4 The Structural Properties of the Anomeric Center in Pyranoses and Pyranosides G. A. JEFFREY
Downloaded by UNIV OF ROCHESTER on September 24, 2016 | http://pubs.acs.org Publication Date: January 25, 1979 | doi: 10.1021/bk-1979-0087.ch004
Department of Crystallography, University of Pittsburgh, Pittsburgh, PA 15260
The anomeric carbon atom, C-1, in pyranose and furanose sugars is unique in that it is the only carbon atom in these molecules which is bonded to two atoms which are more electronegative. These more-electronegative atoms necessarily have lone-pair electrons. It is the electronic structure which arises from the electronegativity differences and the presence of these lone-pair electrons that gives rise to the special reactivity and structural properties of the anomeric carbon center. In this paper, we will be concerned with the molecular geometry, as described by the torsion angles, bond lengths and valence angles associated with the anomeric carbon atom in α and ß pyranosyl compounds, I and II. The Pauling
C - l —
(I)a-D
H
I
X
"electronegative difference" (1) between the anomeric carbon, C - 1 , and the ring oxygen O-5 on one side and the aglycon, X, on the other, leads to a depletion of electrons at the carbon atom; the C-O and C-X σ-bonds are polarized in the direction of the more electronegative atoms. Pauling's rule (1) concern ing the "essential electronegativity of atoms" then requires that there be some compensatory electronic shift to re-establish the balance of nuclear and electronic charge in the region of the central carbon atom. This is achieved by a "back-donation" of electrons from the lone-pair orbitals of the flanking oxygen and 0-8412-0470-5/79/36-087-050$05.00/0 © 1979 American Chemical Society
Szarek and Horton; Anomeric Effect ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
4.
Properties
JEFFREY
X atoms
of the Anomeric
t o w a r d s the c a r b o n a t o m .
lone-pair
orbitals
a non-bonding
T h e e l e c t r o n d e n s i t y of
of X i s r e d u c e d i n o r d e r
O—C
(J* o r b i t a l ,
f r o m the l o n e - p a i r
orbitals
s i m i l a r l y the
C - X orbital.
r e l a t i o n s h i p s of the 2p a t o m i c o r b i t a l s are
involved are
differences
different for
i n the e n e r g i e s
Downloaded by UNIV OF ROCHESTER on September 24, 2016 | http://pubs.acs.org Publication Date: January 25, 1979 | doi: 10.1021/bk-1979-0087.ch004
there are
also
energy
"back-donate
S i n c e the
a n d the C - O a n d
C - X there
and bond dimensions between When X is a glycosidic
and structural
the
sub-
differences
between different
conformational isomers
sidic bond.
electronic perturbation from ideal electron-
This
r e l a t i v e to the
glyco-
p a i r b o n d i n g w i l l be g r e a t e s t w h e n the h e t e r o - r i n g a t o m i s most electronegative
divalent atom,
i . e.
most electronegative monovalent atom, sequence,
the " a n o m e r i c
effect" was
Chu and L e m i e u x ( 2 J when ation was
the m a j o r
fluorides.
A
oxygen, i . e.
the
and X is
fluorine.
In
the con-
f i r s t c l e a r l y identified by
they o b s e r v e d
that the ( X - c o n f i g u r -
p r o d u c t i n the p r e p a r a t i o n of p y r a n o s y l
remarkably
perceptive publication by E d w a r d s
h a d p r e v i o u s l y p o i n t e d out the i m p o r t a n c e of the s p a t i a l m e n t of the o x y g e n l o n e - p a i r s differences
as a b a s i s for
( .3 )
arrange-
explaining
the
i n s t a b i l i t y t o a c i d h y d r o l y s i s o f a a n d |3 m e t h y l
pyranosides. When X is a hydroxyl or glycosidic group, i n t e r a c t i o n w i t h the c a r b o n p o r b i t a l s , non-bonding orbital,
observed (4)
conformations in pyranoses effect
),
(j5
bond.
In
This
the a n o m e r i c
w h e r e the e l e c t r o n e g a t i v e effects
c r y s t a l s t r u c t u r a l w o r k o n t h e 1,
small,
s h o u l d be l e s s
the
important Some
5-dithio-ribopyranosides
s t u d i e d this a s p e c t of
a t o m e l e c t r o n i c s t r u c t u r e i n contexts other than The most generally
the " g a u c h e - e f f e c t " , the u n e x p e c t e d
effect.
difference
(6^).
Other investigators have c h e m i s t r y ( _7-9_).
state "exo"
a l t h o u g h it i s b a s i c a l l y a m a n i f e s t a t i o n of
and e x o - a n o m e r i c
this v i e w
are
effect h a s b e e n c a l l e d the
a n d p r o b a b l y n o n - e x i s t e n t i n 1, 5 - d i t h i o - p y r a n o s i d e s . supports
the
consequence,
b e t w e e n the r i n g h e t e r o - a t o m a n d c a r b o n i s v e r y anomeric
lone-pair
i n v o l v e d i n the
i n the c r y s t a l l i n e
the s a m e a s p e c t of e l e c t r o n i c s t r u c t u r e as In 5 - t h i o - p y r a n o s e s ,
the
r e l a t i v e to t h e g l y c o s i d i c b o n d
and pyranosides
and in solution ( £ ) .
anomeric
which are
i s s e n s i t i v e to t h e t o r s i o n a n g l e o f
glycosidic C - l — O - H or C - l — O-R preferred
hetero-
carbohydrate
accepted descriptor
is
o r i g i n a l l y p r o m p t e d b y the n e e d to e x p l a i n
'gauche'
c o n f o r m a t i o n o f f l u o r o m e t h a n o l ( 10
).
T h e s a m e type of c o n f i g u r a t i o n a l a n d c o n f o r m a t i o n a l d i r e c t i n g properties
1 1
spatial
the a a n d B c o n f i g u r a t i o n s ,
a a n d (3 c o n f i g u r a t i o n a l i s o m e r s . stituent,
electron
electrons
of the r i n g o x y g e n w i l l
into a c o r r e s p o n d i n g non-bonding
the
to i n c r e a s e t h a t o f
t h e r e b y i n c r e a s i n g the
d e n s i t y i n the r e g i o n of the c a r b o n ;
bonds
51
Center
c a n be a n t i c i p a t e d , for
example,
i n the
carboranes
Szarek and Horton; Anomeric Effect ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
ANOMERIC E F F E C T
52
c o n t a i n i n g the b o n d i n g s e q u e n c e f l a n k e d b y two o r m o r e deficient in electrons
C~B—C,
electronegative
s i n c e the b o r o n a t o m i s atoms,
to f i l l i t s o w n 2 s a n d 2 p
while
being
orbitals.
Q u a n t u m - m e c h a n i c a l d i s c u s s i o n s of the " g a u c h e a n d the " a n o m e r i c
and e x o - a n o m e r i c
effect" have
p u b l i s h e d ( 1 0 - 13 ) w h i c h p r o v i d e a m o r e
a n d the e l e c t r o s t a t i c
b e t w e e n the v i c i n a l l o n e - p a i r
electrons.
The
Downloaded by UNIV OF ROCHESTER on September 24, 2016 | http://pubs.acs.org Publication Date: January 25, 1979 | doi: 10.1021/bk-1979-0087.ch004
c o m p l e t e d e s c r i p t i o n of
these electronic interactions,
anomeric
most conspicuous
effect
sidic bonds.
repulsions
structural consequences
a r e i n the c o n f o r m a t i o n a l a n g l e s
of
of the
the
glyco-
T h e change in potential energy with rotation
the g l y c o s i d i c b o n d s
(Figure
mechanical methods
(J_3
later i n this a r t i c l e ,
s u g g e s t that t h e r e a r e
2 to 5 k . c a l / m o l e . angles
effect"
been
) o n the m o d e l c o m p o u n d s
In c o n s e q u e n c e ,
lie within quite n a r r o w
pyranosides
( L4
).
This
about
1) c a l c u l a t e d b y a b - i n i t i o q u a n t u m -
the g l y c o s i d i c
ranges
for
discussed
energy b a r r i e r s
the m e t h y l a
anomeric conformational
of
torsion and 0
energy
p o t e n t i a l w i l l a l s o a p p l y to the g l y c o s i d i c l i n k a g e - b o n d s
i n the
(l-»n)
in many
linked oligosaccharides
and its effect i s o b s e r v e d
of the d i - a n d t r i s a c c h a r i d e s w h i c h h a v e b e e n s t u d i e d b y c r y s t a l structure analysis
( 12^).
It s h o u l d b e i n c l u d e d i n t h e
ational potential-energy maps
of p o l y s a c c h a r i d e s
conform-
containing
such
linkages. More-subtle pyranoses
differences
and pyranosides
also occur between a
i n the b o n d l e n g t h s
and 0
and valence
a s s o c i a t e d w i t h the h e m i - a c e t a l a n d a c e t a l m o i e t i e s . small
struc tural differences
affect
the o v e r a l l d i m e n s i o n s of a m o n o s a c c h a r i d e
degree,
of l e s s
than 5 p m and 5
do not
to a
large
but w h e n m u l t i p l i e d i n a l i n e a r p o l y s a c c h a r i d e
t h e y c o u l d l e a d to s i g n i f i c a n t d i f f e r e n c e s i n t e r p r e t the s o m e w h a t f r o m oriented fibres into account these
polymer,
i n the m o d e l s
used
m a r g i n a l X - r a y diffraction data
and gels.
T h e u s e of a v e r a g e d
dimensions for m o n o s a c c h a r i d e
components,
small differences,
i n the i n t e r p r e t a t i o n of f i b r e
diagrams
angles
These
to
available
molecular
w h i c h do not take
c o u l d l e a d to
ambiguities
b y the m o d e l - b u i l d i n g
methods. More chemistry,
importantly,
f r o m the p o i n t of v i e w of t h e o r e t i c a l
these s m a l l differences
provide an
c r i t e r i o n w i t h w h i c h to t e s t the " n e a r n e s s particular assumes
excellent
to r e a l i t y " o f a
"ab-initio" quantum mechanical calculation.
This
that the b e s t t h e o r e t i c a l t r e a t m e n t i s that w h i c h
the b e s t a g r e e m e n t
w i t h the s t r u c t u r a l d a t a ,
of a n o v e r - s i m p l i f i c a t i o n .
which is
gives
somewhat
S o m e of the w a v e f u n c t i o n s u s e d
the a b - i n i t i o c a l c u l a t i o n s a r e
b e l i e v e d to g i v e
reliable
in
values
Szarek and Horton; Anomeric Effect ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
Downloaded by UNIV OF ROCHESTER on September 24, 2016 | http://pubs.acs.org Publication Date: January 25, 1979 | doi: 10.1021/bk-1979-0087.ch004
4.
JEFFREY
Properties
of the Anomeric
Center
Figure 1. Theoretical potential-energy curves for rotation about the anomeric bond from ah initio Hartree-Fock 431-G calculations on dimethoxymethane. $ is the glycosidic 0-5-C-l-0-l-CH torsion angle. is the C-5-0-5-C-1-0-1 torsion angle and is ~ 60° for a-D-pyranosides, ~ 180° for f3-D-pyranosides (see Figure 2). :{
Szarek and Horton; Anomeric Effect ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
53
54 for
ANOMERIC E F F E C T
energies,
but p o o r g e o m e t r y ;
lengths but less w i l l be
others give reliable
reliable bond angles.
The most
the c o m p a r i s o n of the a c t u a l o b s e r v e d
Significant
t o w a r d the e x p e r i m e n t a l
a t i o n of e l e c t r o n d e n s i t y d i s t r i b u t i o n s i n m o l e c u l e s as carbohydrates
by c r y s t a l diffraction
Downloaded by UNIV OF ROCHESTER on September 24, 2016 | http://pubs.acs.org Publication Date: January 25, 1979 | doi: 10.1021/bk-1979-0087.ch004
The Experimental
determin-
as
complex
methods.
Data
T h e r e i s n o w a s i g n i f i c a n t a m o u n t of e x c e l l e n t s t r u c t u r a l data on p y r a n o s e obtained by
molecular
sugars and m e t h y l pyranosides
' s t a t e of the a r t '
X - r a y and neutron-diffraction
crystal-structure determinations.
A l l the r e s u l t s q u o t e d h e r e i n
were obtained f r o m t h r e e - d i m e n s i o n a l diffractometer ments.
The atomic parameters,
than 4%.
The more
measure-
w h i c h include those
the a n i s o t r o p i c t h e r m a l m o t i o n of the a t o m s , full-matrix least-squares better
test
and calculated
electron-density distribution i n these m o l e c u l e s . p r o g r e s s is now being m a d e
bond
sensitive
methods accurate
were
to a g r e e m e n t structure
describing
refined
factors
by
of
determinations
also included c r y s t a l X - r a y or neutron absorption and extinction corrections.
In a f e w
of these p r e c i s e
bond lengths w e r e c o r r e c t e d for however,
structure analyses,
rigid-body
the
thermal motion;
for c o n s i s t e n c y and b e c a u s e of s o m e
uncertainty
c o n c e r n i n g the s i g n i f i c a n c e of t h e s e t h e r m a l m o t i o n c o r r e c t i o n s , we
have
r e p o r t e d the u n c o r r e c t e d v a l u e s
T h e full data for
i n the f o l l o w i n g
tables.
the i n d i v i d u a l s t r u c t u r e d e t e r m i n a t i o n s
b e e n p u b l i s h e d e l s e w h e r e ( 13_).
In T a b l e s
I,
II,
III,
p r e s e n t a s u m m a r y of these
results in a f o r m
c o m p a r i s o n w i t h the r e s u l t s
of t h e o r e t i c a l a b - i n i t i o
have
and IV,
suitable
we
for
molecular
o r b i t a l c a l c u l a t i o n s a i m e d at p r e d i c t i n g the m o l e c u l a r
geometry
of the h e m i - a c e t a l a n d a c e t a l m o i e t y i n p y r a n o s e s
pyrano-
sidic
and
molecules. The experimental standard deviations for individual
structure determinations are lengths
a n d 0 . 1° i n a n g l e s .
neutron analyses
is comparable,
involving hydrogen atoms. bond lengths, atoms
observed of ~ 1 p m ,
for
of 0. 5 p m i n b o n d
except for
the
we
and
dimensions
O n l y i n the n e u t r o n w o r k a r e
valence and torsion angles involving
accurate
In the t a b l e s
of the o r d e r
T h e a c c u r a c y of the X - r a y
e n o u g h to be
relevant for c o m p a r i s o n with
g i v e the e x t r e m e
values
a n d the m e a n
each bond length and valence angle.
there i s no r e a s o n
theory.
value
A t the
level
to e x p e c t that the b o n d l e n g t h s
v a l e n c e angles w i l l be i d e n t i c a l f r o m m o l e c u l e b e c a u s e none of the p y r a n o s e
the
hydrogen
and
to m o l e c u l e ,
ring conformations is exactly
Szarek and Horton; Anomeric Effect ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
the
4.
Properties
JEFFREY
Downloaded by UNIV OF ROCHESTER on September 24, 2016 | http://pubs.acs.org Publication Date: January 25, 1979 | doi: 10.1021/bk-1979-0087.ch004
Table I.
XPERIMENTAL Methyl
Methyl
studies)*
a-pyranoaides
(3 N e u t r o n
studies)^
0-5
-
C- 1
a-D-Pyranosides
O 1 —
/\
C H
145. 0
142. 1
141. 1
144.2
114. 3
112. 9
113. 0
141.8 143.54
141. 3
111. 5
111. 3
113. 5
141.63
139. 1 140.44
142. 3
Mean
1 4 3 . 05
113. 4
112. 3
113. 1
Max.
143. 9
141. 8
140. 1
142. 2
114. 3
113. 0
114. 0
Min.
142.8 143.53
141. 3
140. 0
140. 7
113. 5
112. 0
113. 9
141.57
140. 07
141. 70
113. 9
112. 5
113. 9
144. 2
114. 7
111. 9 109. 8 111. 2
118.9 111.4
144. 1
142. 7
142. 8
143. 0
140. 8
139.8
142. 3
113. 2
Mean
143.44
141. 80
140.75
143. 48
114. 1
a - Linkages
143. 7
141. 1
142. 2
142.9
116. 0
(2 N e u t r o n s t u d i e s ) —
143.4
140. 3
141.4
141. 9
144.4
142. 3
(142.3)
(144.4)
studies)-
H E O R Y -
—M e t h y l a-arabinoside
/ \
O-l
C-l
Min.
Max. Min.
(5 X - r a y
/ \
C-5
3
Max.
Mean a-Linkages
55
Center
Acetal Geometry in Methyl
C-5
a-pyranosides
(8 X - r a y
of the Anomeric
and m e t h y l
tt-xyloside,
molecules
1 and 2 [Jeffrey,
G.
A.
115. 0 114. 3
113. 8
110. 9 110. 7
115. 9
114. 0
(115.9)
and T a k a g i , S. ,
117.8
(1977),
unpublished work. ] Methyl a-glucoside
[Berman,
Methyl a-galactoside
4-Deoxy-4-fluoro Commun.
[Gatehouse, [Gatehouse,
a n d K i m , S.
Crystallogr.
4,
24,
897.]
B.
M.
and Poppleton,
B.
J . , Acta Crystallogr.
(1971),
B27,
654.]
M.
and Poppleton,
B.
J . , Acta Crystallogr.
(1970),
B26,
1761. J
M.
and Poppleton, [Choong,
and m e t h y l a - m a n n o s i d e
B.
J . , Acta Crystallogr.
W. , Stephenson.
N.
(1971), B 2 7 ,
C . , and Stevens,
871.]
J . D. , C r y s t .
B33,
[Poppleton,
—excludes a-linkages
Isomaltulose
B.
[Jeffrey,
J . , Jeffrey,
G.
G.
A.,
A.,
McMullan,
and W i l l i a m s ,
w h i c h f o r m p a r t of C - O - C - O - C - O - C s e q u e n c e of [Chu,
[Dreissig,
Planteose
(Rohrer,
D.
Raffinose
(Berman,
H.
Melezitose
[Horotsu,
S. S.
W.
C.
and Jeffrey,
and L u g e r ,
P.,
M. ,
Acta C r y s t a l l o g r .
and S h i m a d a ,
A.,
Pople,
J. A.,
A.,
(1972), (1970),
S. , C h e m .
—6 - M a l t o s e [ C r e s s , M . E . a n d J e f f r e y , G . S u c r o s e [ B r o w n , G . M . and L e v y , H. A . , G.
G.
R.
G.
K. , and T a k a g i ,
S. ,
Acta
J . B. , Acta Crystallogr.
bonds.
Acta Crystallogr.
Acta Crystallogr.
C. , Acta Crystallogr. K.
Struct.
728.]
2400.]
- M e t h y l 8-maltoside
1 Jeffrey,
(1968),
491.]
(1977),
Methyl a-altroside
H. , Acta Crystallogr.
B. B.
methyl a-glucoaide
(1975),
—Methyl a-glucoside
B31,
M.
[Gatehouse,
Methyl a-mannoside Methyl a-altroside
H.
B28,
(1973),
B29.
23,
1038.]
514).
425.]
B26,
290.]
L e t t e r s (1973),
p. 8 3 . ]
A . , A c t a C r y s t a l l o g r . (1977), A c t a C r y s t a l l o g r . (1973), B 2 9 ,
a n d B i n k l e y , S. , J . A m e r .
(1967),
C h e m . Soc.
^90]. 790.]
(1978), 100,
373].
Szarek and Horton; Anomeric Effect ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
(1975),
56
ANOMERIC EFFECT
Downloaded by UNIV OF ROCHESTER on September 24, 2016 | http://pubs.acs.org Publication Date: January 25, 1979 | doi: 10.1021/bk-1979-0087.ch004
Table II.
EXPERIMENTAL Methyl
Methyl
C- 5
8-pyranosides
(8 X - r a y
Acetal Geometry in Methyl /?-D-Pyranosides
studies)-
0-6
C-lI
C-l
CH
Ob
3
C-l
OA
107. 1
114. 4
Max.
144.2
143.7
143. 4
Min.
142.6
142. 1
139. 3 137. 4
112.7
142. 1
110. 6
108. 1
Mean
143.29
142.81
138.29
142.70
111.4
107.9
112. 4 113. 4
142. 1
142. 7
138. 1
142. 6
111.1
107. 4
113. 0
Max.
144.8
142. 7
139. 7
144.
1 12. 2
107. 7
117. 3
Min.
143. 6
142. 5
138.4
143. 6
111.2
Mean
144. 13
142.60
138.93
144.10
111.9
106.9 107. 4
116. 4
B-xylo-
pyranoside (Neutron
study) —
8 - Linkages (3 X - r a y s t u d i e s ) -
- M e t h y l (a-L)-arabinoside Methyl B-xyloside
[Jeffrey.
[Brown.
Methyl 8-giucoside Methyl 8-galactoside
C.
[Jeffrey, [Jeffrey.
6 - 0 - A c e t y l methyl B-giucoside 6 - 0 - A c e t y l methyl B-galactoside
A. G.
[Chu,
S.
S.
and T a k a g i .
A.
S. . ( 1 9 7 7 ) ,
G . . and L l e w e l l y n .
and T a k a g i .
[Lindberg,
K. K.
[Lindberg,
C and Jeffrey,
F.
unpublished
J. . J . Chem.
S. . A c t a C r y s t a l l o g r .
and T a k a g i ,
[Lindberg.
3,4-Ethylidene methyl 0-galactoside Methyl 0-maltoside
G. A.
J . , Cox,
G.
t>
B. .
S. . A c t a C r y s t a l l o g r . Acta C r y s t a l l o g r .
G.
(1976),
B. . Acta C r y s t a l l o g r . A.,
Acta C r y s t a l l o g r .
(1966).
B33.
p. 9 2 2 . ]
738.1
( 1 9 7 8 ) , B3jt, 20O6J.
(1976),
B. , Acta C r y s t a l l o g r . K.
work.] Soc.
(1977).
115. 8
B32.
642.]
B32,
(1976), (1967),
645.]
B32. 23,
639. ]
1038.)
b Takagi,
S.
and Jeffrey,
G.
A.,
Acta Crystallogr.
(1977),
in
press.
-Cellobiose [ C h u , S. S. C . a n d J e f f r e y , G . A . , A c t a C r y s t a l l o g r . (1968), 24, 8 3 0 . ] G a l a c t o - L - r h a m n i t o l [ J e f f r e y , G . A . a n d T a k a g i , S. . A c t a C r y s t a l l o g r . ( 1 9 7 7 ) , 1£3_, 2 3 7 7 ] . a-Lactose-H20 [ F r i e s , D. C . , R a o . S. T . , and S u n d a r a l i n g a m , M . . A c t a C r y s t a l l o g r . (1971), -Jeffrey,
G.
A. , Pople,
J . A . , and B i n k l e y , S. , J . A m e r .
Chem.
Soc.
(1978), 100.
27.
373.
Szarek and Horton; Anomeric Effect ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
994.]
57
Properties
of the Anomeric
Table III.
11 em i-acetal Geometry in a-D-Pyranoses
JEFFREY
4.
Center
Downloaded by UNIV OF ROCHESTER on September 24, 2016 | http://pubs.acs.org Publication Date: January 25, 1979 | doi: 10.1021/bk-1979-0087.ch004
EXPERIMENTAL a-Pyranoses (10 X - r a y
a-
studies)-
Pyranoses
(3 N e u t r o n s t u d i e s ) —
Max. Min.
148. 1
144. 7
142. 1
115. 5
113. 1
142. 6
141. 2
138.2
112. 1
110.9
Mean
144.48
142.77
138.52
113. 7
111.9
Max.
143. 9
142. 5
140. 4
114. 7
111.9
Min.
142. 7
141. 8
113. 4
109. 8
Mean
143. 20
142.07
138.9 140. 03
97.9 95. 2 9 6 . 63
113. 9
111. 1
108. 1
144. 4
142. 1
141. 7
(109.5)
(109.5)
(109.5)
THEORY
-a-D-Xylose
(Morild,
B-D, L-Arabinose
E . , private communication;
[Kim,
S.
B-L-Arabinose
[Hordvik,
a-D-Galactose
[Ohanessian,
Acta Crystallogr. a-Fucose B31,
tt-D,
Hordvik,
A.,
Scand.
IS,
(1961),
J . and G i l l i e r - P a n d r a u d , B32,
A.,
Acta Chem.
Acta C r y s t a l l o g r . H. ,
Scand.
(1967),
22^
(1971),
25,
2175.]
537.]
16.]
Acta Crystallogr.
(1976),
B32,
2810;
Sheldrick, B. ,
1016.]
F. , Ohanessian,
J . , Avenel,
D. , a n d N e u m a n ,
A.,
Acta Crystallogr.
(1975),
[Killean,
R.
C.
G. ,
Lawrence,
J . L . . and S h a r m a ,
V.
C. , Acta Crystallogr.
(1971),
1707.]
August,
[Planinsek,
F . and R o s e n s t e i n ,
R.
D. ,
Abstr.
N10,
American Crystallogr.
Assoc.
Meeting,
1967. ]
a-D-Mannose, B32,
Acta C h e m .
G.
2623. ]
L-Mannose
a-Talose
A.,
(1976).
[Longchambon,
a-L-Rhamnose-H20 B27,
H . and Jeffrey,
( 9 6 . 0)
109. 2 107. 4
molecules
1 and 2
[Longchambon,
F. ,
Avenel,
D. , and N e u m a n ,
A.,
Acta Crystallogr.
(1976),
1822.] [Ohanessian,
b a-D-Glucose -
[Brown,
J., G.
Avenel,
M.
B-L-Arabinose
[Takagi,
S.
a-L-Rhamnose
[Jeffrey,
G.
D. , K a n t e r s ,
and L e v y , and A.
H.
Jeffrey.
G.
and T a k a g i .
Table IV.
A., A.,
J. A.,
and S m i t s ,
S c i e n c e (1965),
D. , A c t a C r y s t a l l o g r .
147,
Acta Crystallogr.
B33,
(1977),
B3J., 3 0 3 3 ] .
2551.]
Hemi-acetal Geometry in /?-r>Pyranoses
C-l -JL_ . c
liH
E X P E R I M E N T A L
0-5
C-l
8 -Pyranoses
Max.
144. 0
143. 3
139.9
112. 7
107. 2
(5 X - r a y
Min.
142. 6
141.3
138.4
111.9
106. 2
Mean
143. 40
1 4 2 . 52
139.36
112.0
106. 8
142.4
139. 8
(109.5)
(109.5)
atudies)-
—0 - L - L y x o s e
[Morild,
0-D-Glucose
[Chu,
B-D-Galactose Avenel,
D.,
S.
1063.]
1038.]
( 1 9 7 8 ) , B3k,
S. , (1977),
(1977),
E . , private communication. ] S.
[Sheldrick,
C.
and Jeffrey.
B. ,
and N e u m a n ,
G.
A.,
Acta Crystallogr. A.,
Acta Crystallogr. (1976),
Acta Crystallogr.
2-Deoxy-2-fluoro-B-D-mannose [Choong, W. , C r a i g , C r y s t a l S t r u c t . C o m m u n . (1975), 4, 111.]
B32.
(1975), D.
(1968),
1016;
B31,
24,
830.]
Longchambon,
F.,
Ohanessian,
2623.]
C . , Stephenaon,
N.
C . , and Stevens,
Szarek and Horton; Anomeric Effect ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
J . D. ,
J .
58
ANOMERIC EFFECT
same.
T h e y a r e a l l d i s t o r t e d to a g r e a t e r
the i d e a l
C i conformation,
4
or lesser
degree
i n p a r t b y the i n t r a m o l e c u l a r
actions between substituent h y d r o x y l groups
and in part
c r y s t a l - f i e l d effects.
Because
c h a i r i s not a
flexible
s o m e bond lengths and angles
r i n g ( 1 5 , 16 ),
the p y r a n o s e
d i f f e r e n t w h e n the r i n g c o n f o r m a t i o n a l a n g l e s T h e m o s t obvious
feature
are
from
inter-
by
must
be
different.
of the e x p e r i m e n t a l d a t a o n the
a a n d |3 p y r a n o s e m o l e c u l e s i s t h e s h o r t e n i n g o f t h e
anomeric
Downloaded by UNIV OF ROCHESTER on September 24, 2016 | http://pubs.acs.org Publication Date: January 25, 1979 | doi: 10.1021/bk-1979-0087.ch004
C - l — O H b o n d l e n g t h f r o m a n o r m a l v a l u e o f 1 4 2 . 5 p m to 139 to 140 p m .
The C - l — 0 - 5
the 0 - 5 — C - 5 differences
bond is
b o n d l e n g t h h a s the n o r m a l v a l u e ,
143-144 p m .
the a n o m e r i c c a r b o n a t o m , 113.8 and 111.5°,
at the r i n g o x y g e n ,
C-l.
s i g n i f i c a n t l y l e s s i n the 0 - a n o m e r s ,
i . e.
t h a n t e t r a h e d r a l i n the 3
112 a n d 1 0 7 ° .
the f r e e
sequence
are both longer
The C - l — 0 - 5
than n o r m a l ,
angles,
that at the c a r b o n a t o m i s l e s s
both oxygen angles
are greater
than
In the m e t h y l a - p y r a n o s i d e s , the s h o r t e s t of the f o u r 1 p m less.
C - O bonds,
markedly
bond is
of the O - O - C - O — C
normal,
acetal
143-144 p m ,
significantly different f r o m each other.
marked
config-
The methyl
sugars in having a
s h o r t g l y c o s i d i c b o n d o f 139 p m . and the two e x t e r n a l C—O b o n d s
angle
there is a
b e t w e e n the two
urations i n both bond lengths and valence angles. resemble
There
valence bond
in contrast,
i n the m o l e c u l a r g e o m e t r y
g -pyranosides
angles
are
pyranoses.
In the m e t h y l p y r a n o s i d e s , difference
a n d at
these
w h e r e a s they
i s d e f i n i t e e v i d e n c e that the 0 - 5 — C - l — O - l is less
molecules CMS,
In the a s u g a r s ,
respectively,
and
significant
o b s e r v e d b e t w e e n the a a n d 0 p y r a n o s e
a r e i n the v a l e n c e - b o n d a n g l e s are
The only
but not
O f the t h r e e
valence
than tetrahedral,
while
tetrahedral. the g l y c o s i d i c b o n d i s but the d i f f e r e n c e
The bond-shortening appears
is
to be s h a r e d
more
e q u a l l y b e t w e e n the two C - O b o n d s
o n e i t h e r s i d e of the
carbon.
the e x t e r n a l C - O b o n d s
A s i n the | 3 - p y r a n o s i d e s ,
acetal sequence valence angles C-l
are are
the l o n g e s t .
The differences
s i m i l a r to the 8 a n o m e r s ,
value is t e t r a h e d r a l r a t h e r than less T h e d a t a r e l a t i n g t o t h e a-
observed in di-
b e c a u s e of the
a n d the p o o r e r
available.
of the
b e t w e e n the
e x c e p t that the
and 0-linkages
c o m p l e x i t y of t h e i r s t r u c t u r e s ,
the c r y s t a l s that a r e g e n e r a l l y
anomeric
than t e t r a h e d r a l .
a n d t r i s a c c h a r i d e s t e n d to b e l e s s p r e c i s e , greater
still about
T h e r e i s no
q u a l i t y of evidence
that the s u b s t i t u t i o n of a s u g a r r e s i d u e f o r a m e t h y l r e s u l t s significant differences bonding.
i n the s t r u c t u r e of the a c e t a l
We have included only those acetal sequences
are flanked by C—C bonds
in
C - O - C - O - C which
and have omitted f r o m this listing
Szarek and Horton; Anomeric Effect ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
4.
Properties
JEFFREY
of the Anomeric
t h o s e that f o r m p a r t of a l o n g e r C—O bond sequences raffinose
Center
c h a i n of C - O b o n d s ,
as i n a , a - t r e h a l o s e ,
and m e l e z i t o s e .
59
sucrose,
i . e.
seven
planteose,
T h e data on these compounds
have
b e e n p u b l i s h e d e l s e w h e r e ( 12 ). The
neutron-diffraction results are in good agreement
the X - r a y d a t a f o r trend for
the C - O b o n d l e n g t h s a n d a n g l e s .
t h e C - O b o n d l e n g t h s to b e a b o u t
observed by neutron diffraction.
Downloaded by UNIV OF ROCHESTER on September 24, 2016 | http://pubs.acs.org Publication Date: January 25, 1979 | doi: 10.1021/bk-1979-0087.ch004
observed analyses believe
have been made
1 p m shorter
This has been
in studies where both X - r a y and o n the s a m e
a
when
generally
neutron-diffraction
c o m p o u n d ( 1 7 - 1 9 )•
that this effect i s r e a l a n d i s a c o n s e q u e n c e
that the t h e r m a l l y s m e a r e d
with
T h e r e is
We
of the
fact
e l e c t r o n d e n s i t y of the o x y g e n
atoms
i s d i s p l a c e d a w a y f r o m the n u c l e a r c e n t e r i n the d i r e c t i o n of the lone-pair
electrons,
t h e r e b y t e n d i n g to i n c r e a s e
C - O bond lengths and d e c r e a s e The
the
observed
O valence
angles.
Theoretical Calculations The
theoretical calculations with which these
data c a n be c o m p a r e d a r e CH3OCH2OH
(12,)
the p y r a n o s e analogy
Figure
experimental
b a s e d o n the u s e of m e t h o x y m e t h a n o l
and d i m e t h o x y m e t h a n o l C H 3 O C H 2 O C H 3
as m o d e l compounds for The
the o b s e r v e d
and methyl pyranoside molecules, to t h e p y r a n o s e s
and pyranosides
in
respectively.
is illustrated in
2.
The
c a l c u l a t i o n s w e r e c a r r i e d out u s i n g the a b - i n i t i o
Hartree-Fock 431-G basis-set Ditchfield,
Hehre,and Pople
s h o w n that the p r e f e r r e d
m o l e c u l a r o r b i t a l m e t h o d of
( 2£).
Energy calculations
have
c o n f o r m a t i o n s f o r t h e (X- a n d
w e r e the + s c , + s c a n d ap, +sc
( 1 2 , 13 ),
and only these conformations w e r e c o n s i d e r e d .
experimental data,
models,
3-
anomers
respectively
180° f o r
In the
the t o r s i o n a n g l e C - 5 — 0 - 5 — C - l — C - l
n e c e s s a r i l y c l o s e to 60° f o r the a c o n f i g u r a t i o n , by ± 5 °
( 1_3 )
the h e m i - a c e t a l a n d a c e t a l m o i e t i e s
is
and close
t h e (3 c o n f i g u r a t i o n ( t h e y v a r y f r o m t h e s e i d e a l
s i n c e the p y r a n o s e
glycosidic torsion angles pyranoses
r i n g s a r e not i d e a l
chairs).
l i e b e t w e e n 70 a n d 1 0 0 ° f o r
a n d b e t w e e n 60 a n d 80° f o r
the m e t h y l
to
values
the
The
free
pyranosides.
T h e s e v a l u e s h a v e b e e n r e p o r t e d e l s e w h e r e ( 1 1 , 12 ). In the m e t h o x y m e t h a n o l m o d e l o n l y the C - O b o n d were varied. angles
w e r e m a i n t a i n e d at t e t r a h e d r a l v a l u e s In the d i m e t h o x y m e t h a n o l m o d e l ,
a n d the 0-5^ The
+ s c , +sc
lengths
T h e C - H b o n d l e n g t h s w e r e f i x e d at 96 p m a n d a l l
C-l,
and O - l
( 12 ).
both C - O bond
valence angles
lengths
w e r e v a r i e d ( 13 ).
conformation is s y m m e t r i c a l , and therefore
Szarek and Horton; Anomeric Effect ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
only
Downloaded by UNIV OF ROCHESTER on September 24, 2016 | http://pubs.acs.org Publication Date: January 25, 1979 | doi: 10.1021/bk-1979-0087.ch004
ANOMERIC EFFECT
Szarek and Horton; Anomeric Effect ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
4.
Properties
JEFFREY
of the Anomeric
two b o n d l e n g t h s a n d two a n g l e s model,
for
the P p y r a n o s i d e s ,
three variable
HI,
and
Downloaded by UNIV OF ROCHESTER on September 24, 2016 | http://pubs.acs.org Publication Date: January 25, 1979 | doi: 10.1021/bk-1979-0087.ch004
For
are possible.
The values
of
w h i c h o p t i m i z e the
shown under
E x p e r i m e n t and
the a a n d 3 p y r a n o s e
THEORY
energy
in Tables
C~5 — O-B
s u g a r s , the c a l c u l a t i o n s
> 0-5-—C~l
f u l l y p r e d i c t e d b y the t h e o r y .
> C-l —O-l
In t h e g p y r a n o s e
closely
is
success-
case,
the
b e t w e e n t h e o r y a n d e x p e r i m e n t i s w e l l w i t h i n the
experimental error calculates ~ 2
limits.
p m longer
w h i c h i s not o b s e r v e d valence angles
F o r the a c a s e ,
t h a n the $,
the g l y c o s i d i c
but this s m a l l
experimentally,
also been
structural features a t i o n s (_13 )•
could disappear
h a d the
optimized.
is m o r e
important because
of the
is again v e r y good.
than 2 p m in m o s t c a s e s .
The
theoretical values
for
those observed.
the v a l e n c e a n g l e s
are
The biggest difference
e x p e r i m e n t i s the t h e o r e t i c a l o v e r - e s t i m a t e a n g l e b y 3° i n b o t h c a s e s .
This agreement
calculdifference
reproduced i n the
i n the s a m e
sense
between theory
and
of the C - l
valence
s h o w s that the
ab-initio H a r t r e e - F o c k 431-G approximation, well-chosen models,
is
The differences
when used
c a n g i v e v e r y g o o d d e s c r i p t i o n s of
h e m i - a c e t a l a n d a c e t a l m o i e t i e s of the s u g a r m o l e c u l e s , as p r e d i c t i n g m o l e c u l a r
geometry.
t h i s w i l l a p p l y to a l l m o l e c u l e s
not i m p o r t a n t .
that the s u b s t i t u t i o n of a p r i m a r y a n d s e c o n d a r y on C-5
i n s t e a d of two h y d r o g e n s
changes
with the as
It i s a f a i r a s s u m p t i o n
involving first-row
where d-orbital interactions are
the
more
which w e r e optimized in these later
The agreement
i n the b o n d l e n g t h s b e t w e e n the two c o n f i g u r a t i o n s
as
bond
discrepancy,
T h e c o m p a r i s o n b e t w e e n the d i m e t h o x y m e t h a n e a n d a and p pyranosides
to b e t t e r
I,
Theory
the s h o r t e n i n g of the g l y c o s i d i c b o n d v e r y
a n d the s e q u e n c e agreement
+sc and
IV.
C o m p a r i s o n Between
reproduce
In the a p ,
variable bond lengths
and valence angles
of the m o d e l m o l e c u l e s a r e II,
c a n be v a r i e d .
four
valence angles
these bond lengths
61
Center
far that
elements
It a l s o alcohol
suggests group
does not m a k e any v e r y
major
i n the e l e c t r o n i c s t r u c t u r e of the C ~ O - C - 1 — O - C
bonds.
T h i s i s c o n s i s t e n t w i t h the c h e m i c a l e x p e r i e n c e anomeric
that the
effect i s a p a r t i c u l a r p r o p e r t y o f the a n o m e r i c
which applies
to a l l p y r a n o s e s
and pyranosides
and is
i n s e n s i t i v e to t h e c o n f i g u r a t i o n a t t h e n o n - a n o m e r i c
general center
relatively
carbon
atoms. This 21794,
r e s e a r c h was
supported by Grants
U.S. Public Health Service,
G M - 1 1 2 9 3 and
G M -
N a t i o n a l Institutes of H e a l t h .
Szarek and Horton; Anomeric Effect ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
62
ANOMERIC EFFECT
Downloaded by UNIV OF ROCHESTER on September 24, 2016 | http://pubs.acs.org Publication Date: January 25, 1979 | doi: 10.1021/bk-1979-0087.ch004
Literature Cited (1) Pauling, L., "Nature of the Chemical Bond," pp. 88, 273, 3rd Edit., Cornell University Press, Ithaca, 1960. (2) Lemieux, R. U. and Chü, Ν. J., Abstracts of Papers, Amer. Chem. Soc. (1958) 133, 31N. (3) Edwards, J. T., Chem. & Ind. (London) (1955) p. 1102. (4) Jeffrey, G. A . , Pople, J. A. and Radom, L., Carbohydr. Res. (1972) 25, 527. (5) Lemieux, R. U . , Pure & Appl. Chem. (1971) 25, 527. (6) Girling, R. and Jeffrey, G. Α . , Acta Cryst. (1974) B30, 327. (7) de Hoog, A. J., Buys, H. R . , Altona, C. and Havinga, Ε., Tetrahedron (1969) 25, 3365. (8) Romers, C., Altona, C., Buys, H. R. and Havinga, Ε., Topics Stereochem. (1969) 4, 39. (9) Wolfe, S., Rank, Α . , Tel, L . M. and Csizmadia, I. G . , J. Chem. Soc. (1971) B, 136. (10) Wolfe, S., Accts. Chem. Res. (1972) 5, 102. (11) Jeffrey, G. A., Pople, J. A. and Radom, L., Carbohydr. Res. (1972) 25, 117. (12) Jeffrey, G. A., Pople, J. A. and Radom, L., Carbohydr. Res. (1974) 38, 81. (13) Jeffrey, G. A., Pople, J. A . , Binkley, S. and Vishveshwara, S., J. Amer. Chem. Soc. (1978), 100, 373. (14) Jeffrey, G. A. and Takagi, S., Acta Cryst. (1977) B33, 738. (15) Sachse, Η . , Berichte (1890) 23, 1363. (16) Dunitz, J. D. and Waser, J., J. Amer. Chem. Soc. (1972) 94, 5645. (17) Brown, G. M . and Levy, Η. Α . , Acta Cryst. (1973) B29, 790. (18) Jeffrey, G. A., McMullan, R. K. and Takagi, S., Acta Cryst. (1977) B33, 728. (19) Takagi, S. and Jeffrey, G. Α . , Acta Cryst. (1977) B33, 3033. (20) Ditchfield, R . , Hehre, W. J. and Pople, J. A., J. Chem. Phys. (1971) 54, 724. RECEIVED September
27, 1978.
Szarek and Horton; Anomeric Effect ACS Symposium Series; American Chemical Society: Washington, DC, 1979.