10 The Rheology of Concentrated Suspensions of Fibers Downloaded by UNIV OF CALIFORNIA SAN DIEGO on January 13, 2017 | http://pubs.acs.org Publication Date: June 1, 1974 | doi: 10.1021/ba-1974-0134.ch010
I.
Review of the Literature
RICHARD
O.
MASCHMEYER
and
CHRISTOPHER
T.
HILL
Materials Research Laboratory, Washington University, St. Louis, M o . 63130
The sparse literature on the rheological properties of con centrated suspensions is reviewed. Various authors have obtained widely different flow curves and have made con flicting observations regarding yieldstresses,fiberbreakage, extrusion forcefluctuations,and elastic effects. Most of the differences can probably be attributed to failure to control or measure fiber length distribution in suspension. Recent work in our laboratory is summarized, and suggestions are made for both experimental and theoretical research needed.
A
l a r g e p o r t i o n of short-fiber r e i n f o r c e d thermoset a n d t h e r m o p l a s t i c materials are p r o c e s s e d b y flow m o l d i n g t e c h n i q u e s i n c l u d i n g t r a n s -
fer-, i n j e c t i o n - , a n d c o m p r e s s i o n m o l d i n g .
E a c h processing
technique
i n v o l v e s t h e flow i n c o m p l e x geometries of suspensions of short
fibers
( u s u a l l y glass) a n d / o r r i g i d p a r t i c l e s i n fluids w h i c h a r e p o l y m e r melts or l i q u i d p r e p o l y m e r s . T h e s e suspensions are u s u a l l y h i g h l y c o n c e n t r a t e d ( 1 0 - 5 0 % solids b y v o l u m e ) , a n d t h e y often c o n t a i n trace amounts of a n i m m i s c i b l e s e c o n d p h a s e s u c h as w a t e r , a l u b r i c a n t , o r a w e t t i n g agent. T h e rational design of m o l d i n g equipment i n c l u d i n g plasticating devices, m o l d i n g m a c h i n e r u n n e r s a n d gates, a n d m o l d s r e q u i r e s a k n o w l edge o f the flow properties of the m a t e r i a l to b e m o l d e d at the p r o c e s s i n g c o n d i t i o n s of t e m p e r a t u r e , pressure, a n d shear rate.
These
properties
d e p e n d o n m a t e r i a l v a r i a b l e s s u c h as m a t r i x r h e o l o g y ; fiber l e n g t h , stiffness, a n d s t r e n g t h ; v o l u m e f r a c t i o n of fibers a n d / o r p a r t i c u l a t e
fillers;
a n d t h e n a t u r e a n d a m o u n t o f w e t t i n g agents, l u b r i c a n t s , o r other a d d i tives.
S i n c e w e cannot e v a l u a t e t h e flow properties f o r every m a t e r i a l
of interest, w e w o u l d p r e f e r sufficient e m p i r i c a l k n o w l e d g e a n d t h e o r e t i 95 Deanin and Schott; Fillers and Reinforcements for Plastics Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
96
FILLERS A N D R E I N F O R C E M E N T S FOR PLASTICS
c a l s u p p o r t to be able to p r e d i c t the flow b e h a v i o r of c o m m e r c i a l m o l d i n g c o m p o u n d s w i t h some certainty. M o s t of the d a t a a v a i l a b l e i n this area are c o n f o u n d e d b y w i t h resin a n d / o r
fiber
problems
d e g r a d a t i o n or l a c k of c o n t r o l of one or m o r e
i m p o r t a n t v a r i a b l e s . I n this l a b o r a t o r y w e are d e v e l o p i n g the r e q u i s i t e empirical background
concerning
the r h e o l o g y
of
concentrated
suspensions necessary to construct a w e l l - f o u n d e d m o d e l of
fiber
reinforced
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on January 13, 2017 | http://pubs.acs.org Publication Date: June 1, 1974 | doi: 10.1021/ba-1974-0134.ch010
plastics processing. Significance
of Rhéologieal Measurements in Concentrated Suspensions
V i s c o s i t y is a true m a t e r i a l p a r a m e t e r o n l y for h o m o g e n e o u s m a t e rials, a n d s h o r t - f i b e r - r e i n f o r c e d plastics c a n s e l d o m be treated as h o m o geneous. T h u s , the m e a s u r e d viscosity of a suspension m a y d e p e n d
upon
b o t h the flow g e o m e t r y a n d the geometry of the s u s p e n d e d m a t e r i a l . A p a r t i c u l a r suspension m a y h a v e different properties i n s i m i l a r geometries of different size—e.g., the viscosity of a suspension i n c a p i l l a r y flow m a y d e p e n d u p o n the d i a m e t e r of the c a p i l l a r y . T h e d e p e n d e n c e of viscosity o n g e o m e t r y is the result of b o t h the o r i e n t a t i o n of the fibers d u r i n g flow a n d t h e i n t e r a c t i o n of particles w i t h the w a l l of the m e a s u r i n g i n s t r u m e n t . W a l l i n t e r a c t i o n , w h i c h has b e e n
Table I.
Research Group S t a n k o i et al. (24)
Thomas & H a g e n (25) Newman & Trementozzi (26) Carter & G o d d a r d (27) M i l l s (28) B e l l (29) Ziegel (30)
Takano (31-32) K a r n i s et al. (33)
Viscometer Dimension (inch) Viscometer (dia/gap) Matrix capillary capillary capillary
Previous Measurements on
Material
0.35-0.47 polyester a n d kaolin clay 0.06 polypropylene 0.5
styreneacrylonitrile (copolymer) cone & 0.16 polybutene plate oil capillary ? polyethylene capillary 0.12-0.25 B - s t a g e d epoxy couette ? various polymers, l i q u i d at R T capillary 1 to 1/4 B-staged rectangular epoxy couette & 0.076castor o i l capillary 0.40
Fiber Type and Length, inch glass, 0.8 glass, 0.18-0.44 wollastonite, 10~
glass, 0.008-0.03 glass, 0.25 glass, 0.125 glass, 0.24
glass, 0.125-0.5 n y l o n , 0.049
Deanin and Schott; Fillers and Reinforcements for Plastics Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
3
10.
MASCHMEYER AND
Suspensions
HILL
of
97
Fibers
t h o r o u g h l y s t u d i e d for spheres a n d d i l u t e suspensions, is d e s c r i b e d i n terms of
(a)
m e c h a n i c a l i n t e r a c t i o n i n v o l v i n g p h y s i c a l contact of
p a r t i c l e w i t h the w a l l (1, 2);
(b)
the
hydrodynamic interaction, i n w h i c h
the presence of the w a l l alters the v e l o c i t y profile a r o u n d t h e p a r t i c l e ( 3 , 4);
a n d ( c ) r a d i a l m i g r a t i o n i n w h i c h p a r t i c l e s i n t u b e flow m i g r a t e
either t o w a r d or a w a y f r o m the flow axis ( 5, 6, 7, 8, 9 ). A l t h o u g h the m a g n i t u d e of these effects i n d i l u t e fiber suspensions
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on January 13, 2017 | http://pubs.acs.org Publication Date: June 1, 1974 | doi: 10.1021/ba-1974-0134.ch010
does not seem l a r g e ( 1 0 ) , t h e i r i m p o r t a n c e i n c o n c e n t r a t e d
suspensions
of fibers is u n k n o w n . T h u s , a l t h o u g h s u m m a r i z i n g short-fiber r e i n f o r c e d p l a s t i c flow d a t a i n terms of v i s c o s i t y is u s e f u l for i n t e r p r e t a t i o n i n terms of past experience, the d a t a m a y b e v a l i d o n l y for the g e o m e t r y i n w h i c h it was measured. Concentrated Suspension Viscosity
Data
T h e flow of c o n c e n t r a t e d suspensions of s p h e r i c a l particles has b e e n s t u d i e d for m a n y years ( I I , 12, 13).
W h i l e c l a s s i c a l studies w e r e
con-
c e r n e d p r i m a r i l y w i t h the effect of v o l u m e f r a c t i o n of solids o n suspension viscosity, m o r e recent w o r k has c o n s i d e r e d effects of p a r t i c l e size a n d p a r t i c l e size d i s t r i b u t i o n (8,14),
w e t t i n g a n d second fluid phases ( 1 5 , 1 6 ,
a n d v i s c o e l a s t i c i t y of the fluid phase ( I S , 19, 20, 21,
17),
22,23).
Concentrated Suspensions of Fibers Shear Rate, sec'
Volume Fraction, Aspect
Ratio
?
1
15
Force Fluctuation
Yield Stress
Fiber Breakage
5-150
yes
yes
no
yes
no
perhaps
?
0-40
0.38-386
10
0-50
3-3000
?
?
no
no
?
yes
yes
52-228
0.5-2.2
0.167-167
400 200
20 45-63
30 & 900 8-100
500
2
0.5-1.2
200-800
0-60
?
8
8
yes ?
yes
yes
yes
yes
no force m e a s u r e ments
Deanin and Schott; Fillers and Reinforcements for Plastics Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
98
FILLERS A N D R E I N F O R C E M E N T S FOR PLASTICS
A synopsis of e x p e r i m e n t a l l i t e r a t u r e o n the r h e o l o g y of c o n c e n t r a t e d fiber
suspensions d o n e o u t s i d e o u r l a b o r a t o r y is s h o w n i n T a b l e I.
c o l u m n s are m o s t l y s e l f - e x p l a n a t o r y ; force vation by
fluctuation
The
refers to the obser-
some that the force r e q u i r e d to extrude
fiber
suspensions
t h r o u g h c a p i l l a r i e s fluctuates w i t h t i m e . Insufficient d a t a w e r e a v a i l a b l e to c o m p a r e the flow curves f r o m a l l researchers o n the same basis, so the q u a l i t a t i v e c o m p a r i s o n of F i g u r e 1 w a s c o n s t r u c t e d .
O n l y the r e l a t i v e
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on January 13, 2017 | http://pubs.acs.org Publication Date: June 1, 1974 | doi: 10.1021/ba-1974-0134.ch010
shapes a n d shear-rate ranges are significant.
CAPILLARY 15% (35)
CAPILLARY
^sS.
0 - 40% ^S^s. (48, 55)
_
CONE AND PLATE 0 - 2 % (57)
COUETTE 2% (15)
°·
1
CAP. 0-60% (36)
. >O - ^
I
.. J -
1
10
CAP. 20% (56)
w
1 100
1000
SHEAR RATE (SEC ) -1
Figure
1.
Qualitative comparison of viscosity data suspensions of fibers
for
N o n e of these w o r k s p r o v i d e a firm basis for u n d e r s t a n d i n g melt-state r h e o l o g y of r e i n f o r c e d plastics. T h e t h r u s t of the w o r k s of B e l l T a k a n o (31,
32)
a n d K a r n i s et al
v a r i o u s parameters
on
fiber
(33)
(29),
was to m e a s u r e the effect of
orientation i n
flow,
and no
viscosity d a t a w e r e p u b l i s h e d . T h e d a t a of M i l l s (28)
quantitative
are f r a g m e n t a r y
since o n l y t w o c a p i l l a r y v i s c o s i t y points for fiber suspensions w e r e p u b l i s h e d . C a r t e r a n d G o d d a r d (27)
a n d Z i e g e l (30)
m e a s u r e d suspensions
w i t h fiber concentrations w e l l b e l o w those of c o m m e r c i a l interest. m a n a n d T r e m e n t o z z i (26) fillers
New-
w e r e p r i m a r i l y interested i n the effects of
o n d i e s w e l l . T h e y p u b l i s h e d one specific viscosity-t>s.-fiber
con-
c e n t r a t i o n c u r v e a l t h o u g h the fibers i n v o l v e d w e r e q u i t e s m a l l a n d h a d l o w aspect ratios. T h o m a s a n d H a g e n (25)
d i d a m o r e t h o r o u g h s t u d y of short-fiber
r e i n f o r c e d t h e r m o p l a s t i c r h e o l o g y w i t h v a r i a b l e s i n the r e g i o n of m e r c i a l interest for suspensions of glass fibers i n p o l y p r o p y l e n e . flow
curves fit a p o w e r l a w m o d e l , a n d n o y i e l d stresses w e r e
comTheir
observed.
Deanin and Schott; Fillers and Reinforcements for Plastics Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
10.
MASCHMEYER
A N D HILL
Suspensions
of
99
Fibers
M i c r o s c o p i c i n s p e c t i o n of the extrudate s h o w e d no fiber m i g r a t i o n a n d possible fiber b r e a k a g e o n l y at the highest shear rates. T h e i r q u a n t i t a t i v e results, h o w e v e r , are o b s c u r e d b y r e s i n d e g r a d a t i o n i n c u r r e d i n m i x i n g . S t a n k o i et al. (24)
m e a s u r e d viscosities of suspensions of glass
a n d k a o l i n c l a y i n a polyester p r e p o l y m e r .
fibers
T h e i r flow curves, w h i c h d i s -
p l a y e d y i e l d stresses, w e r e consistent w i t h a B i n g h a m plastic m o d e l .
They
o b s e r v e d no fiber m i g r a t i o n or breakage. Since t h e y d i d not r e p o r t m a t r i x
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on January 13, 2017 | http://pubs.acs.org Publication Date: June 1, 1974 | doi: 10.1021/ba-1974-0134.ch010
resin r h e o l o g i c a l d a t a , it is difficult to generalize t h e i r q u a n t i t a t i v e data to other systems. Elastic Effects and Normal Stresses in Concentrated Suspensions C o n t r a d i c t o r y observations h a v e b e e n m a d e c o n c e r n i n g elastic a n d n o r m a l - s t r e s s - d r i v e n p h e n o m e n a i n fiber suspensions. m e n t o z z i (26)
Newman and Tre-
f o u n d that the a d d i t i o n of w o l l a s t o n i t e filler to a v i s c o -
elastic r e s i n g r e a t l y r e d u c e d the c a p i l l a r y d i e s w e l l . C a r t e r a n d G o d d a r d (27)
d e t e c t e d no phase l a g i n d y n a m i c o s c i l l a t o r y testing of a suspension
of short fibers i n a cone a n d plate i n s t r u m e n t , b u t t h e y m e a s u r e d large p r i m a r y n o r m a l stress differences.
A s d i s c u s s e d later, R o b e r t s (34,
35)
o b e s e r v e d massive W e i s s e n b e r g r o d c l i m b i n g a n d large c a p i l l a r y entrance corrections for a suspension (glass fibers i n a n i n e l a s t i c o i l ) w h i c h d i s p l a y e d no d i e s w e l l a n d no elastic r e c o v e r y w h e n r a p i d l y d e f o r m e d . Recent Study of Fiber Suspension Rheology T h e r e v i e w a b o v e indicates that there is little agreement researchers a b o u t the flow b e h a v i o r of c o n c e n t r a t e d
fiber
among
suspensions,
e v e n o n a q u a l i t a t i v e l e v e l . T h e i r results d o suggest, h o w e v e r , the f o l lowing points: ( a ) C o n c e n t r a t e d fiber suspensions are h i g h l y n o n - N e w t o n i a n , a n d they m a y h a v e h i g h y i e l d stresses ( b ) F o r c e vs. d i s p l a c e m e n t curves i n c a p i l l a r y rheometers fluctuations, p r o b a b l y f r o m l o g - j a m m i n g at the c a p i l l a r y entry
show
( c ) F l o w p r o p e r t i e s m a y b e sensitive to fiber o r i e n t a t i o n a n d , hence, to v i s c o m e t e r g e o m e t r y (d) F i b e r breakage during changes i n suspension v i s c o s i t y
flow
c a n be
severe a n d cause
large
( e ) B r o d n y a n s t h e o r y (36) of fiber suspension r h e o l o g y p r e d i c t s viscosities w h i c h are orders of m a g n i t u d e too large for c o n c e n t r a t e d suspensions of h i g h aspect r a t i o fibers ( f ) O b s e r v a t i o n s of elastic effects are c o n t r a d i c t o r y . I n v i e w of the difficulties i n w o r k i n g d i r e c t l y w i t h short-fiber r e i n f o r c e d plastics, w e h a v e s t u d i e d the r h e o l o g y of a m o d e l system of glass fibers
i n silicone o i l (34,
35, 37, 38, 39).
V i s c o s i t y measurements
Deanin and Schott; Fillers and Reinforcements for Plastics Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
were
100
FILLERS
AND
REINFORCEMENTS FOR
PLASTICS
d o n e w i t h the l a r g e b o r e c a p i l l a r y r h e o m e t e r s h o w n i n F i g u r e 2.
This
d e v i c e , w h i c h is d e s i g n e d for r o o m t e m p e r a t u r e o p e r a t i o n , a l l o w s m e a s u r e m e n t of steady flow viscosity a n d c a p i l l a r y e n t r a n c e corrections the shear rate r a n g e 0.055-5500 sec" . 1
over
C a p i l l a r i e s are a v a i l a b l e w i t h
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on January 13, 2017 | http://pubs.acs.org Publication Date: June 1, 1974 | doi: 10.1021/ba-1974-0134.ch010
l e n g t h - t o - d i a m e t e r ratios f r o m 1 to 32 a n d diameters of Vs a n d *4 i n c h .
Capillary
Instron Compression Cell
Figure 2.
Capillary
viscometer
T y p i c a l n o n - N e w t o n i a n viscosity curves for 15 a n d 30 v / o
suspensions
of glass fibers i n 600-poise s i l i c o n e o i l are s h o w n i n F i g u r e 3 as o b t a i n e d in our rheometer (39).
T h e s e d a t a w e r e c o r r e c t e d for c a p i l l a r y entrance
losses b y the m e t h o d of B a g l e y (40),
b u t the R a b i n o w i t s c h c o r r e c t i o n for
n o n - N e w t o n i a n effects was not u s e d .
The median
fiber
lengths
were
a p p r o x i m a t e l y 0.005 i n c h i n e a c h case, a n d t h e suspensions w e r e so w e l l m i x e d that n o f u r t h e r fiber d e g r a d a t i o n o c c u r r e d d u r i n g testing. A p a n e l ( 3 7 ) a n d S h e l t o n ( 3 8 ) s t u d i e d the effect of r e p e a t e d c a p i l l a r y extrusion o n t h e v i s c o s i t y a n d fiber l e n g t h d i s t r i b u t i o n s of 15 v / o % - i n c h glass fibers i n silicone oils.
Photomicrographs
of a t y p i c a l suspension
t a k e n after v a r i o u s runs ( F i g u r e 4 ) c l e a r l y s h o w that b r e a k a g e
Deanin and Schott; Fillers and Reinforcements for Plastics Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
occurs.
10.
MASCHMEYER AND
Suspensions
HILL
of
101
Fibers
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on January 13, 2017 | http://pubs.acs.org Publication Date: June 1, 1974 | doi: 10.1021/ba-1974-0134.ch010
10"
Q_ Q_
10°
ίο
ίο
1
ίο
2
10 *
3
1
APPARENT SHEAR RATE (SEC* ) 1
Figure 3. Apparent non-Newtonian viscosity of suspen sions of glass fibers in 600-poise oil (O, Vi-inch capillary; A, V8-inch capillary)
Figure 4. Photomicrographs of glass fibers after repeated extrusion through the capillary viscometer. Left to right, after 0, 10, and 20 runs. Dark bar is a bundle of fibers Vs-inch long (37). F i g u r e 5 shows t y p i c a l extrusion d a t a . T h e curves for the 1- a n d 6 - i n c h c a p i l l a r i e s , w h e n n o r m a l i z e d , s u p e r i m p o s e to y i e l d one c u r v e , i n d i c a t i n g that fiber d a m a g e occurs i n the c a p i l l a r y e n t r y r e g i o n a n d not d u r i n g passage t h r o u g h the c a p i l l a r y . T h e extent of d a m a g e is h i g h e r at h i g h e r e x t r u s i o n rates, b u t a suspension w h i c h s h o w e d no m e a s u r a b l e d e g r a d a t i o n after m u l t i p l e passes at l o w shear rates s h o w e d a c o n s i d e r a b l e d r o p i n v i s c o s i t y w h e n tested at h i g h rates ( F i g u r e 5 ) .
Therefore, a drop i n
extrusion f o r c e m a y not be a sufficient test of fiber d a m a g e . Roberts
(34,
35)
has c o m p l e t e d
s t u d y of the v i s c o s i t y of m i x e d
suspensions of v a r i o u s ratios of % - i n c h glass fibers to 30-μ glass spheres, at a constant t o t a l solids v o l u m e f r a c t i o n of 1 5 % i n the 600-poise s i l i c o n e
Deanin and Schott; Fillers and Reinforcements for Plastics Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
102
FILLERS
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on January 13, 2017 | http://pubs.acs.org Publication Date: June 1, 1974 | doi: 10.1021/ba-1974-0134.ch010
2000
AND
REINFORCEMENTS FOR
PLASTICS
-
6" CAPILLARY 5 IN/MIN
1000
10
15
20
25
NUMBER OF EXTRUSIONS
Figure 5. Effect of repeated extrusion on extrusion force for suspensions of 15 v/o glass fibers in silicone oil. Legends indicate capillary length and Instron crosshead speed (37). o i l . H i s d a t a are s h o w n i n F i g u r e 6, a n d plots of the B a g l e y e n d c o r r e c t i o n , e (40),
vs. shear stress are s h o w n i n F i g u r e 7. E v e n t h o u g h these
e n d corrections are large, the suspensions e x h i b i t e d n o d i e s w e l l u p o n e x i t i n g f r o m the c a p i l l a r y . T h e y d o e x h i b i t a v e r y s t r o n g W e i s s e n b e r g r o d c l i m b i n g effect, as s h o w n i n F i g u r e 8.
T h e e n d corrections r e s u l t
f r o m the l a r g e forces r e q u i r e d to r e o r i e n t the fiber mass as i t enters the c a p i l l a r y a n d not f r o m the u s u a l effect of storage of e n e r g y i n a n elastic polymer network. Research Needs D e s p i t e the r a p i d g r o w t h i n the use of short fiber r e i n f o r c e d c o m posites, r e l a t i v e l y f e w w o r k s o n the r h e o l o g y of c o n c e n t r a t e d fiber sus-
Deanin and Schott; Fillers and Reinforcements for Plastics Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
10.
MASCHMEYER
AND
Suspensions
HILL
1G°
of
103
Fibers
1
1 % SPHERES/% FIBERS 0/15v
10',4
3/12 6/9
-
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on January 13, 2017 | http://pubs.acs.org Publication Date: June 1, 1974 | doi: 10.1021/ba-1974-0134.ch010
12/3
S
10
10
>v
-
V
15/0
3
^ ^ · \ \ ,
0/0
f
z
1
10
100
1000
SHEAR RATE (SEC ) -1
Figure
40
% SPHERES/% FIBERS
6.
Viscosities of glass sphere/glass silicone oil suspensions (34).
40
fiber/
SPHERES/% FIBERS
15/0
12/3
20
20
0
1
h ο
2
ο
3
4 9
/
5
6
5
6
6
ο
1? 0
1
2
3
4
3/12 •Ω—Û
0
1
2
3
4
ο-
5
6
0
1
2
H0RIZ0NAL AXIS:
SHEAR STRESS, PSI
VERTICAL AXIS:
END CORRECTION
3
4
5
6
Figure 7. End corrections for glass sphere/glass fiber/silicone oil sus pensions (34)
pensions h a v e a p p e a r e d . M o r e e x p e r i m e n t a l w o r k is n e e d e d to e l u c i d a t e the d e p e n d e n c e of suspension r h e o l o g y u p o n t h e properties of the c o m ponents, the n a t u r e of t h e i r interface, t h e c o n d i t i o n s u n d e r w h i c h t h e y
Deanin and Schott; Fillers and Reinforcements for Plastics Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on January 13, 2017 | http://pubs.acs.org Publication Date: June 1, 1974 | doi: 10.1021/ba-1974-0134.ch010
104
FILLERS
AND
REINFORCEMENTS F O RPLASTICS
Figure 8. Rod climbing during mixing of 3 v/o glass fibers, 12 v/o ghss beads in silicone oil at 2 rpm (34) are m i x e d , a n d the flow geometry.
W h i l e v o l u m e f r a c t i o n o f the
fiber
phase is i m p o r t a n t , there is a c l e a r i n d i c a t i o n that t h e fiber l e n g t h d i s t r i b u t i o n m a y p l a y a k e y role i n d e t e r m i n i n g t h e m a g n i t u d e o f suspension viscosity. T h e r e is also a n e e d for t h e o r e t i c a l analysis o r m o d e l i n g o f the flow
properties o f c o n c e n t r a t e d suspensions o f fibers i n w h i c h t h e m e
c h a n i c a l interactions o f the fibers are c o n s i d e r e d t o b e large. A c o m p l e m e n t a r y effort t o p r e d i c t t h e d e p e n d e n c e o f the fiber l e n g t h d i s t r i b u t i o n o n m i x i n g c o n d i t i o n s a n d t i m e is also n e e d e d .
Literature Cited 1. 2. 3. 4. 5. 6.
Maude, Α., Whitmore, R., Brit. J. Appl. Phys. (1956) 7, 98. Maude, Α., Brit. J. Appl. Phys. (1959) 10, 371. Vand, V., J. Phys. Chem. (1948) 52, 287. Goldman, Α., Cox, R., Brenner, H., Chem. Eng. Sci. (1967) 22, 637. Segre, G., Silberberg, Α., J. Fluid Mech. (1962) 14, 136. Karnis, Α., Goldsmith, H., Mason, S. G., Can. J. Chem. Eng. (1966) 44, 181. 7. Seshadri, V., Sutera, S., J. Colloid Interface Sci. (1968 ) 27, 101. 8. Seshadri, V., Sutera, S., Trans. Soc. Rheol. (1970) 14, 351. 9. Cox, R., Brenner, H., Chem. Eng. Sci. (1968) 23, 147. 10. Attansio, Α., Bernini, U., Galloppo, P., Segre, G., Trans. Soc. Rheol. (1972) 6, 147. 11. Rutgers, I. R., Rheol. Acta (1962) 2, 202, 305; (1963) 3, 118. 12. Frankel, Ν. Α., Acrivos, Α., Chem. Eng. Sci. (1967) 22, 847. 13. Brenner, H., Ann. Rev. Fluid Mech. (1970) 2. 14. Eagland, D., Kay, M., J. Colloid Interface Sci. (1970) 34, 249. 15. Woods, M. E., Krieger, I. M., J. Colloid Interface Sci. (1970) 34, 91. 16. Papir, Y. S., Krieger, I. M., J. Colloid Interface Sci. (1970) 34, 126. 17. Kao, S. V., D.Sc. Thesis, Washington University, St. Louis (1973). 18. Highgate, D. J., Whorlow, R. W., Rheol. Acta (1970) 9, 569.
Deanin and Schott; Fillers and Reinforcements for Plastics Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
10.
MASCHMEYER AND HILL
Suspensions of Fibers
Agarwal, P. K., M.S. Thesis, Washington University, St. Louis (1971). Nazem, F., D.Sc. Thesis, Washington University, St. Louis (1973). Schmidt, L. R., M.S. Thesis, Washington University, St. Louis (1967). Nazem, F., Hill, C. T., Trans. Soc. Rheol. (1974) 18, 87. Onogi, S., Matsumoto, T., Warashina, Y., Trans. Soc. Rheol. (1973) 17, 175. 24. Stankoi, G. G., Trostyanskaya, E. B., Kazanski, Tu. Ν., Okorokov, V. V., Mikhasenok, Ya., Soviet Plastics (Sept. 1968), 47. 25. Thomas, D. P., Hagan, R. S., Ann. Meetg. Reinforced Plastics Div., Soc. Plastics Ind., 1966. 26. Newman, S., Trementozzi, Q. Α., J. Appl. Polymer Sci. (1965) 9, 3071. 27. Carter, L., Goddard, J., NASA Rept. N67-30073 (1967). 28. Mills, N., J. Appl. Polymer Sci. (1971) 15, 2791. 29. Bell, J., J. Composite Material (1969) 3, 244. 30. Ziegel, K.D.,J. Colloid Interface Sci. (1970) 34, 185. 31. Takano, M., "Flow Orientation of Short Fibers in Rectangular Channels," Report #HPC-70-116. Monsanto/Washington University Association, February 1974. 32. Takano, M., unpublished data. 33. Karnis, Α., Goldsmith, H. L., Mason, S. G., J. Colloid Interface Sci. (1966) 22, 531. 34. Roberts, K. D., M.S. Thesis, Washington University, St. Louis (1973). 35. Roberts, K. D., Hill, C. T., Ann. Tech. Conf., Soc. Plastics Engrs., Montreal, May 1973. 36. Brodnyan, J. G., Trans. Soc. Rheol. (1959) 3, 61. 37. Apanel, G., Undergraduate Research Report, Washington University, St. Louis (1971). 38. Shelton, R. D., Undergraduate Research Report, Washington University, St. Louis (1971). 39. Maschmeyer, R. O., D.Sc. Thesis, Washington University, St. Louis (1974). 40. Bagley, E. B., Schreiber, H. P., "Rheology," Vol. V, F. R. Eirich, Ed., Aca demic, New York, 1969. RECEIVED October 11, 1973. Part of this work conducted under the Monsanto/ Washington University Association sponsored by the Advanced Research Proj ects Agency, Department of Defense, Office of Naval Research contract N0001467-C-0218 (formerly N00014-66-C-0045). Other portions supported by Na tional Science Foundation grant No. GH34594. Downloaded by UNIV OF CALIFORNIA SAN DIEGO on January 13, 2017 | http://pubs.acs.org Publication Date: June 1, 1974 | doi: 10.1021/ba-1974-0134.ch010
19. 20. 21. 22. 23.
105
Deanin and Schott; Fillers and Reinforcements for Plastics Advances in Chemistry; American Chemical Society: Washington, DC, 1974.