13 The Variable Virtual Bond Modeling Technique for Solving Polymer Crystal Structures PETER ZUGENMAIER
Downloaded by UNIV OF NEW SOUTH WALES on April 16, 2016 | http://pubs.acs.org Publication Date: November 17, 1980 | doi: 10.1021/bk-1980-0141.ch013
Institute of Macromolecular Chemistry, University of Freiburg, D-7800 Freiburg i.Br., West Germany ANATOLE SARKO Department of Chemistry, State University of New York, College of Environmental Science and Forestry, Syracuse,NY13210
Although various procedures are available for the model analysis of fibrous polymers, methods based on the virtual bond representation of the asymmetric residue may be of advantage in many cases. In the following, we describe one such method that began with simple procedures applied to polysaccharides, but has now been refined into a flexible and powerful model analysis tool that is simple to use with any class of polymer. Its use i n the present case, however, is illustrated with examples drawn from the structure analysis of polysaccharides. The Virtual Bond Method The earliest attempts at model analysis of polysaccharides typified by the x-ray crystal structure analysis of amylose tri-acetate - were usually conducted i n three steps (1). In the first step, a model of the chain was established which was i n agreement with the fiber repeat and the lattice geometry, as obtained from diffraction data. In the second step, the invariant chain model was packed into the unit c e l l , subject to constraints imposed by nonbonded contacts. This was followed, i n the third step, by efforts to reconcile calculated and observed structure factor amplitudes. It was quickly realized that helical models of polysaccharide chains could be easily generated and varied using the virtual bond method. Figure 1 illustrates the generation of a two-fold helical model of a {±+k)-linked polysaccharide chain. The virtual bond* VB, i s the vector linking successive glycosidic (bridge) oxygens. The starting point of this vector has coordi(VB^ - h^)l/2 nates X, \ »* 1 = 0;* whereas for the end1 = 0,' v, ^1 = - ~r—."" 2 sin \| 'A/21 point they are = -yj_ sin A, 1/2 = y± cos A., 3 = h. (VB = length of the virtual bond; h = axial rise per residue, here o/2\ n = number of residues per helix repeat, here 2; A = 27ft/n; ±t = number of turns i n repeat (+ right- and - left-handed). Provided a suitable model exists for the monomer residue, a reasonably correct conformation of the chain is obtained simply by rotating the K /rs
2
0-8412-0589-2/80/47-141-225$05.00/0 © 1980 American Chemical Society French and Gardner; Fiber Diffraction Methods ACS Symposium Series; American Chemical Society: Washington, DC, 1980.
FIBER
DIFFRACTION
METHODS
Downloaded by UNIV OF NEW SOUTH WALES on April 16, 2016 | http://pubs.acs.org Publication Date: November 17, 1980 | doi: 10.1021/bk-1980-0141.ch013
226
Figure 1. Construction of a two-fold helical model of a polysaccharide with the virtual bond method. Increasing the length VB of the virtual bond is shown by the dashed line.
French and Gardner; Fiber Diffraction Methods ACS Symposium Series; American Chemical Society: Washington, DC, 1980.
Downloaded by UNIV OF NEW SOUTH WALES on April 16, 2016 | http://pubs.acs.org Publication Date: November 17, 1980 | doi: 10.1021/bk-1980-0141.ch013
13.
ZUGENMAIER
A N D SARKO
Variable Virtual Bond
227
e n t i r e r e s i d u e a b o u t t h e virtual bond u n t i l t h e b r i d g e a n g l e x i s w i t h i n t h e e x p e c t e d r a n g e . F o r most p o l y s a c c h a r i d e s , s u c h r o t a t i o n y i e l d s t w o c o n f o r m a t i o n s w i t h t h e p r o p e r a n g l e x , a s shown i n F i g u r e 2. One o f t h e t w o c h o i c e s i s g e n e r a l l y r u l e d o u t b e c a u s e o f e x c e s s i v e , s h o r t nonbonded c o n t a c t s w i t h i n t h e c h a i n . A l t h o u g h o t h e r methods a r e a v a i l a b l e t o c o n s t r u c t m o d e l s o f p o l y s a c c h a r i d e h e l i c e s , such a s b y r o t a t i o n s about t h e two bonds l e a d i n g t o t h e b r i d g e o x y g e n ( t h e § a n d r o t a t i o n s ) , t h e virtual bond method p o s s e s s e s s e v e r a l a d v a n t a g e s . W i t h i t , a h e l i x w i t h g i v e n n a n d h c a n b e c o n s t r u c t e d e a s i l y , a n d o n l y one v a r i a b l e r o t a t i o n a b o u t t h e virtual bond - i s n e e d e d f o r g r o s s changes o f conformation. The c o n s e q u e n c e s o f c h a n g i n g t h e l e n g t h o f VB s u c h as c h a n g e s i n t h e h e l i x d i a m e t e r a n d t h e b r i d g e a n g l e x , a r e e a s i l y p r e d i c t a b l e , a s shown i n F i g u r e 1. M o s t i m p o r t a n t l y , m o d e l r e f i n e ment w i t h t h i s method i s s i m p l e , a s d e s c r i b e d i n t h e f o l l o w i n g sections. 9
M o d e l B u i l d i n g a n d R e f i n e m e n t w i t h t h e V i r t u a l Bond M e t h o d As shown i n F i g u r e 1 , o n l y t h e p o s i t i o n s o f t h e r e p e a t atoms o f t h e monomer r e s i d u e a r e s p e c i f i e d b y t h e virtual bond. W i t h i n t h i s constraint, considerable latitude i s available f o rthep o s i t i o n s o f a l l o t h e r atoms o f t h e r e s i d u e . T h e s e atoms c a n b e d e s c r i b e d i n t w o a l t e r n a t e w a y s , a s shown i n F i g u r e 3. I n t h e f i r s t m e t h o d , a s t r i n g o f c o n n e c t e d atoms e x t e n d s f r o m t h e l o w e r t o t h e u p p e r atom o f t h e virtual bond (i.e., f r o m Oh t o 0 1 i n F i g u r e 3 A ) . A l l o t h e r atoms o f t h e r e s i d u e n o t i n t h i s m a i n s t r i n g a r e p l a c e d i n separate s t r i n g s , w h i c h a r e a t t a c h e d as branches t o t h e main string. ( F i x e d h y d r o g e n s , e.g., t h o s e a t t a c h e d t o r i n g c a r b o n s , could be t r e a t e d i d e n t i c a l l y . However, i t i s s i m p l e r t o c a l c u l a t e t h e i r p o s i t i o n s when n e e d e d , i n a c c o r d a n c e w i t h p r e s e l e c t e d C-H b o n d l e n g t h s a n d a s s o c i a t e d b o n d a n g l e s ) . The p o s i t i o n o f e a c h atom i n a s t r i n g i s e x p r e s s e d b y p o l a r c o o r d i n a t e s r , 0, (j>, w h e r e r i s t h e b o n d l e n g t h , 6 i s t h e b o n d a n g l e , a n d i s t h e c o n f o r m a t i o n a n g l e , a l l r e l a t i v e t o p r e v i o u s atoms. (.These c o o r d i n a t e s a r e i l l u s t r a t e d f o r atom 05 i n F i g u r e 3 A ) . C o n v e r s i o n b e t w e e n t h e p o l a r a n d c a r t e s i a n c o o r d i n a t e s i s e a s i l y a c c o m p l i s h e d , whenever n e e d e d . When a b o n d a n d i t s a n g l e s c a n n o t b e e x p r e s s e d b y p o l a r c o o r d i n a t e s a s s o c i a t e d w i t h a n a t o m , s u c h a s t h e " o p e n " b o n d shown b y a d a s h e d l i n e i n F i g u r e 3A, i t s l e n g t h a n d a l l d e s i r e d a n g l e s can s t i l l b e e x p l i c i t l y d e f i n e d . A l l b o n d l e n g t h s a n d a n g l e s , i n c l u d i n g t h e l e n g t h o f t h e virtual bond a n d t h e a n g l e s a s s o c i a t e d w i t h i t , c a n now b e t r e a t e d a s v a r i a b l e s d u r i n g r e f i n e m e n t . The m o d e l o f t h e r e s i d u e c a n a l s o b e d e s c r i b e d b y a s e c o n d p r o c e d u r e , shown i n F i g u r e 3B. Two s t r i n g s o f atoms a r e u s e d , b e g i n n i n g a t s e p a r a t e ends o f t h e virtual bond. T h e s t r i n g s a r e n o t c o n n e c t e d t o one a n o t h e r , l e a v i n g t w o " o p e n " b o n d s . T h i s m e t h o d i s u s e f u l when t h e l e n g t h o f t h e virtual bond i s t o r e m a i n f i x e d during refinement. The g o a l o f m o d e l b u i l d i n g i s t o p r o d u c e a p o l y m e r c h a i n t h a t
French and Gardner; Fiber Diffraction Methods ACS Symposium Series; American Chemical Society: Washington, DC, 1980.
FIBER
DIFFRACTION
METHODS
Downloaded by UNIV OF NEW SOUTH WALES on April 16, 2016 | http://pubs.acs.org Publication Date: November 17, 1980 | doi: 10.1021/bk-1980-0141.ch013
228
Figure 3. Two alternate methods of describing an a-D-glucose residue using the variable virtual bond method. The bond length, bond angle, and conformation angle for atom 05 are shown as r , 0 , . 5
5
5
French and Gardner; Fiber Diffraction Methods ACS Symposium Series; American Chemical Society: Washington, DC, 1980.
13.
ZUGENMAIER
Variable Virtual Bond
A N D SARKO
229
p o s s e s s e s s o u n d s t e r e o c h e m i c a l f e a t u r e s a n d , a t t h e same t i m e , i s i n g o o d agreement w i t h d i f f r a c t i o n d a t a . T h e s e r e q u i r e m e n t s c a n be met, a s shown i n F i g u r e h b y p r o p e r u s e o f i n f o r m a t i o n a v a i l a b l e from e x p e r i m e n t , and model r e f i n e m e n t b a s e d o n t h e o r e t i c a l p r i n c i p l e s (2 3). I n t h e refinement o f t h e model, a l l bond l e n g t h s , bond angles and conformation angles a r e o p t i m i z e d r e l a t i v e t o a set o f standards, simultaneously with the p o s i t i o n o f the chain i n the u n i t c e l l . The r e f i n e m e n t i s c a r r i e d o u t b y m i n i m i z i n g t h e f u n c t i o n (^,5.): N Y = T STD"? (A. - A . ) + W~ T w ^ C d . , - d . . ) (1) i=l 5=1 J=l where t h e f i r s t t e r m r e p r e s e n t s t h e b o n d e d a n d t h e s e c o n d t e r m t h e nonbonded i n t e r a c t i o n s . I nt h i s equation, i s any c a l c u l a t e d bond l e n g t h , bond o r t o r s i o n a n g l e ; A ^ i s an average o r s t a n d a r d v a l u e o f A^; STD ^_ i s a w e i g h t o r s t a n d a r d d e v i a t i o n o f A ^ N is t h e number o f b o n d e d i n t e r a c t i o n s i n t h e r e f i n e m e n t ; dQ±^ i s t h e nonbonded e q u i l i b r i u m d i s t a n c e b e t w e e n atoms i a n d j; d^ i s t h e a c t u a l nonbonded d i s t a n c e b e t w e e n atoms i, Q; n i s t h e number o f nonbonded c o n t a c t s a n d i s t h e o v e r a l l weight f a c t o r which b a l a n c e s t h e b o n d e d a n d nonbonded i n t e r a c t i o n s . The s t a n d a r d v a l u e s A ^ f o r t h e b o n d l e n g t h s , b o n d a n g l e s a n d conformation angles can be o b t a i n e d b y a v e r a g i n g from s i n g l e - c r y s t a l s t r u c t u r e s o f carbohydrates (6). T h i s a l s o y i e l d s t h e c o r r e s p o n d i n g s t a n d a r d d e v i a t i o n s STD i. The e q u i l i b r i u m nonbonded d i s t a n c e s d ±j a n d t h e i r a s s o c i a t e d w e i g h t s have l i k e w i s e been d e t e r m i n e d f r o m known c r y s t a l s t r u c t u r e s o f c a r b o h y d r a t e s (7.). The a c t u a l values o f t h e constants used f o r p o l y s a c c h a r i d e s are given i n T a b l e s I a n d I I . F o r a good b a l a n c e b e t w e e n t h e t w o t e r m s o f eq. (.1), a v a l u e o f 0.5 i s a p p r o p r i a t e f o r t h e o v e r a l l w e i g h t W. 9
9
n
Downloaded by UNIV OF NEW SOUTH WALES on April 16, 2016 | http://pubs.acs.org Publication Date: November 17, 1980 | doi: 10.1021/bk-1980-0141.ch013
2
0
1
1
0
2
2
0
1
1
J
Q
Q
Q
9
0
0
Q
Table I C o n s t a n t s f o r t h e nonbonded r e p u l s i o n t e r m o f E q . ( l ) . (When ^ i j > d o i j , w = 0 e x c e p t f o r t h e h y d r o g e n b o n d ) . 9
Interaction
type
C C C 0 C • • • .H
0 . . . .0 0 H H • •. .H 0 0 (H-bond)
d
Q9
A
3.70 3.60 3.30 3.60 3.25 3.20 2.80
W
3.00 3.00 1.35 3.00 1.U0 0.50 20.00
I t should be c l e a r t h a t a refinement based on t h e minimizat i o n o f t h e f u n c t i o n Y r e s u l t s i n a s t r u c t u r e o f minimum s t e r i c
French and Gardner; Fiber Diffraction Methods ACS Symposium Series; American Chemical Society: Washington, DC, 1980.
230
FIBER
DIFFRACTION
METHODS
Table II Average bond l e n g t h s , bond angles and t o r s i o n angles f o r an a - D glucose residue shown i n Figure 3. Included are lower and upper l i m i t s and average standard deviations ( 6 ) .
Downloaded by UNIV OF NEW SOUTH WALES on April 16, 2016 | http://pubs.acs.org Publication Date: November 17, 1980 | doi: 10.1021/bk-1980-0141.ch013
Bond Lengths (&) 1.U15 (1.U05-1.U35)
C(l)-OU) C(l)-0(5) C(5)-0(5) C(U)-0(U) C(3)-C(U) C(2)-C(3) CC2)-0(2} C(3)-0(3) C(5)-C(6) C(6)-0(6) 0(U)..0(l)
l.UlU
(1.392-1.^28)
1.U36 1.U26 1.523 1.521
Cl.U25-l.U6U) Cl.U09-l.UU6) Cl.509-1.537) Cl.508-1.536)
I.51U
Cl.U95-l.53U)
1.U23 C l . U l l - l . U U o l I.U29 Cl.Ul0-l.UU6)
I.U27 C l . U i 5 - l . U U 2 ) v a r i a b l e CU.10-U.6o) 0.01 A
Ave. STD Bond Angles (degrees)
o(U)-od). •cCi o ( i ) - c d ) . •0(5
7 ».0 111.6 llU.O 1*5.5 105.5 110.5 110.8 109.7 106.9 111.8 1
C(1)-0C5)- •C(5 OCl)-O(U).
•c(U
oCU)-c(U).•C(3 C(U)-C(3)- •C(2 C(3)-CC2)- •0(2 C(10-C(3)- •0(3 0(5)-C(5)- •CC6 C(5)-C(6)- •0(6 Gycosidic bond angle
variable 1.5°
Ave. STD Torsion Angles
8,
(degrees)
COO-OCU). • 0 ( l ) - C ( l ) ° 0(U)-0(1). • C ( l ) - 0 ( 5 ) 0 ( 1 ) - C ( 1 ) . •OC5)-CC5). •C(U)-C(3) •C(3)-C(2) OCU)-C(U).•C(2)-0(2) C(U)-C(3)- •C(3)-0(3) OCU)-C(U)- •C(5)-C(6) C ( l ) - 0 ( 5 ) - •C(6)-0(6) 0(5)-C(5)-
b
od)-o(U).
(71.0.'-77.0) (109. 8-112.7) (113 2-11h.7) -U8.5) (103.6-112.lt) (106. 0-113.6) (106. U-113.2) (106. 5 - H 2 . 5 ) (106. 8-107.9) (109. U-113.8)
b
- 2 . 0 (±5) - 5 7 . 6 (±5) 57-7 (±5) - 6 0 . 1 (±5) 168.0 (±5) -177.9 (±5) -69.O (±5) -nh.k (±5) variable 0
French and Gardner; Fiber Diffraction Methods ACS Symposium Series; American Chemical Society: Washington, DC, 1980.
13.
ZUGENMAIER AND SARKO
Table Torsion Angles
231
Variable Virtual Bond
I I Ccontinued)
3 ,
3.0°
A v e . STD
Convention f o r t o r s i o n angles: 0° when b o n d s A-B a n d C-D exeois; c l o c k w i s e r o t a t i o n o f b o n d C-D r e l a t i v e t o A-B i s p o s i t i v e .
Downloaded by UNIV OF NEW SOUTH WALES on April 16, 2016 | http://pubs.acs.org Publication Date: November 17, 1980 | doi: 10.1021/bk-1980-0141.ch013
I n v o l v e s t h e virtual
bond.
'Any d e s i r e d v a l u e c a n b e u s e d ; h o w e v e r , t h e t h r e e s t a g g e r e d c o n f o r m a t i o n s , d e n o t e d gg tg a n d gt have t o r s i o n a n g l e s -60°, 180° and 60°, respectively. y
CRYSTAL
9
AND
MOLECULAR
DETERMINATION
STRUCTURE
OF POLYMERS
EXPERIMENT
THEORY
X-ray fiber diagram
molecular data of oligomer
potential
fiber
single
calculations
repeat
crystals
energy
CONFORMATION ANALYSIS
size and symmetry
possible
of the unit
limited by fiber repeat
cell
PACKING
conformations
ANALYSIS
diffraction
stereochemical^
intensities
models
reasonable
REFINEMENT
AGAINST
DIFFRACTION
DATA
|crystal and m o l e c u l a r
Figure 4.
potential energies of contact pairs
structure!
The strategy of determining the crystal and molecular structure of polymers based on model refinement
French and Gardner; Fiber Diffraction Methods ACS Symposium Series; American Chemical Society: Washington, DC, 1980.
232
FIBER
DIFFRACTION
METHODS
e n e r g y . T h i s i s t r u e e v e n f o r t h e f u n c t i o n a s w r i t t e n i n e g . Cl) w h i c h y i e l d s a n e m p i r i c a l , u n i t - l e s s v a l u e o f t h e " e n e r g y " Y. A t r u e energy can be o b t a i n e d b y s u b s t i t u t i n g proper f o r c e c o n s t a n t s f o r STD ^ u s i n g t o r s i o n a l p o t e n t i a l s f o r c o n f o r m a t i o n a n g l e s , a n d s u b s t i t u t i n g Lennard-Jones o r Buckingham p o t e n t i a l s f o r t h e quadr a t i c nonbonded t e r m . Even though such f u n c t i o n s add r i g o r t o t h e p r o c e d u r e , e x p e r i e n c e h a s shown t h a t t h e y a d d l i t t l e t o t h e r e f i n e m e n t , w h i l e i n c r e a s i n g demands f o r c o m p u t e r t i m e . The a s s u m p t i o n u n d e r l y i n g t h e p r e d i c t i o n o f a minimum-energy s t r u c t u r e , o f g i v e n n and h i s t h a t i t i s i d e n t i c a l w i t h t h e c r y s t a l s t r u c t u r e . T h i s i s g e n e r a l l y t r u e , a l t h o u g h agreement may n o t b e p r e s e n t i n a l l d e t a i l s . A t t i m e s , more t h a n one minimume n e r g y s t r u c t u r e may e x i s t . T h e r e f i n e m e n t s h o u l d , t h e r e f o r e , continue w i t h b r i n g i n g t h e c a l c u l a t e d and observed s t r u c t u r e f a c t o r a m p l i t u d e s i n t o a g r e e m e n t , a s shown i n F i g u r e k. T h i s i s done by r e f i n i n g t h e same p a r a m e t e r s o p t i m i z e d i n t h e s t e r e o c h e m i c a l refinement, except t h a t t h e c r i t e r i o n o f refinement i s the m i n i m i z a t i o n o f t h e r e s i d u a l s R = £ | | F | | - | | F | | / I | F | o r /?" = ( > ( | F | l ol) /Z l ol ' • "these e q u a t i o n s , F a n d F a r e t h e c a l c u l a t e d and observed s t r u c t u r e f a c t o r amplitudes, r e s p e c t i v e l y , and W are the weights assigned t o i n d i v i d u a l r e f l e c t i o n s . The r e s i d u a l R" i s p r e f e r r e d o v e r R, b e c a u s e i t a l l o w s t h e u s e o f r e f l e c t i o n weights. F i n a l l y , t h e r e a r e c a s e s where a c o m b i n e d r e f i n e m e n t b a s e d on s i m u l t a n e o u s m i n i m i z a t i o n o f Y a n d R" Cor R) may b e n e c e s s a r y . F o r e x a m p l e , when t h e number o f r e f l e c t i o n s i s s m a l l , p u r e x - r a y r e f i n e m e n t may i n t r o d u c e u n a c c e p t a b l e s t e r e o c h e m i c a l f e a t u r e s . T h i s i s guarded a g a i n s t by m i n i m i z i n g a l i n e a r combination o f Y and R" i n t h e f o r m o f a f u n c t i o n $ = f R " + ( l - f ) Y , where t h e f r a c t i o n a l weight / i s chosen t o b a l a n c e t h e two terms. Good r e s u l t s have b e e n o b t a i n e d w i t h / r a n g i n g f r o m 0.9 t o O.985, w h i c h u s u a l l y w e i g h t s t h e R" t e r m a t l e a s t e q u a l l y w i t h t h e Y t e r m . The m o d e l d e s c r i p t i o n a n d r e f i n e m e n t b a s e d o n t h e virtual bond method n e e d n o t b e r e s t r i c t e d t o a s i n g l e monomer r e s i d u e . Any number may b e u s e d , w i t h o n l y one virtual bond n e e d e d t o s p a n a l l of theresidues. 0
9
Downloaded by UNIV OF NEW SOUTH WALES on April 16, 2016 | http://pubs.acs.org Publication Date: November 17, 1980 | doi: 10.1021/bk-1980-0141.ch013
3
F
w
F
J
C
I
O
q
C
n
c
Q
Method o f C o n s t r a i n e d O p t i m i z a t i o n The c o n s t r a i n e d o p t i m i z a t i o n p r o c e d u r e , o r i g i n a l l y d e v e l o p e d f r o m t h e s i m p l e x method a n d f i r s t d e s c r i b e d b y Box, i s i d e a l l y s u i t e d t o m o d e l r e f i n e m e n t C8). I t i s a s e a r c h method t h a t s e a r c h es f o r t h e minimum o f a m u l t i d i m e n s i o n a l f u n c t i o n w i t h i n g i v e n i n tervals. I t p o s s e s s e s a l l t h e a d v a n t a g e s o f s e a r c h m e t h o d s , among them t h a t c a l c u l a t i o n o f d e r i v a t i v e s i s n o t n e c e s s a r y , a t e s t t o assure t h e independence o f v a r i a b l e s can be o m i t t e d , and d i v e r s e v a r i a b l e s c a n be e a s i l y i n c l u d e d . These a r e e x a c t l y t h e r e q u i r e ments o f m o d e l r e f i n e m e n t where b o n d l e n g t h s , b o n d a n g l e s , t o r s i o n a n g l e s , and o t h e r parameters a r e used w i t h i n e x p e r i m e n t a l l y defined limits.
French and Gardner; Fiber Diffraction Methods ACS Symposium Series; American Chemical Society: Washington, DC, 1980.
13.
ZUGENMAIER
Variable Virtual Bond
A N D SARKO
233
The p r i n c i p l e s o f t h e method c a n b e u n d e r s t o o d w i t h t h e h e l p o f F i g u r e 5. The minimum o f a f u n c t i o n Fix) i s d e t e r m i n e d w i t h i n the l i m i t s and # . The v a r i a b l e x r e p r e s e n t s a s e t o f n v a r i a b l e s (x^_ ) t o which a d d i t i o n a l c o n s t r a i n t s other t h a n t h e l i m i t s may a p p l y . F o r i n s t a n c e , X]_ may b e one p o i n t f u l f i l l i n g a l l t h e c o n d i t i o n s , t h u s F(x±) i s t h e v a l u e o f t h i s f u n c tion at A d d i t i o n a l k p o i n t s (#2* 2* •••> ^ k ) generated i n a random manner w i t h i n t h e g i v e n l i m i t s a n d t h e v a l u e s o f t h e f u n c t i o n F(x2)> FCx^) a r e c a l c u l a t e d . The l a r g e s t f u n c t i o n v a l u e , F(x±) i n F i g u r e 5, i s r e p l a c e d b y a new F(x^) f o r a t r i a l p o i n t w h i c h i s a t x + a[x -x±), where x i s t h e c e n t r o i d o f t h e r e m a i n i n g p o i n t s ( a good v a l u e f o r a i s 1 . 3 ) . I f t h i s t r i a l p o i n t r e p r e s e n t s no i m p r o v e m e n t , i t i s moved h a l f w a y t o w a r d s t h e c e n t r o i d t o g i v e a new t r i a l p o i n t xj_. The p r o c e d u r e i s t h e n r e p e a t ed. I f t h e t r i a l p o i n t i s r e f l e c t e d o u t s i d e an i n t e r v a l l i m i t , i t is reset t ojust the inside ofthe l i m i t . As long as t h e p o i n t s h a v e n o t c o l l a p s e d i n t o t h e minimum, t h e p r o c e d u r e i s r e p e a t e d with a l l points i n turn. The u s e o f k > n+1 p o i n t s e n s u r e s t h a t t h e c o m p l e x does n o t c o l l a p s e i n t o a subspace. F a l s e minima a r e n o r m a l l y e l i m i n a t e d t h r o u g h t h e p r o c e d u r e o f r e f l e c t i n g a p o i n t about t h e c e n t r o i d , and b e c a u s e t h e s e t o f p o i n t s i s d i s t r i b u t e d o v e r t h e w h o l e i n t e r val. I f a f a l s e minimum p r e s e n t s p a r t i c u l a r d i f f i c u l t i e s , i t c a n u s u a l l y be e l i m i n a t e d b y r e p e a t i n g t h e o p t i m i z a t i o n w i t h d i f f e r e n t sets o ft r i a l points. In terms o f t h e refinement i l l u s t r a t e d h e r e , t h e f u n c t i o n Y i s t h e f u n c t i o n F(x). The f i r s t p o i n t , Xj_, i s r e p r e s e n t e d b y a l l v a r i a b l e bond l e n g t h s , bond a n g l e s , c o n f o r m a t i o n a n g l e s , c h a i n p o s i t i o n parameters, coordinates o f t h e solvent o f c r y s t a l l i z a t i o n , etc., o f t h e i n i t i a l m o d e l . A l l o t h e r p o i n t s #2, •••» ^ k * r e p r e s e n t t r i a l v a l u e s f o r t h e same n v a r i a b l e s w i t h i n t h e d e s i r e d i n t e r v a l l i m i t s and s u b j e c t t o any o t h e r c o n s t r a i n t s , such as coupl i n g o f v a r i a b l e s o r hydrogen bond f o r m a t i o n . C l e a r l y , t h e number and t y p e o f v a r i a b l e s , a n d t h e i r l i m i t s a n d c o n s t r a i n t s a r e e a s i l y c h a n g e d i n t h i s p r o c e d u r e , a s i s t h e f o r m o f t h e f u n c t i o n . The s e a r c h p r o c e d u r e i s a l s o r e l a t i v e l y r a p i d a n d does n o t s u f f e r f r o m a slowdown i n t h e v i c i n i t y o f t h e minimum, a s may o c c u r i n s t e e p e s t - d e s c e n t methods. m a x
9
x
Downloaded by UNIV OF NEW SOUTH WALES on April 16, 2016 | http://pubs.acs.org Publication Date: November 17, 1980 | doi: 10.1021/bk-1980-0141.ch013
s
The
s
a
r
e
s
"PS79" Computer P r o g r a m
The m o d e l r e f i n e m e n t p r o c e d u r e s d e s c r i b e d i n t h e p r e v i o u s s e c t i o n s have b e e n a s s e m b l e d , o v e r a p e r i o d o f y e a r s 0+> £ , 1 0 ) , i n t o a c o m p u t e r p r o g r a m , known a s "PS79" i n i t s c u r r e n t v e r s i o n . A l t h o u g h t h e p r o g r a m was p r i n c i p a l l y d e v e l o p e d f o r u s e w i t h p o l y saccharide c r y s t a l s t r u c t u r e s , i t i s equally applicable t o other polymers. I t can b e used t o r e f i n e a model w i t h r e s p e c t t o s t e r e o c h e m i s t r y o n l y , u s i n g e q . (l)» o r w i t h r e s p e c t t o d i f f r a c t i o n d a t a only, using the residuals R o rR o r as a combination o f t h e two, u s i n g t h e f u n c t i o n $. I n a d d i t i o n , t h e r e f i n e m e n t s t r a t e g y c a n b e u
9
French and Gardner; Fiber Diffraction Methods ACS Symposium Series; American Chemical Society: Washington, DC, 1980.
Downloaded by UNIV OF NEW SOUTH WALES on April 16, 2016 | http://pubs.acs.org Publication Date: November 17, 1980 | doi: 10.1021/bk-1980-0141.ch013
234 FIBER DIFFRACTION
French and Gardner; Fiber Diffraction Methods ACS Symposium Series; American Chemical Society: Washington, DC, 1980.
METHODS
Downloaded by UNIV OF NEW SOUTH WALES on April 16, 2016 | http://pubs.acs.org Publication Date: November 17, 1980 | doi: 10.1021/bk-1980-0141.ch013
13.
ZUGENMAIER
A N D SARKO
Variable Virtual Bond
235
very f l e x i b l e . F o r example, o n l y the c h a i n conformation c a n be r e f i n e d b y o m i t t i n g a l l i n t e r m o l e c u l a r c o n t a c t s f r o m t h e nonbonded t e r m o f eq. ( l ) . I n s u c h c a s e s , t h e r a n g e o f v a r i a b l e s c o u l d e x t e n d f r o m a s i n g l e one o f r o t a t i o n o f t h e r e s i d u e a b o u t t h e virtual bond t o a l l b o n d l e n g t h s , v a l e n c e - b o n d a n g l e s , a n d c o n f o r m a t i o n a n g l e s o f t h e monomer r e s i d u e . C o n v e r s e l y , o n l y t h e c h a i n packing i n t h e u n i t c e l l c o u l d be r e f i n e d b y completely e l i m i n a t i n g t h e f i r s t t e r m o f eq. Cl)» a n d u s i n g o n l y i n t e r m o l e c u l a r n o n bonded c o n t a c t s i n t h e second term. A d d i t i o n a l l y , any d e s i r e d combination o f the p r e v i o u s extremes c o u l d be used, extending t o t h e c a s e where a l l c o n f o r m a t i o n a l a n d p a c k i n g v a r i a b l e s a r e s i m u l t a n e o u s l y r e f i n e d . The same a p p l i e s r e g a r d l e s s o f w h e t h e r t h e r e f i n e m e n t c r i t e r i o n i s Y, R" ( o r i ? ) , o r $. The i n i t i a l d e s c r i p t i o n o f t h e m o d e l i s s i m p l e , a s shown i n F i g u r e 3. The a t o m i c c o o r d i n a t e s o f a n y s u i t a b l e s t r u c t u r e c a n s e r v e a s t h e i n p u t t r i a l s t r u c t u r e , e v e n i n c l u d i n g a wrong monomer r e s i d u e . The p o l a r c o o r d i n a t e s a r e c a l c u l a t e d from t h e t r i a l s t r u c t u r e , a d j u s t e d and m o d i f i e d as necessary, and then s u b j e c t e d to refinement i n accordance w i t h the s e l e c t e d l i s t o f v a r i a b l e s , l i m i t s a n d c o n s t r a i n t s . A n y s e t o f s t a n d a r d v a l u e s a n d nonbonded p o t e n t i a l f u n c t i o n p a r a m e t e r s c a n b e u s e d . H y d r o g e n bonds c a n be d e f i n e d a s d e s i r e d , v a r i a b l e s c a n b e c o u p l e d , a n d t h e p o s i t i o n s o f s o l v e n t molecules c a n be i n d i v i d u a l l y r e f i n e d . S i n g l e and mult i p l e h e l i c e s a r e e q u a l l y e a s i l y handled, as a r e a v a r i e t y o f space groups. The c a l c u l a t i o n c a n b e t e r m i n a t e d when: Ca) t h e minimum o f t h e f u n c t i o n does n o t i m p r o v e w i t h i n a g i v e n a c c u r a c y , Cb) a c e r t a i n t i m e h a s e l a p s e d , Cc) t h e number o f d e s i r e d i t e r a t i o n s i s e x c e e d e d , o r Cd) when no improvement i s o b t a i n e d a f t e r 20 c a l c u l a t i o n a l s t e p s . The p r o g r a m p r o v i d e s v a r i e d o u t p u t , i n c l u d i n g c o o r d i n a t e s w r i t t e n on f i l e t h a t c a n b e used a s i n p u t t o s u c c e e d i n g runs. The "PST9 p r o g r a m i s c u r r e n t l y i n o p e r a t i o n o n s e v e r a l m a j o r c o m p u t e r s - IBM 370 s e r i e s , UNIVAC 1100 s e r i e s , CDC 6000 s e r i e s , and DEC-10 - a n d i n t h e m a j o r i t y o f c a s e s r e f i n e m e n t r u n s c a n b e completed w i t h i n t h e f a s t turnaround job l i m i t a t i o n s o f i n d i v i d u a l s h o p s . U s u a l l y , o n l y t h e f i n a l x - r a y r u n s w i l l demand more t i m e . ,f
Conclusions S i n c e i t s i n t r o d u c t i o n s e v e r a l y e a r s ago, t h e virtual bond c o n s t r a i n e d o p t i m i z a t i o n method h a s p r o v e d v e r y u s e f u l i n s t u d i e s o f p o l y s a c c h a r i d e c r y s t a l s t r u c t u r e . N o t a b l e among t h e s u c c e s s e s t h a t can be a s c r i b e d t o i t a r e t h e s t r u c t u r a l determinations o f the d o u b l e - h e l i c a l amylose Cll)» t h e c e l l u l o s e polymorphs o f d i f f e r e n t c h a i n p o l a r i t i e s C l 2 , 1 3 ) , a n d o f a number o f o t h e r p o l y s a c c h a r i d e s and t h e i r d e r i v a t i v e s . As d e s c r i b e d i n a review o f amylose s t r u c t u r e s elsewhere i n t h i s volume, t h e use o f t h i s r e f i n e m e n t method h a s p r o d u c e d s t r u c t u r a l d e t a i l t h a t h a s p r e v i o u s l y b e e n u n a v a i l a b l e C l l ) . T h e s e r e s u l t s have p r o v i d e d much-needed 9
French and Gardner; Fiber Diffraction Methods ACS Symposium Series; American Chemical Society: Washington, DC, 1980.
Downloaded by UNIV OF NEW SOUTH WALES on April 16, 2016 | http://pubs.acs.org Publication Date: November 17, 1980 | doi: 10.1021/bk-1980-0141.ch013
236
FIBER DIFFRACTION
METHODS
i n s i g h t i n t o how p o l y s a c c h a r i d e s c r y s t a l l i z e , and i n t o s u c h a s p e c t s o f s t r u c t u r e as symmetry, r e l a t i o n s h i p s b e t w e e n h e l i x c o n f o r m a t i o n and p a c k i n g , h y d r o g e n - b o n d i n g , w a t e r and o t h e r s o l v e n t s o f c r y s t a l l i z a t i o n , and e f f e c t s o f c h e m i c a l s u b s t i t u t i o n on t h e s t r u c t u r e . An a d d e d b e n e f i t has b e e n t h e r e a l i z a t i o n t h a t t h e c r y s t a l s t r u c t u r e c a n i n many i n s t a n c e s be p r e d i c t e d f r o m t h e stereochemistry alone. As i s t o be e x p e c t e d , t h i s o p t i m i z a t i o n method p o s s e s s e s b o t h some a d v a n t a g e s and d i s a d v a n t a g e s . Among t h e a d v a n t a g e s a r e : ( l ) M o l e c u l a r m o d e l s a r e g e n e r a t e d and r e f i n e d w i t h i n d e s i r e d l i m i t s o f b o n d l e n g t h s , b o n d a n g l e s and t o r s i o n a n g l e s . ( 2 ) The g e n e r a t i o n o f m o d e l s i s s i m p l e and f l e x i b l e , and i s a p p l i c a b l e t o d i f f e r e n t polymers. ( 3 ) Virtual bonds c a n be u s e d t o d e s c r i b e one o r more monomer r e s i d u e s , o r e v e n atoms i n a b r a n c h s t r i n g . F o r exa m p l e , t h e p l a n a r i t y o f an a c e t y l g r o u p - 0 - C ( A ) - C C M ) - H ^ c a n be k e p t i n t a c t b y p l a c i n g t h e atoms i n t h e f o l l o w i n g s t r i n g : 0 -•C(A) •> 0 ( A ) •> C ( M ) -> H and b y k e e p i n g a l l d i s t a n c e s b e t w e e n t h e atoms and a l l c o n f o r m a t i o n a n g l e s r e s p o n s i b l e f o r p l a n a r i t y c o n s t a n t . (k) The c o n s t r a i n e d o p t i m i z a t i o n p r o c e d u r e i s f a s t , as l o n g a s t h e c a l c u l a t i o n of the function i s f a s t . T h i s i s t r u e f o r b o t h conf o r m a t i o n and p a c k i n g r e f i n e m e n t u s i n g e q . t l \ e v e n w i t h a l a r g e number o f v a r i a b l e s . ( 5 ) V a r i a b l e s and c o n s t r a i n t s c a n be c h o s e n a t w i l l , w i t h o u t r e g a r d t o t h e i r number o r t y p e . Among t h e c h i e f d i s a d v a n t a g e s i s t h e f a c t t h a t when t h e c a l c u l a t i o n of the f u n c t i o n i s slow, the refinement proceeds s l o w l y . F o r i n s t a n c e , i n x - r a y r e f i n e m e n t t h e c o m p u t a t i o n o f i ? " ( o r R) i s l e n g t h y , p a r t i c u l a r l y when t h e number o f r e f l e c t i o n s and t h e numb e r o f v a r i a b l e s a r e b o t h l a r g e . T h i s disadvantage i s , however, n o t s e r i o u s as t h e i n c r e a s e d demand on c o m p u t e r t i m e i s s t i l l w i t h i n r e a s o n a b l e l i m i t s e s t a b l i s h e d b y most c o m p u t e r s h o p s . A more s e r i o u s l i m i t a t i o n p l a c e d on t h i s method may o c c u r when t h e d i f f r a c t i o n d a t a a r e p o o r . F o r example, a c o r r e c t u n i t c e l l i s a n e c e s s a r y p r e r e q u i s i t e f o r any r e f i n e m e n t , y e t i n many c a s e s i t s d e t e r m i n a t i o n f r o m f i b e r x - r a y d a t a may be q u e s t i o n a b l e . T h i s l i m i t a t i o n may be a v o i d e d b y o b t a i n i n g g o o d e l e c t r o n d i f f r a c t i o n diagrams from polymer s i n g l e c r y s t a l s . Similar limitations a r i s e f r o m an i n a b i l i t y t o r e c o r d d i f f r a c t i o n i n t e n s i t i e s c o r r e c t l y , r e s u l t i n g i n p o o r agreement o f x - r a y and s t e r e o c h e m i c a l r e f i n e m e n t s . However, as d e s c r i b e d b y o t h e r a u t h o r s i n t h i s v o l u m e , t w o - d i m e n s i o n a l r e c o r d i n g t e c h n i q u e s h o l d o u t a g r e a t d e a l o f hope f o r improving the q u a l i t y of the i n t e n s i t y data. With t h i s imp r o v e m e n t , t h e s t r u c t u r e a n a l y s i s o f c r y s t a l l i n e p o l y m e r s may y e t approach the r e l i a b i l i t y of s i n g l e - c r y s t a l s t r u c t u r e determinations. 9
Acknowledgment s T h i s w o r k has b e e n s u p p o r t e d b y N a t i o n a l S c i e n c e F o u n d a t i o n g r a n t CHETT2T7U9 ( t o A.S.) a n d a g r a n t f r o m D e u t c h e F o r s c h u n g s -
French and Gardner; Fiber Diffraction Methods ACS Symposium Series; American Chemical Society: Washington, DC, 1980.
13.
ZUGENMAIER AND SARKO
Variable Virtual Bond
237
gemeinschaft ( t o P.Z.). C o o p e r a t i v e e f f o r t s o f t h i s work have a l s o b e e n s u p p o r t e d b y a NATO R e s e a r c h G r a n t No. 1386, t o b o t h authors.
Literature Cited
Downloaded by UNIV OF NEW SOUTH WALES on April 16, 2016 | http://pubs.acs.org Publication Date: November 17, 1980 | doi: 10.1021/bk-1980-0141.ch013
1. 2. 3. 4. 5.
6. 7. 8. 9. 10. 11. 12. 13.
Sarko, A . ; Marchessault, R.H., J. Amer. Chem. Soc., 1970, 89, 6454-6462. Kitaigorodskii, A.I., Acta Crystallogr., 1965, 18, 585-590. Williams, D.E., Science, 1965, 147, 605. Zugenmaier, P . ; Sarko, A . , Biopolymers, 1976, 15, 2121-2136. Zugenmaier, P . ; Kuppel, A . ; Husemann, E . , in "Cellulose Chemistry and Technology", J.C. Arthur, Jr., Ed. ACS Symposium Series No. 48, American Chemical Society: Washington, D.C., 1977, pp. 115-132. Arnott, S.; Scott, W.E., J. Chem. Soc. Perkin Trans. 2, 1972, 324-335. Zugenmaier, P . ; Sarko, A . , Acta Crystallogr., 1972, B28, 31583166. Box, M . J . , Comput. J., 1965, 8, 42-52. Zugenmaier, P . ; Sarko, A . , Biopolymers, 1973, 12, 435-444. Zugenmaier, P . , Biopolymers, 1974, 13, 1127-1139. Sarko, A . ; Zugenmaier, P . , This symposium. Sarko, A . , Tappi, 1978, 61, 59-61. Woodcock, C.; Sarko, A . , Macromolecules, to be published.
RECEIVED
February 19, 1980.
French and Gardner; Fiber Diffraction Methods ACS Symposium Series; American Chemical Society: Washington, DC, 1980.