m i l l i m o l a r c o n c e n t r a t i o n s . T h e d i f f e r e n c e i n t h e r e d u c t i o n p o t e n t i a l s for d i o x y g e n i n n e u t r a l [ - 0 . 6 0 V vs. the normal h y d r o g e n electrode ( N H E ) ] a n d

acidified

(+0.12 V vs. N H E ) D M F p r o v i d e s an approximate m e a s u r e o f the a c i d i t y o f Η 0 · i n a p r o t i c m e d i a (pK 2

a

~ 13). H e n c e , s u p e r o x i d e i o n is a

stronger base i n D M F t h a n i n a q u e o u s m e d i a b e c a u s e o f the m u c h w e a k e r solvation o f anions b y aprotic solvents. For the same reason, the proton-driven disproportionation of superoxide

i o n ( E q u a t i o n 5) is

e v e n m o r e c o m p l e t e i n a p r o t i c s o l v e n t s a n d c a u s e s s u p e r o x i d e i o n to h a v e u n i q u e l y s t r o n g B r o n s t e d b a s i c i t y [ e . g . , 1 - b u t a n o l ( p K = 3 3 ) is a

d e p r o t o n a t e d b y s u p e r o x i d e i o n i n D M F ] (10). T h i s chapter s u m m a r i z e s the p r i m a r y reaction c h e m i s t r y o f superoxide ion i n aprotic solvents. T h e reactivity o f superoxide ion i n a q u e o u s m e d i a is e x p e c t e d t o b e s i m i l a r , b u t m o d e r a t e d b y t h e l e v e l ­ i n g effects o f w a t e r a n d t h e c o m p e t i t i v e p r o t o n - i n d u c e d d i s p r o p o r ­ tionation reactions. T h e latter process y i e l d s substrate anions, d i o x y ­ gen, a n d h y d r o g e n p e r o x i d e . T h i s process, p l u s s i m i l a r reactions o f a c i d i c s u b s t r a t e s i n a p r o t i c s o l v e n t s , l e a d s to o x i d a t i o n s b y o x y g e n a n d h y d r o g e n p e r o x i d e o f substrate anions that w e r e e r r o n e o u s l y attri­ b u t e d t o d i r e c t e l e c t r o n t r a n s f e r to s u p e r o x i d e i o n (3).

In Electrochemical and Spectrochemical Studies of Biological Redox Components; Kadish, K.; Advances in Chemistry; American Chemical Society: Washington, DC, 1982.

In Electrochemical and Spectrochemical Studies of Biological Redox Components; Kadish, K.; Advances in Chemistry; American Chemical Society: Washington, DC, 1982.

5

-0.065

-H 0.12



+0.9

+ 0.401

+0.5

+ 0.815

L .

2

+ 0.35

-HO,

-1-0.5

J

2

H 0

+ 0.9 2

-

Ί

+0.867

HO + · 0

+ 0.65

2

_

+ 1.349

- H 0 + ·0Η-

+ 1.763

HoO + ·0Η-

+ 1.20

•1.3

+ 1.229

1 1

-HoO 2V2

+0.9

+ 1.44

0 ^ ^ 0 2 0 .

+0.281

+0.695

H0

-f 1.66

+1.3

+ 1.8

+ 2.2

2

2

•4

1

OH

-2H 0

1

H 0

-

7

p H 14 (1 M O H " )

pH

p H 0 (1 M H + )

Figure 1. Potentials for oxygen redox couples in aqueous media at 25°C; values represent standard re­ duction potentials vs. the NHE. The standard state for 0 is 1 atm.; a standard state of unit molality shifts the one-electron process by +0.17 V; the two-electron process by +0.085 V; the three-electron process by +0.06 V; and the four-electron process by +0.04 V.

1

-0.33

-0.33

-0.05

+ 1.4

Downloaded by PENNSYLVANIA STATE UNIV on May 10, 2012 | http://pubs.acs.org Publication Date: June 1, 1982 | doi: 10.1021/ba-1982-0201.ch024

BIOLOGICAL REDOX COMPONENTS

588

Oxidation-Reduction Reactions One-Electron

Reductant.

0 /Or

T h e r e d o x p o t e n t i a l for t h e

2

c o u p l e i n d i m e t h y l f o r m a m i d e ( E q u a t i o n 1) is s u f f i c i e n t l y n e g a t i v e to m a k e s u p e r o x i d e a moderate r e d u c i n g agent. F o r e x a m p l e , d i s s o l v e d s u l f u r d i o x i d e is r e d u c e d b y s u p e r o x i d e i o n

Or + s o

2

«± 0

2

(11).

SOr

+

Ke = 5

(6)

Downloaded by PENNSYLVANIA STATE UNIV on May 10, 2012 | http://pubs.acs.org Publication Date: June 1, 1982 | doi: 10.1021/ba-1982-0201.ch024

T h e p r o c e s s , w h i c h is d r i v e n to t h e r i g h t b y t h e d i m e r i z a t i o n o f SOr dithionite ( K

to

3

d i m e r

= 5 x 1 0 ) , i n d i c a t e s t h a t s u p e r o x i d e i o n is a m o r e

effective one-electron r e d u c i n g agent than dithionite i n D M F . Other examples o f reductions b y superoxide ion i n c l u d e 3,5-dii-butyl-o-quinone ( D T B Q ) in D M F Or and

+ D T B Q «± D T B Q " + 0

numerous

transition

Cu(II)(9,10-phenanthroline) (TPP)Cl (15).

metal

K

2

= 0.8 x 1 0

7

complexes

(12),

in

(14),

(7)

aprotic

Cu(II)salicylate

( T P P is t e t r a p h e n y l p o r p h i n a t o )

6

solvents;

(13),

and

Mn(III)-

Fe(III)(TPP)Cl

I n aqueous m e d i a , superoxide i o n (generated b y pulse radioly­

sis) r e d u c e s F e ( I I I ) ( E D T A ) (16) a n d f e r r i c y t o c h r o m e c cyt c ( F e

3 +

) + Or ^

R e c e n t s t u d i e s (18)

cyt c ( F e

2 +

) + O

K

z

8

(17).

= 4 χ 10

confirm that substantial a m o u n t s

4

(8)

of singlet

oxygen ( Ό ) result from the oxidation o f superoxide ion b y coordi­ 2

n a t e d saturated transition m e t a l oxidants ( w i t h Ε °'-values greater than +0.34 V ) i n D M F . Measurements of singlet oxygen b y photon count­ i n g i n d i c a t e a s i g n i f i c a n t y i e l d w h e n f e r r i c e n i u m p e r c h l o r a t e is t h e oxidant, but a n e g l i g i b l e amount from superoxide ion oxidation b y F e ( I I I ) ( C l 0 ) 3 . T h i s result c a n b e r a t i o n a l i z e d o n the basis that the 4

c o o r d i n a t e l y saturated f e r r i c e n i u m i o n forms a s i n g l e t transition-state c o m p l e x w i t h superoxide ion, [ ( C p ) F e : 0 : ] . Other oxidants 2

2

t r

that

c o n v e r t s u p e r o x i d e i o n to s i n g l e t o x y g e n i n c l u d e M n ( I I I ) ( 0 3 t e r p y )

3 + 2

( 0 t e r p y is 2 , 2 ' , 2 " - t e r p y r i d i n e Ι , Ι ' , Γ - t r i o x i d e ) a n d [ M n ( I V ) ( o - p h e n ) 3

0]

2

4 + 2

( o - p h e n is

1,10-phenanthroline).

O x i d a n t v i a H y d r o g e n - A t o m Transfer.

T h e results o f a

recent

i n v e s t i g a t i o n (19) d e m o n s t r a t e t h a t s u p e r o x i d e is a n e f f e c t i v e o x i d a n t o f basic r e d u c i n g substrates w i t h r e a d i l y transferable h y d r o g e n atoms. W h e n s u p e r o x i d e i o n is c o m b i n e d ( 1 : 1 m o l r a t i o ) w i t h e i t h e r d i h y d r o p h e n a z i n e o r N - m e t h y l h y d r o p h e n a z i n e ( b o t h m o d e l s for r e d u c e d flavins) i n d i m e t h y l f o r m a m i d e , a s t o i c h i o m e t r i c y i e l d o f p h e n a z i n e or JV-methylphenazine r a d i c a l , r e s p e c t i v e l y , results from a t w o - h y d r o g e n a t o m or a o n e - h y d r o g e n a t o m transfer

In Electrochemical and Spectrochemical Studies of Biological Redox Components; Kadish, K.; Advances in Chemistry; American Chemical Society: Washington, DC, 1982.

24.

Superoxide Ion in Aprotic Media

SAWYER ET AL.

phenH

2

+ 0 " + Hsol

589

phen + ^ (-sol) + H 0 + O H "

2

n

C H N p h e n H + 0 " - * C H N phen- + H 0 " 3

2

(9)

2

3

(10)

2

S i m i l a r r e a c t i o n s are o b s e r v e d for r e d u c e d flavins, h y d r o x y l a m i n e , a n d h y d r a z i n e . T h e stoichiometry o f the reactions

is c o n t r o l l e d b y

the

n u m b e r of r e d u c i n g h y d r o g e n atoms per substrate m o l e c u l e . C o n v e r ­ s i o n o f s u c h h y d r o g e n a t o m s to p r o t o n s p r o v i d e s s t a b i l i z a t i o n o f t h e 2

2

reduction products of superoxide ion ( 0 ~ ,

O", and O ").

2

Downloaded by PENNSYLVANIA STATE UNIV on May 10, 2012 | http://pubs.acs.org Publication Date: June 1, 1982 | doi: 10.1021/ba-1982-0201.ch024

M o s t o f the r e p o r t e d oxidations o f p r o t i c substrates b y s u p e r o x i d e a c t u a l l y r e p r e s e n t a n i n i t i a l p r o t o n a b s t r a c t i o n to g i v e s u b s t r a t e a n i o n and disproportionation species, H 0

_ 2

and 0

2

(3). T h e l a t t e r o x i d i z e t h e

s u b s t r a t e a n i o n for c a t e c h o l s a n d α - t o c o p h e r o l . A l t h o u g h t h e s a m e p r o ­ cess w a s s u g g e s t e d for t h e o x i d a t i o n o f a s c o r b i c a c i d (3), t h e t o t a l a b ­ sence o f any intermediate 0 tion o f 0 " ) 2

a n d a 1:1

2

(from the p r o t o n - i n d u c e d d i s p r o p o r t i o n a ­

i n i t i a l r e a c t i o n s t o i c h i o m e t r y for t h e

0 "2

a c o r b i c a c i d r e a c t i o n to g i v e p r i m a r i l y ascorbate r a d i c a l a n i o n r e q u i r e a n a l t e r n a t i v e m e c h a n i s m . T h e s e factors a n d t h e r a p i d b i m o l e c u l a r k i n e t i c s (fc , 2

2.8 Χ 1 0

4

M

_ 1

s

_ 1

)

indicate that a concerted

hydrogen-

a t o m t r a n s f e r a n d p r o t o n t r a n s f e r to s u p e r o x i d e i o n f r o m a s c o r b i c a c i d o c c u r s (JO) CH OH 2

HCOH

/

Ο

CH OH 2

HCOH Ο

\

HC

C = 0 + Or

I I c—c I I OH

O H

Hjjasc

-> H C

/

\

C = 0 +

I I c—c I ^ ι

H 0 2

( I D 2

Ο ί- ) Ο asc"

f o l l o w e d b y a p r o t o n - i n d u c e d d i s p r o p o r t i o n a t i o n o f the ascorbate r a d i ­ c a l a n i o n (asc") t o d e h y d r o a s c o r b i c a c i d ( d e h y d ) a n d a s c o r b a t e a n i o n (Hasc") H a s c + 2 a s c " -> d e h y d + 2 H a s c " 2

(12)

B o t h H a s c a n d a s c " a p p e a r to b e u n r e a c t i v e w i t h h y d r o g e n p e r o x i d e i n D M F a n d t h e r e is n o e v i d e n c e for a c o n c e r t e d t w o - h y d r o g e n a t o m transfer from H a s c to s u p e r o x i d e i o n . T h e f a c i l e o x i d a t i o n o f ascorbate i o n i n a q u e o u s m e d i a at p H 9.9 b y s u p e r o x i d e i o n [ g e n e r a t e d b y p u l s e r a d i o l y s i s (20)] p r o b a b l y o c c u r s v i a a s i m i l a r h y d r o g e n - a t o m t r a n s f e r 2

2

In Electrochemical and Spectrochemical Studies of Biological Redox Components; Kadish, K.; Advances in Chemistry; American Chemical Society: Washington, DC, 1982.

590

BIOLOGICAL REDOX COMPONENTS

mechanism, as suggested previously (21). Hence, ascorbic acid ap­ pears to be unique among acidic substrates in its ability to reduce superoxide ion directly to hydrogen peroxide without significant con­ comitant proton-induced disproportionation.

Downloaded by PENNSYLVANIA STATE UNIV on May 10, 2012 | http://pubs.acs.org Publication Date: June 1, 1982 | doi: 10.1021/ba-1982-0201.ch024

Radical-Radical Coupling Combination of superoxide ion with the cation radical (MV"*") of methyl viologen (l,l'-dimethyl-4,4'-bipyridinium ion, paraquat) in D M F and D M S O results in a primary radical-radical coupling reac­ tion to yield a diamagnetic product (Figure 2). This conclusion is based on electrochemical, spectroscopic, N M R , electron paramagnetic reso­ nance (EPR), thin-layer chromatography (TLC), high performance liquid chromatography (HPLC), and mass spectrometric measure­ ments (22). Characterization of reaction intermediates and products provides the basis for proposing a self-consistent mechanistic scheme. This is the first definitive example of a radical reaction for superoxide ion.

MVt

(13) Ο

\

ΟΘ

[MV0 ] 2

IΝ — C H

CH —Ν 3

[MV0 ]

3

2

O-O H

-Jtr CH

3

0=C—Ν—CH=CH—C=< MV0

2

T T

N-CH

3

(14)

I °· polymer

In Electrochemical and Spectrochemical Studies of Biological Redox Components; Kadish, K.; Advances in Chemistry; American Chemical Society: Washington, DC, 1982.

SAWYER ET AL.

Superoxide

Ion in Aprotic

Media

591

Downloaded by PENNSYLVANIA STATE UNIV on May 10, 2012 | http://pubs.acs.org Publication Date: June 1, 1982 | doi: 10.1021/ba-1982-0201.ch024

24.

Ε, V vs. SCE Figure 2. Cyclic voltammograms in DMF (0.1 M tetraethylammonium perchlorate) of a, 1 m M Of; b, 1 m M methyl viologen cation radical (MV-); and c, 0.5 m M 0 " plus 0.5 raM M V within 5 min after mixing. Controiled-potential coulometry was used to prepare Ο ^ from 0 and MV from MVCl . Measurements were made with a Pt electrode (area, 0.23 cm ) at a scan rate of 0.1 V/s (22). f

2

2

2

2

2

In Electrochemical and Spectrochemical Studies of Biological Redox Components; Kadish, K.; Advances in Chemistry; American Chemical Society: Washington, DC, 1982.

BIOLOGICAL REDOX COMPONENTS

592

Resonance stabilization apparently precludes significant radical c o u p l ­ i n g at t h e C - 4 p o s i t i o n . S u c h a p r o c e s s w o u l d l e a d to a s y m m e t r i c a l d i o x e t a n e i n t e r m e d i a t e a n d d i s s o c i a t i o n to t w o 4 - N - m e t h y l p y r i d o n e m o l e c u l e s ; o n l y t r a c e l e v e l s are d e t e c t e d i n t h e p r o d u c t s o l u t i o n . I n t h e p r e s e n c e o f D M S O o r o t h e r s u b s t r a t e s s u b j e c t to o x y g e n a ­ tion b y peroxides, [ M V 0 ] undergoes such reactions before it can form t h e d i o x e t a n e i n t e r m e d i a t e a n d p r o d u c t s o f E q u a t i o n 14.

Downloaded by PENNSYLVANIA STATE UNIV on May 10, 2012 | http://pubs.acs.org Publication Date: June 1, 1982 | doi: 10.1021/ba-1982-0201.ch024

2

[MV0 ] + DMSO-> 2

DMSO

+ CH -NV-/0N-CH 3

3

(15)

ο [MVO] The

[ M V O ] species can

epoxide

r e a r r a n g e to a l a c t a m , h y d r o l y z e

to a g l y c o l , a n d

r e a c t w i t h d i o x y g e n to g i v e a

v i a an

pyridone

+

(MVO )

[MVO]

CH —^— F l E t O O " 2

T h i s r e a c t i o n r e p r e s e n t s a s e c o n d e x a m p l e o f s u p e r o x i d e i o n a c t i n g as a c o u p l i n g reagent w i t h stable radicals. T h e neutral radical ( F l E t ) can b e p r o d u c e d from the one-to-one c o m b i n a t i o n o f F l E t a n d 0 " , or b y e l e c t r o c h e m i c a l r e d u c t i o n o f F l E t . T h e 4 a - F l E t O O ~ s p e c i e s , a n effec­ t i v e r e a c t i o n m i m i c for flavomonooxygenases (24), r e a d i l y o x y g e n a t e s d i m e t h y l s u l f o x i d e ( D M S O ) a n d other substrates subject to o x y g e n atom a d d i t i o n from p e r o x i d e ions. T h e r e s u l t i n g p s e u d o base, 4aF l E t O " , r e v e r t s to F l E t a n d H 0 u p o n a d d i t i o n o f p r o t o n s , o r is o x i d i z e d b y any residual oxygen. +

2

+

+

2

I n s p i t e o f v i g o r o u s a n d p e r s i s t e n t r e s e a r c h effort (3, 25-27), s u p e r o x i d e i o n has n o t b e e n f o u n d to a c t as a n i n i t i a t o r o f r a d i c a l c h a i n r e a c t i o n s . R a d i c a l - r a d i c a l c o u p l i n g o n l y is o b s e r v e d for t h o s e f o r c i n g c o n d i t i o n s ( M V * or F l E t ' p l u s s u p e r o x i d e i o n ) w h e r e a l t e r n a t i v e r e a c t i n s o f s u p e r o x i d e i o n are n o t f a v o r e d .

In Electrochemical and Spectrochemical Studies of Biological Redox Components; Kadish, K.; Advances in Chemistry; American Chemical Society: Washington, DC, 1982.

BIOLOGICAL REDOX COMPONENTS

594

Downloaded by PENNSYLVANIA STATE UNIV on May 10, 2012 | http://pubs.acs.org Publication Date: June 1, 1982 | doi: 10.1021/ba-1982-0201.ch024

8,000 h

300

400

500

λ (nm) Figure 3. Absorption spectra in DMF (0.1 M tetraethylammonium perchlorate) of a, 0.5 m M N -ethyl-4a-hydroperoxy-3-methyllumiflavin (FlEtOOH); b, 0.52 mM FlEtOOH plus 0.52 mM t-BuO~K ; and c, 0.49 mM FlEt plus 1.15 mM 0 - (23). 5

+

+

2

Nucleophilicity Peroxide

and Monooxygenase

Reactivity

by

Intermediates

A l k y l H a l i d e s . U n d e r a p r o t i c c o n d i t i o n s , s u p e r o x i d e i o n attacks a l k y l h a l i d e s v i a n u c l e o p h i l i c s u b s t i t u t i o n (28). K i n e t i c s t u d i e s (2932) c o n f i r m t h a t t h e r e a c t i o n i s first o r d e r i n s u b s t r a t e a n d first o r d e r i n s u p e r o x i d e i o n , t h a t t h e rates f o l l o w t h e o r d e r 1 ° > 2 ° » 3 ° a n d I > B r > C I , a n d that the attack b y s u p e r o x i d e i o n results i n i n v e r s i o n of configuration. I n aprotic solvents, p r i m a r y a n d secondary a l k y l halides y i e l d dialkyl peroxides w h e n c o m b i n e d w i t h excess s u p e r o x i d e i o n (31-33), w h i c h is c o n s i s t e n t w i t h a m u l t i s t e p m e c h ­ anism R X + 0 " -> R 0 2

RO

z

+ ( V

+ X "

2

R0 " + 0 2

(19) 2

R 0 " -I- R X — > R O O R + Χ " 2

(20) (21)

T h e p r i m a r y step occurs v i a a n S 2 displacenent o f h a l i d e from the c a r b o n . T h e r e s u l t i n g p e r o x y r a d i c a l is r e d u c e d b y a s e c o n d s u p e r N

In Electrochemical and Spectrochemical Studies of Biological Redox Components; Kadish, K.; Advances in Chemistry; American Chemical Society: Washington, DC, 1982.

SAWYER ET A L .

24.

Superoxide Ion in Aprotic Media

595

o x i d e i o n t o g i v e t h e a l k y l p e r o x i d e i o n , w h i c h acts as a n u c l e o p h i l e for a t t a c k o f a s e c o n d s u b s t r a t e m o l e c u l e . I n D M S O (or i n t h e p r e s e n c e o f o t h e r r e a c t i v e s u b s t r a t e s ) R e a c t i o n 2 0 is f o l l o w e d b y a t t a c k o f t h e s o l v e n t b y R 0 ~ t o g i v e d i m e t h y l s u l f o n e 2

a n d a l c o h o l s (30, 3 4 , 3 5 ) R0

_ 2

+ DMSO -» D M S 0

+ RO"

2

(22)

Downloaded by PENNSYLVANIA STATE UNIV on May 10, 2012 | http://pubs.acs.org Publication Date: June 1, 1982 | doi: 10.1021/ba-1982-0201.ch024

A r e c e n t i n v e s t i g a t i o n (36) h a s d e m o n s t r a t e d t h a t p o l y c h l o r o h y d ­ rocarbons ( C C 1 , CHCI3, C H C 1 , a n d p , p ' - D D T ) are r a p i d l y d e g r a d e d 4

2

2

by superoxide ion i n aprotic m e d i a ( D M F a n d D M S O ) . T h e primary step appears to b e a n u c l e o p h i l i c or c o n c e r t e d r e d u c t i v e d i s p l a c e m e n t o f c h l o r i d e i o n . K i n e t i c s t u d i e s c o n f i r m t h a t t h e i n i t i a l s t e p is r a t e l i m i t i n g a n d first o r d e r w i t h r e s p e c t t o s u p e r o x i d e i o n a n d s u b s t r a t e . T h e o v e r a l l r e a c t a n t a n d p r o d u c t s t o i c h i o m e t r i e s for t h e d e g r a d a t i o n o f the p o l y c h l o r o m e t h a n e s a n d ρ , ρ ' - D D T i n D M F are s u m m a r i z e d i n T a b l e I. I n a d d i t i o n , t h e s e c o n d - o r d e r rate constants for t h e p r i m a r y - 1

process are t a b u l a t e d ; the v a l u e o f 1300 M

s

_ 1

for C C 1 is t h e fastest 4

d i s p l a c e m e n t y e t o b s e r v e d for s u p e r o x i d e . C o m b i n a t i o n o f C C 1 w i t h six equivalents o f oxygen i n D M S O 4

y i e l d s a p r o d u c t s o l u t i o n t h a t , after d i l u t i o n w i t h w a t e r , c a n b e t i t r a t e d w i t h a q u e o u s H C 1 . T h e r e s u l t i n g t i t r a t i o n c u r v e is c o n s i s t e n t w i t h t h a t for a n a u t h e n t i c s a m p l e o f c a r b o n a t e i o n i n t h e s a m e m e d i u m . B e c a u s e p e r o x i d e s o x y g e n a t e D M S O t o i t s s u l f o n e (37), a r e a s o n a b l e c o n c l u s i o n

Table I.

Stoichiometries and Kinetics for the Reaction of 0 " with Polychloromethanes and p,p ' - D D T in D M F (0.1 M Tetraethylammonium Perchlorate) at 25°C 2

ci-

Substrate (S), 0.1-5 mM CH3CI CH C1 CHCI3 2

Of per S

released per S

1 2 4

1 2

2

eel*

2

9

3 4

6 3

p,p'-DDT

k , M~'s 80 460 1300 130

2

Overall Reactions: (a) (b) (c) (d) (e)

C H 3 C I + ( V -»· i C H O O C H + C I " + i 0 C H C 1 + 2 C V -*· C H 0 + 2 C 1 ~ + | 0 C H C 1 + 4 ( V -> H C ( 0 ) O Q - + 3 C 1 ~ + f 0 C C 1 + 6 C V -> C O / " ^ 4 C 1 - + 4 0 ρ , ρ ' - D D T + 3 0 Γ - * products + 2C1" + f O 3

2

2

3

2

2

2

3

4

2

2

;

In Electrochemical and Spectrochemical Studies of Biological Redox Components; Kadish, K.; Advances in Chemistry; American Chemical Society: Washington, DC, 1982.

BIOLOGICAL REDOX COMPONENTS

596 is t h a t t h e

overall product from

s u p e r o x i d e i o n is C 0

2 4

the

reaction o f C C 1 w i t h

excess

4

" a n d t h a t i t r e a c t s w i t h t h i s s o l v e n t to y i e l d

CO3 -. 2

W h e n C H C I 3 is c o m b i n e d w i t h f o u r e q u i v a l e n t s o f s u p e r o x i d e i o n i n D M F , a b a s i c p r o d u c t s o l u t i o n is o b t a i n e d t h a t h a s t h e c h a r a c t e r i s ­ t i c s o f p e r o x y f o r m a t e i o n (the a c i d i f i e d p r o d u c t s o l u t i o n o x i d i z e s I " to

h). O n the basis o f these e x p e r i m e n t s a n d the reaction s t o i c h i o m e ­

Downloaded by PENNSYLVANIA STATE UNIV on May 10, 2012 | http://pubs.acs.org Publication Date: June 1, 1982 | doi: 10.1021/ba-1982-0201.ch024

tries,

overall

reactions

are

proposed

for

the

degradation

of

the

p o l y c h l o r o s u b s t r a t e s (see T a b l e I ) . A s e l f - c o n s i s t e n t set o f r e a c t i o n s for the s u p e r o x i d e - c a r b o n tetrachloride system illustrates the m e c h a n i s t i c p r o c e s s e s for t h i s c l a s s o f s u b s t r a t e s . CC1

4

+ 0 - -> [ C C l ( 0 - ) ] 2

4

CC1 0 3

3

3

3

4

+ 2 O r -> 2 0

2

3

^ CC1 0

t r

+ O r -> C C 1 0 - + 0

CC1 0 - + CC1 3

CCl OOCCl

2

2

2

CCl OOCCl 3

2

+ CI"

2

(23) (24)

2

+ CI"

3

(25)

+ 2 CC1 0-

(26)

3

I C C 1 0 + O r -> C C 1 ( 0 ) 0

2

general

2

—>2

CC1 0 + 2 C l 2

+ Cl~

(27)

Lo i>cci(o)or + o 2

2

C C 1 ( 0 ) 0 " + C C 1 0 -> C C l ( 0 ) O O C C l ( 0 ) + CI" 2

2

C C l ( 0 ) O O C C l ( 0 ) + 2 Or

2 CC1(0)0" + 2 0 I——>2 C O

C0

2

+ 2 θ Γ - ^ C0

2 4

" + 0

z

(28) (29)

2

+ 2C l -

(30)

2

T h e peroxide intermediates o f Reactions 24, 27, a n d 30 can participate in monooxygenase

reactions

i n the presence

o f substrates s u c h

as

DMSO. Esters.

A n o t h e r d i m e n s i o n o f the n u c l e o p h i l i c i t y o f superoxide

i o n is its a b i l i t y to a t t a c k t h e c a r b o n y l c a r b o n o f esters to y i e l d c a r b o x y l i c a c i d a n i o n s a n d a l c o h o l s (38-40),

a n d to attack the c a r b o n y l

c a r b o n o f a c y l h a l i d e s to y i e l d d i a c y l p e r o x i d e s (41).

T h e ester h y ­

drolysis occurs v i a a c y l o x y g e n scission on the basis o f c o m p l e t e reten­ tion o f configuration i n the alcohol m o i e t y from an optically active ester

(38).

F o r the reaction o f s u p e r o x i d e i o n w i t h e t h y l acetate a n d p h e n y l a c e t a t e i n p y r i d i n e , t h e s e c o n d - o r d e r rate c o n s t a n t s a r e 0 . 0 1 1 a n d 160 M ^ s

- 1

M " ^ "

1

4

, r e s p e c t i v e l y (40). T h i s r a t i o o f r a t e c o n s t a n t s ( 1 0 ) is

c o n s i s t e n t w i t h o t h e r d a t a for t h e r e a c t i o n s o f p h e n y l a n d e t h y l e s t e r s w i t h e f f e c t i v e n u c l e o p h i l e s (42, 43), a n d w i t h a n S 2 m e c h a n i s m . T h e N

In Electrochemical and Spectrochemical Studies of Biological Redox Components; Kadish, K.; Advances in Chemistry; American Chemical Society: Washington, DC, 1982.

24.

SAWYER ET A L .

Superoxide Ion in Aprotic Media

597

p r i m a r y r e a c t i o n a p p e a r s to b e a n u c l e o p h i l i c a d d i t i o n t h a t is f o l l o w e d b y e l i m i n a t i o n at t h e c a r b o n y l c a r b o n Ο

(40)

Ο"

Ο

I

Il

II

R—C—OR' + O rfcfR—C—OR' -* R—C

I

o-o

\

+ OR'

(31)

o-o

Downloaded by PENNSYLVANIA STATE UNIV on May 10, 2012 | http://pubs.acs.org Publication Date: June 1, 1982 | doi: 10.1021/ba-1982-0201.ch024

w i t h s u b s e q u e n t s t e p s to g i v e a n o v e r a l l e s t e r h y d r o l y s i s r e a c t i o n . Ο

Ο

Il

II

RCOO Ο

II

+ 0 < f -> R C O O " + 0 Ο

Ο

II

II II

RCOO" + RCOR' Ο

II

(32)

2

Ο

RCOOCR + "OR'

Ο

(33)

Ο

II

II

RCOOCR +

20

2RCO" + 20

2

(34)

A d d i t i o n o f s u p e r o x i d e i o n to a - k e t o - , α - h y d r o x y - , a n d α - h a l o c a r b o n y l c o m p o u n d s results i n a n u c l e o p h i l i c a d d u c t o f the c a r b o n y l c a r b o n , w h i c h u n d e r g o e s a n o x i d a t i v e c l e a v a g e to g i v e the c a r b o x y l i c a c i d that is d e r i v e d f r o m t h e a - p o s i t i o n (44). A g a i n , t h e p e r o x y a c i d a n i o n i n t e r ­ m e d i a t e s ( E q u a t i o n 32) r e p r e s e n t e f f e c t i v e m o n o o x y g e n a s e s for s u b ­ strates s u c h as D M S O . A g e n e r a l characteristic o f the n u c l e o p h i l i c attack o f a l k y l h a l i d e s a n d esters b y s u p e r o x i d e i o n is t h a t a p e r o x y r a d i c a l is t h e i n i t i a l p r o d u c t . T h i s p e r o x y r a d i c a l is r a p i d l y r e d u c e d b y a s e c o n d s u p e r o x i d e ion to a p e r o x i d e a n i o n , w h i c h c a n oxygenate s u s c e p t i b l e substrates. H e n c e , t h e n u c l e o p h i l i c i t y o f s u p e r o x i d e i o n p r o v i d e s a m e a n s to a c t i ­ vate the r e d u c t i o n p r o d u c t o f d i o x y g e n to o r g a n o p e r o x y r a d i c a l s a n d organoperoxide ions. T h i s a b i l i t y m a y represent a significant hazard i n b i o c h e m i c a l systems.

Metal-Catalyzed Disproportionation M e t a l c a t i o n s c a n a c t as L e w i s a c i d s a n d t h r o u g h c h a r g e n e u ­ t r a l i z a t i o n c a n b r i n g a b o u t the d i s p r o p o r t i o n a t i o n o f s u p e r o x i d e i o n to d i o x y g e n a n d a m e t a l p e r o x i d e (45). C o m b i n a t i o n o f s u p e r o x i d e i o n w i t h Zn(C10 )2, C d ( C 1 0 ) , a n d F e ( C 1 0 ) results i n s u c h a process. F o r M n ( C 1 0 ) a n d C o ( C 1 0 ) the resultant m e t a l p e r o x i d e s are u n s t a b l e a n d u n d e r g o f u r t h e r d i s p r o p o r t i o n a t i o n . A p l a u s i b l e m e c h a n i s m is o u t 4

4

2

4

2

4

2

4

In Electrochemical and Spectrochemical Studies of Biological Redox Components; Kadish, K.; Advances in Chemistry; American Chemical Society: Washington, DC, 1982.

BIOLOGICAL REDOX COMPONENTS

598

l i n e d for m a n g a n e s e ( I I ) t o i l l u s t r a t e t h e r i c h v a r i e t y o f r e a c t i v e i n t e r ­ mediates Mn

2 +

+ ( V

Mn(II)(Or)+ + O r - * [ 0

2

Mn(II)((V)

:Mn(II) :0

2

2

Mn(II)(0 ") + Mn(II)(0 -) 2

2

Mn(II) + 0 Mn(III)(Or )

2 +

2

^

+ Mn(II)

2

] -> 0

+

(35) 2

2

+ Mn(II)(0 -) 2

2 Mn(II)0 + 0

Mn(III)(Or )

(36) (37)

2

2+

(38)

[Mn(III)-0-0-Mn(III)]

4 +

(39)

Downloaded by PENNSYLVANIA STATE UNIV on May 10, 2012 | http://pubs.acs.org Publication Date: June 1, 1982 | doi: 10.1021/ba-1982-0201.ch024

4

[ Μ η ( Π Ι ) - 0 - 0 - Μ η ( Ι Ι Ι ) ] + + Mn(II)-> [Mn(III)-0-Mn(III)] [Mn(III)0]

2 +

4 +

+ [Mn(III)0]

+ Mn(II)^ [Mn(III)-0-Mn(III)l

2 +

4 +

(40) (41)

C l e a r l y , m a n y o f these i n t e r m e d i a t e s c a n o x i d i z e a n d oxygenate v a r i ­ ous organic functional groups. T h e chemistry o f E q u a t i o n s 3 5 - 4 1 rep­ r e s e n t s a l i k e l y m e c h a n i s m for t r a n s i t i o n - m e t a l a c t i v a t i o n o f d i o x y g e n , e s p e c i a l l y w i t h r e s p e c t t o r a n c i d i f i c a t i o n o f fats a n d o i l s . A s m e n t i o n e d , s u p e r o x i d e i o n is a n e f f e c t i v e o n e - e l e c t r o n r e d u c ­ t a n t for t r a n s i t i o n - m e t a l i o n s . U n d e r l i m i t e d c o n d i t i o n s , s u p e r o x i d e i o n a l s o c a n a c t as a n o x i d a n t o f r e d u c e d t r a n s i t i o n - m e t a l i o n s . T h e p r o c e s s must b e a u g m e n t e d through the formation o f a stable m e t a l - p e r o x i d e intermediate. Examples include Fe(II)ethylenediaminetetraacetic a c i d ( E D T A ) i n a q u e o u s m e d i a (46) a n d i r o n ( I I ) t e t r a p h e n y l p o r p h y r i n i n a p r o t i c m e d i a (15). S u c h r e a c t i o n s a r e a n e s s e n t i a l p a r t o f t h e f a v o r e d m e c h a n i s m s f o r t h e s u p e r o x i d e d i s m u t a s e ( S O D ) e n z y m e s (47). T h e F e ( I I I ) E D T A s y s t e m (48) r e p r e s e n t s a n e f f e c t i v e m o d e l for S O D i n a q u e o u s m e d i a ; t h e p r o p o s e d m e c h a n i s m is F e ( I I I ) E D T A + O r -> F e ( I I ) E D T A + 0 F e ( I I ) E D T A + Or ^

(42)

2

Fe(III)EDTA + H O 2

(43)

z

T h e bis(8-quinolinato)manganese(II) c o m p l e x [Mn(II)(8-Q) (H 0) ] a l s o is a n e f f e c t i v e c a t a l y s t for t h e d i s p r o p o r t i o n a t i o n o f s u p e r o x i d e i o n i n a p r o t i c m e d i a ( 4 9 ) , a n d h a s b e e n s u g g e s t e d as a n e f f e c t i v e m o d e l for t h e m a n g a n e s e S O D e n z y m e s (50). A r e a s o n a b l e m e c h a n i s m for t h e M n ( I I ) ( 8 - Q ) ( H 0 ) c a t a l y z e d d i s p r o p o r t i o n a t i o n o f s u p e r o x i d e ion involves a M n ( I I I ) - p e r o x i d e intermediate, w h i c h should b e a n effective o x i d a n t for s u p e r o x i d e i o n . 2

2

2

2

2

M n ( I I ) ( 8 - Ç ) ( H 0 ) + O r — M n ( I I I ) ( 8 - Q ) ( 0 H ) ( H 0 ) + OH" (44) 2

2

2

2

Mn(III)(8-Q) (0 H)(H 0) + 2

2

2

2

2

O r - ^ Mn(II)(8-Ç) (H 0) 2

2

2

+ 0

2

+ HOr

(45)

T h i s m e c h a n i s m is a r e a l i s t i c m o d e l for the m a n g a n e s e - S O D , i r o n S O D , a n d c o p p e r - z i n c - S O D enzymes.

In Electrochemical and Spectrochemical Studies of Biological Redox Components; Kadish, K.; Advances in Chemistry; American Chemical Society: Washington, DC, 1982.

24.

SAWYER ET AL.

Superoxide Ion in Aprotic Media

599

Downloaded by PENNSYLVANIA STATE UNIV on May 10, 2012 | http://pubs.acs.org Publication Date: June 1, 1982 | doi: 10.1021/ba-1982-0201.ch024

Summary Superoxide is a versatile reactant, but its most dominant charac­ teristic is as an effective Bronsted base. It readily removes protons from water and weakly acidic substrates such as 1-butanol, and in so doing it disproportionates to yield peroxide and dioxygen. Under apro­ tic conditions, its strong basicity causes superoxide ion to act as a powerful nucleophile (probably second only to fluoride ion). Superoxide ion also is a moderate, but facile, one-electron reductant (about as effective as dithionite). Strong one-electron oxidants with closed coordination spheres (e.g., ferricenium ion) oxidize superoxide ion to singlet oxygen. Reduced transition-metal ions are oxidized by superoxide ion when their oxidized state forms stable peroxide adducts. Basic reductants such as dihydrophenazine, dihydroflavins, hydroxylamine, and hydrazine are oxidized by a hydrogen-atom trans­ fer mechanism. The only example of any radical character for superoxide ion is the formation of a diamagnetic adduct with reduced methyl viologen cation radical via a radical-radical coupling mech­ anism. Acknowledgment This work was supported by the National Science Foundation under Grant No. CHE79-22040. Literature

Cited

1. McCord, J. M.; Fridovich, I. J. Biol. Chem. 1969, 244, 604. 2. Wilshire, J. P.; Sawyer, D. T. Acc. Chem. Res. 1979, 12, 105. 3. Nanni, E .J.,Jr.; Stallings, M. D.; Sawyer, D. T.J.Am. Chem. Soc. 1980, 102, 4481. 4. Bielski, Β. H.J.Photochem. Photobiol. 1978, 28, 645. 5. Fee, J. Α.; Valentine, J. S. In "Superoxide and Superoxide Dismutase"; Michelsen, A. M.; McCord, J. M.; Fridovich, I., Eds.; Academic: New York, 1977; pp. 19-20. 6. Latimer, W. M. "Oxidation Potentials," 2nd ed.; Prentice-Hall: New York, 1952. 7. George, P. In "Oxidases and Related Redox Systems"; King, T. E.; Mason, M. E.; Morrison, M., Eds.; Wiley: New York, 1965; pp. 3-36. 8. Hoare, J. P. In "Oxidation-Reduction Potentials of Aqueous Solutions: A Selective and Critical Source Book"; Bard, A. J.; Parsons, R.; Jordan, Jr., Eds.; Int. Union Pure Appl. Chem., 1981; Chap. 4, in press. 9. Koppenol, W. H. Nature 1976, 262, 420. 10. Chin, D.-H.; Chiericato, G., Jr.; Nanni, E . J., Jr.; Sawyer, D. T., J. Am. Chem. Soc. 1982, 104, 1296. 11. Stallings, M. D.; Sawyer, D. T. J. Chem. Soc., Chem. Comm. 1979, 340. 12. Valentine, J. S.; Curtis, A. B. J. Am. Chem. Soc. 1975, 97, 224. 13. O'Young, C.-L.; Lippard, S. J. J. Am. Chem. Soc. 1980, 102, 4920. 14. Valentine, J. S.; Quinn, A. E . Inorg. Chem. 1976, 15, 1997. 15. McCandlish, E.; Miksztal, A. R.; Nappa, M.; Spenger, A. Q.; Valentine, J. S.; Strong, J. D.; Spiro, T. G.J.Am. Chem. Soc. 1980, 102, 4268.

In Electrochemical and Spectrochemical Studies of Biological Redox Components; Kadish, K.; Advances in Chemistry; American Chemical Society: Washington, DC, 1982.

Downloaded by PENNSYLVANIA STATE UNIV on May 10, 2012 | http://pubs.acs.org Publication Date: June 1, 1982 | doi: 10.1021/ba-1982-0201.ch024

600

BIOLOGICAL REDOX COMPONENTS

16. Ilan, Υ. Α.; Czapski, G. Biochim. Biophys. Acta 1977, 498, 386. 17. Rao, R. S.; Hazon, E .J.Phys. Chem. 1975, 79, 397. 18. Nanni, E .J.,Jr.; Birge, R. R.; Hubbard, L. M.; Morrison, M. M.; Sawyer, D. T. Inorg. Chem. 1981, 20, 737. 19. Nanni, E .J.,Jr.; Sawyer, D. T.J.Am. Chem. Soc. 1980, 102, 7591. 20. Bielski, B. H.J.;Richter, H. W. J. Am. Chem. Soc. 1977, 99, 3019. 21. Afanasev, I. B.; Polozova, Η. E. Zh. Org. Khim. 1978, 14, 1013. 22. Sawyer, D. T.; Nanni, E .J.,Jr.; Angelis, C. T.; Dickson,J.J.Am. Chem. Soc. 1981, 103, 4268. 23. Nanni, E. J., Jr.; Sawyer, D. T.; Ball, S. S.; Bruice, T. C.J.Am. Chem. Soc. 1981, 103, 2797 24. Ball, S. S.; Bruice, T. C.J.Am. Chem. Soc. 1980, 102, 6498. 25. Czapski, G. Annu. Rev. Phys. Chem. 1971, 22, 171. 26. Ilan, Υ. Α.; Meisel, D.; Czapski, G. Isr. J. Chem. 1974, 12, 891. 27. Behar, D.; Czapski, G.; Rabini, J.; Dorfman, L. M.; Schwartz, H . A. J. Phys. Chem. 1970, 74, 3209. 28. Sawyer, D. T.; Gibian, M. J. Tetrahedron 1979, 35, 1471. 29. Magno, F.; Seeber, R.; Valcher, S.J.Electroanal. Chem. 1977, 83, 131. 30. San Fillipo, J., Jr.; Chern, C.-I.; Valentine, J. S. J. Org. Chem. 1975, 40, 1678. 31. Johnson, R. A.; Nidy, E . G.J.Org. Chem. 1975, 40, 1680. 32. Gibian, M.J.;Tangpoonpholvivat, R.; Ungermann, T.; Morrison, M. M.; Sawyer, D. T., unpublished data. 33. Dietz, K.; Forno, A. E. J.; Carcombe, B. E.; Peover, M. E.J.Chem. Soc. Β 1970, 816. 34. Merritt, M. V.; Sawyer, D. T.J.Org. Chem. 1970, 35, 2157. 35. Gibian, M. J.; Ungermann, T.J.Org. Chem. 1976, 41, 2500. 36. Roberts, J. L., Jr.; Sawyer, D. T.J.Am. Chem. Soc. 1981, 103, 712. 37. Goolsby, A. D.; Sawyer, D. T. Anal. Chem. 1968, 40, 83. 38. San Fillipo, J., Jr.; Romano, L.J.;Chern, C.-I.; Valentine, J. S.J.Org. Chem. 1976, 41, 586. 39. Magno, F.; Bontempelli, G.J.Electroanal. Chem. 1976, 68, 337. 40. Gibian, M. J.; Sawyer, D. T.; Ungermann, T.; Tangpoonpholvivat, R.; Mor­ rison, M. M.J.Am. Chem. Soc. 1979, 101, 640. 41. Johnson, R. A. Tetrahedron Lett. 1977, 331. 42. Jencks, W. P. "Catalysis in Chemistry and Enzymology"; McGraw-Hill: New York, 1969; pp. 480-487. 43. Bender, M. L. "Mechanisms of Homogeneous Catalysis for Protons to Proteins"; Wiley: New York, 1971; pp. 176-179. 44. San Fillipo, J., Jr.; Chern, C.-I.; Valentine, J. S.J.Org. Chem. 1976, 41, 1077. 45. Nanni, E .J.,Jr., Ph.D. Dissertation, University of California, Riverside, CA, 1980. 46. McClune, G. J.; Fee,J.Α.; McCluskey, G. Α.; Groves,J.T.J.Am. Chem. Soc. 1977, 99, 5220 47. Pick, M.; Rabani, J.; Yost, F.; Fridovich, I. J. Am. Chem. Soc. 1974, 96, 7329. 48. Stein, J.; Fackler, J. P.; McClune, G. J.; Fee, J. Α.; Chan, L. T. Inorg. Chem. 1979, 18, 3511. 49. Howie, J. K.; Sawyer, D. T.J.Am. Chem. Soc. 1976, 98, 6698. 50. Howie, J. K.; Morrison, M. M.; Sawyer, D. T. "Electrochemical Studies of Biological Systems"; Sawyer, D. T., Ed.; ACS Symposium Series, No. 38, ACS: Washington, D.C., 1977, 97. RECEIVED for review June 2, 1981. ACCEPTED November 16, 1981.

In Electrochemical and Spectrochemical Studies of Biological Redox Components; Kadish, K.; Advances in Chemistry; American Chemical Society: Washington, DC, 1982.