Thermal analysis - American Chemical Society

Due to the large number of articles on thermal analysis during the past 2 years, this review could easily be increased. 10-fold. However, by a subject...
22 downloads 0 Views 3MB Size
Anal. Chem. 1884, 56,250R-261 R (193) Statham, P. J. X-Ray Spectrom. 1976, 5 (3),154-168. (194) Duemecke, G.;Hoeppner, K. 2. Chem. 1982, 22 (2),47-48. (195) Tam, 6.K. H.; Lacrolx, G. Anal. Lett. 1982, 15 (A17)1373-1382. (196) Forte, M. X-Ray Spectrom. 1983, 72 (3),115-117. (197) Fukaml, M.; Nagawa, M.; Suzukl, M.; Yamazaki, S.; Toda, S.Spectrochlm. Acta, Part B , Suppl. 1983, 388,399. (198)The Committee of Iron and Steel Standard Samples X-Ray Spectrom. 1982, I7 (I),36-39. (199) Small, J. A.; Norrls, J. A,; McKenzie, R. L. Proc., Annu. Conf.Mlcrobeam Anal. SOC. 1983. IBth, 209-210. (200) de Bruyn, W. C. Scanning Electron Mlcrosc. 1981, 11, 357-367. (201) Van Grieken, R. Anal. Chlm. Acta 1982, 743, 3-34. (202) Mlnczewskl, J.; Chwastowska, J.; Dybczynski, R. "Separation and P r a concentration methods in Inorganic Trace Analysis"; Wlley: New York,

1982.

(203) Mizulke, A. "Enrichment Techniques for Inorganic Trace Analysis"; Springer-Verlag: New York, 1983. (204) Ellis, A. T.; Leyden, D. E.; Wegscheider, W.; Jablonskl, B. B.; Bodnar, W. B. Anal. Chim. Acta 1982, 742, 73-87. (205) Ellis, A. T.; Leyden, D. E.; Wegscheider, W.; Jablonski, B. B.; Bodnar, W. E. Anal. Chlm. Acta 1982, 74Z9 89-100. (206) Tschopel, P.; Tolg, G. J . Trace Mlcroprobe Tech. 1982, 7 (I),1-77. (207) Zolotov, Yu. A.; Kyzmln, N. M. "Enrichment of Mikroelements (in Russian)"; Khlmia: Moscow, 1982. (208) BanerJee,S.; Olsen, 8. G.; Hess, M. K. X-Ray Spectrom. 1982, 7 7 (l), 25-28. (209) Lee, R. F.; McConchie, D. M. X-Ray Spectrom. 1982, 7 7 (2),55-63. (210) Van Zyl, C. X-Ray Spectrom. 1982, 7 7 (I),29-31. (211) Fraser, H. L.; McCarthy, J. P. Proc., Annu. Conf.-Mlcrobeam Anal. SOC. 1982, 77th, 93-96.

Thermal Analysis W. W. Wendlandt Department of Chemistry, University of Houston, Houston, Texas 77004

Due to the large number of articles on thermal analysis during the past 2 years, this review could easily be increased 10-fold. However, by a subjective selective process, representative papers on the diverse applications of the technique to almost every science area from archaeology to zoology and subject matter from alabaster to zeolites were chosen. A somewhat different organization is used in this review in that because of the large number of TG, DSC, and DTA papers, this section is divided into the subject matter areas oi biological, or anic, inorganic materials, and so on. The other lesser usef techniques are included as in the past under the titles of EGA, electrical, thermomechanical methods, and others. Since reviews of thermal analysis techniques and their applications play such an important role, they are included in each methodology section. As in past reviews, a 2-year period of the literature was chosen, from about December 1, 1981, to about December 1, 1983, in Chemical Abstracts. What trends are readily apparent in thermal analysis during the past 2 years? Perhaps the premier trend is the diverse applications of the techniques to practically all of the fields of science and to almost every element, compound, and mixture. Many of the applications are surprising and a few are very exciting, even for this writer who has been involved in thermal analysis for 30 years. Another trend has been the lack of laboratory assembled apparatus, due perhaps to the wide availability of commercial equipment. However, it is disappointing to this writer to see that relatively few new thermal analysis techniques were introduced. Some that are called 'hew" are merely august clothing of old existing techniques. Few new developments were found in commercial instrumentation as well, although computer data reduction techniques are appearing in ever increasin numbers. However, sophisticated data reduction metho s do not improve the quality of thermal analysis data taken on 20 year old designed systems. It is still impossible to purchase a commercial instrument which employs automatic sample changing and control as well as automatic data reduction, a development which has existed in the literature for about 15 years.

d

THERMOGRAVIMETRY, DIFFERENTIAL THERMAL ANALYSIS, AND DIFFERENTIAL SCANNING CALORIMETRY Biological Materials. DTA was used to study the spontaneous combustion of cotton cellulose in flowing air (75). The spontaneous ignition temperature (Ti)is a function of sample weight, air flow rate, and heating rate. Under static air condition, staple cotton showed an exothermic thermooxidative transition with a maximum at 341 "C followed by an endothermic peak at 360 "C (74). The oxidative pyrolysis of wood, occurring in a two-step reaction at temperature lo0 commercial solid pharmaceuticalswas carried out by DTA, DSC, and TG (382). The main factor affecting identification and determination of the active ingredient is the vehicle content and the number of its components. The second factor is the chemical composition, type, and content of the decomposition products of the active ingredients. Heptacaine-HC1 contained a sharp melting point of 125 "C in the DTA curve with a maximum mass-loss at the melting point of 1mg m i d (62).No melting processes were identified in the TG, DTG, and DSC curves of a series of sodium salts of cephalosporins (55). Solid dispersions of ketoprofen (IX) and urea were analyzed by DTA and the thaw-melt technique (298). The phase diagram showed that ANALYTICAL CHEMISTRY, VOL. 56, NO. 5, APRIL 1984

253R

THERMAL ANALYSIS

phcoxY CHMeC02H

sulfoxide groups at well-defined decompositiontemperatures (140). The effect of energetic additives such as NH4C104and others on the thermal stability of polyacetals, aliphatic and aromatic polyesters, and polyamides was investigated by isothermal and dynamic TG in nitrogen and air atmospheres IX (344). TG data for poly(viny1 fluoride) at 293-773 K showed this system was a simple eutectic mixture with a eutectic that the thermal stability increased with increasing molecular composition of 90% IX and 10% urea. The thermal stability weight (98). An increase from 935 400 to 2 145000 increased of cyanocobalamin (X), hydroxocobalamin (XI), and cobinthe initial oxidative degradation temperature from 474 to 510 amide (XII) was examined by TG, DTG, and DTA, using the K. PMMA has two weight-loss rate peaks in the DTG curves derivatograph (125). Water is removed from X and XI up in air or nitrogen at heating rates of 10-50 "C min-l(Z65). TG to 140 "C, and up to 120 "C for XII, and the cyanide ligand was used to characterize the thermally stable polyimides is thermally removed from X at 140-145 "C and at -120 "C containing metal phthalocyanine units prepared from metin the case of XII. Kinetic parameters showed that water al(II1) 4,4',4",4"'-phthalocyaninetetraamines, 4,4'-diaminoremoval from X is a zero-order reaction with E, of 26.7 kcal diphenyl ether, and 3,3',4,4'-benzophenonetetracarboxylic mol-'. These findings were useful for estimating the shelf-life dianhydride (3). The thermal stability of PVC increased with of a vitamin Biz preparation. increasing molecular weight, both for commercial and fracPolymeric Materials. Thermal analysis (TG, DTA, DSC) tionated samples, as determined by TG (169). When polytechniques can be developed into quick lifetime prediction propylene was pyrolyzed rapidly from room temperature to methods for polymers if care is taken to apply a broad 500 "C in -30 s, more low-molecular weight products were knowledge of the characterization of the material (108). Some obtained than those formed in pyrolysis at 10 "C min-' (153). polymers can sensitize explosives in impact situations (104). TG data showed that the primary determinant for fabric The effect is primarily a mechanical one with production of ignition is the rate of heat input during thermal decomposition free radicals by the polymer only of secondary importance. (244). A conventional thermobalance was used to monitor the Chemical effects were assessed by using TG. behavior of fabrics or yarns brought to ignition by exposure (BuOCOCH~NHC~~(CH~)~C:CC:C(CH~)~OCONHCH~Cto preheated air (245). An improved Ozawa method was presented for determining kinetic parameters for atactic po02Bu), was studied by DSC and displayed two color transitions corresponding to the two endotherms: metallic-to-red lyprophylene and isotatic poiyprophyene by analyzing their TG data (187). A TG-GC-MS study indicated that the at -420 K and red-to-yellow at -450 K. DTA of XI11 (R thermal decomposition of most po1y(C1.8alkyl methacrylates) proceed by depolymerization (188). As the alkyl substituent increases in size, the initiation temperature of depolymerization lowers and approaches the lowest temperature of -480 XI11 K. The effectiveness of five antioxidants in polyethylene was determined by isothermal DTA as a function of structure and = H, PhCH2CH2MeSiCH,CH,) indicated an exothermic reconcentration (202). A linear relation was obtained by plotting action at 116,60, and 75 "C, respectively, with no weight loss, induction period (at 210 "C) vs. antioxidant concentration. to form the polymer, (XIV) (273). The thermal isomerization The use of TG was illustrated with examples of polymer for aerospace applications (76). Factor-jump TG was used to study the degradation of polyethylene in both linear and branched form in the temperature range of 410-475 "C. In vacuo, the rate of weight loss was erratic due to bubbling in the sample (79). TG, DTA, and DSC data showed that decomposition of poly(methy1 methacrylate) was characterized by low thermal stability and a chain unzipping mechanism (156). Polypropylene shows intermediate stability with ranXIV dom chain scission, and poly(ethy1eneterephthalate) shows the highest thermal stability. The vacuum-thermal behavior of cis and trans bicyclic sulfanium halides (XV, XVI; X = I, of a series of perfluoroalkyl- and perfluoroalkyl ether-subBr) was studied by DTA and other methods (247). The stituted bibenzocazole rubber having repeating units with the general structure of XVIII (Zl, Z2 = perfluorocarbon or per-

xv

XVI

polymerization of dimethylolethyleneurea in the presence of metallic salt catalysts was studied by TG, DSC, and IR techniques (238). In most cases the DSC curves showed two distinct endothermic peaks with one peak below 100 "C and the other above 120 "C. DTA was used to study the isothermal bulk polymerization of N-vinylcarbazole in the temperature range of 200-250 "C (177). DSC can be employed to distinguish (by AH) batch-to-batch variations and to characterize the photoreaction of photoresists (11). The mechanism of the thermal degradation of poly[pphenylenebis(dimethylsilanol] was studied by TG (148). Degradation occurs at the SiPh bonds. A TG study of six cyclophane bis(su1foxides) (XVII) showed that thermal de-

I

Me3014

xv I1 composition occurs in two stages with stepwise loss of the 254R

ANALYTICAL CHEMISTRY, VOL. 56, NO. 5, APRIL 1984

XVIII fluorocarbon ether) were studied by using TG and EGA (163). The thermal decomposition and TG of polyisobutyleneswas studied by DSC (230). In the isothermal decomposition of this compound, weight loss (a)was independent of molecular weight. The thermal properties and transition temperatures were determined by DSC for polyesters, [-0zC-1,4-C6H40( C ~ ~ ) , O - 1 , 4 - C ~ H ~ C 0 ~ - 1 , 4 - ~ ~ ~ ~ ~(X~=~ ~ H ~ ) ~ - l ,

2-10, 12; y = 6, 8,lO) (127). The highest temperature transition in all cases was a broad peak-and it corresponded to the transition of a liquid crystal phase to an isotropic phase. DSC and other techniques confirmed that poly(p-methoxyphenyl p-methacryloyloxyethoxybenzoate) did not form a nematic mixture alone or with mixtures of other nematic substances (69). Derivatographic data can be used to characterize flame retardation processes in solids; both solid-liquid and gas-liquid transitions can be studied (321). The evolution of acid fumes from flame-retardant thermoplastics such as glass-filled nylon 66, during injection molding, was determined by TG (99). The melting behavior of poly(viny1idene chloride) (2151, polyamide fibers (183), and y-form nylon 6 under high pressure (142) was studied by DSC. An experimental method

THERMAL ANALYSIS

to characterize strained pol (ethylene terephthalate) sam les by DSC was established 603). The reliability of D S 8 in determining rate constants of crystallization depends on the sensitivity of the instrument, sample size, and the heat evolution during crystallization (6). The effect of carrier gas on the rate of crystallization of isotactic poly ropylene was determined by isothermal DSC (390)) whi e a Tektronic-31 calculator interfaced to a DSC substantially improved the accuracy of degree of crystallinity determinations (137). The specific heats of polypropylene,polystyrene, nylon 66, PTFE, and FEP were determined by DSC a t 300-360 K (362). Reaction Kinetics. The possibility of determining the index n of the Avrami-Erofeev equation

P

-In (1- a ) = (Kt)" where a is the fraction transformed in time t and K is the rate constant, from nonisothermal DSC or DTA, has been discussed (68). The Avrami-Erofeev index can easily be obtained from a Piloyan plot if E, is known. The E, for thermal decomposition reactions that follow first-order kinetics can be determined in a simple manner from DDTA curves (236). A method was presented for the rapid determination of the growth morphologies of glass-forming materials using DTA or DSC (134). Chemical kinetics subroutines were developed for isothermal and nonisothermal DSC and for DTA by digitizing analog outputs (367). A computer program was written for calculating the activation parameters for two consecutive reactions of the type, reactant(s) intermediate products, from DTA curves (9). An analysis of the final part of the curve allows arameters for the second reaction to be estimated. The DS8 results for the E, of decomposition of 2,2'-azobis(isobutyronitri1e) by the Kissinger, Ozawa, and ASTM-E698 methods were 25% lower than the kinetic results reported by classical techniques, yet the single dynamic temperature scan method results were within 2% of the classical methods (284). A comparison of isothermal reaction kinetics with single dynamic scan temperature scan reaction kinetics for the reaction of phenylglyidyl ether with 2-ethyl-4methylimidazole indicated that the isothermal method grossly underestimated the total heat of reaction while providing lower values of E, and Arrhenius frequency factor. The single dynamic temperature scan method was used to provide reaction kinetics information for curing some coatings system. The effects of sample mass and partial size on the determination of kinetic parameters by the Ozawa and Kissinger methods for DSC were studied with factorial design (355). The Kissinger method did not have practical advantages over the Ozawa method. In a similar manner, the effects of mass, heating rate, and particle size on the determination of reaction order, E,, and preexponential factor using the Freeman and Carroll method in DSC were studied by fadorial designs (356). DTA of the thermal decomposition of CoOOH heated in dry nitrogen at 3 and 6 "C min- to temperatures >250 "C showed that the decomposition is two steps, with E, values of Eal = 132 and Ea2= 68-72 kJ mol-l, respectively (16). The comparability of TG data under different circumstances on various thermobalances was studied by using CaCO, as a model substance (363). The congruency of different measurements was proved by shiftin and turning the coordinate axes of In [(da/dt)/l - a)]vs. 172' plots. For two TG runs at different heating rates (RH) and the same degree of conversion ( a ) , Brown and Philpotts showed that the equation (295)

-

-

(limits 0 to T where T is the absolute temperature, A is the frequency factor, and x = E/RT and denoting the right hand side as 2) can be written as

mining the reaction order and E, from TG curves (146). The method makes use of equations to represent the temperature integrals which are derived by using numerical relations of E,, T, and empirical constants. A computer program was derived to supplement a previous graphical analytical method for determining the solid-state reaction mechanism and to afford a more quantitative analysis of TG data (294). A simplified Zsako method has been described in which the calculation of 6 involves using three or four -log p ( x ) values and eliminates the calculation of (6min is the minimum value of 6 which identifies the correct mechanism and p ( x ) is the time-dependent dissociation parameter of the solid reactant) (281). The rate of weight loss of polystyrene during pyrolysis follows first-order kinetics, but the decrease in rate of mass loss as the mass of active material remaining decreases is compensated by an increase in the number of chain ends in the sample, due to random scission reactions (49). Form indexes for DTA or TG (ST or S,) must be treated separately (8). Only for S, can clear relations be developed for the order of reaction n. In the rational range of n between 0.5 and 3.0 for linear, exponential, and h perbolic programs, these functions are of the type, S, = ano.P + b. With TG and DSC, linear equations of n order, phase-boundary, nucleation growth, and diffusion-controlled reaction under linear heating conditions were derived for the estimation of the rate constant and E , (239). Starting from the expression for the reaction rate under nonisothermal conditions, a method was defined for the determination of kinetic parameters from data available from DTA and TG curves with the application of a computer (41). Equations were derived for determining the kinetic parameters (2, E,, and n) and heat of reaction, m, with respect to the consecutive thermal decomposition of a solid using simultaneous TG-DTA techniques (15 4 ) . The difference between the actual and measured temperatures of the sample distorts the estimated values of the kinetic parameters. This distortion was analyzed in the instances of simple parameter estimation methods (364). Reviews. Numerous reviews were published on thermal analysis applications and uses. Included are the following: kinetics (107); quasi-isothermal methods (328); modern methods (241); clay studies (223); rubber industry (43); instrumental developments (379);analytical applications (224); problems, techniques, and trends (242); solid-state chemistry (14);pharmaceutical industry (132,133); electrical insulators (32);soils (225);boiler scale (330);polymers (48,279,314,280); biological substances (38,37); catalysis (213);point technology (248);foundries (191);aerospace technology (165); chromium compounds (206); food macromolecules (333);fire prevention technology (371);and analytical apparatus and techniques and their use in various areas (378). Reviews on the application of DTA and/or DSC to various problems include mineralogy (327), macromolecules and membranes (221))plastic films (354))prediction of drug-excipient interactions (326))reproducibility of thermoanalytical studies (199),drug properties (46), polymers (229))production of inorganic substances (with electrical conductivity) (47)) reactivity measurements of solids (152), and biology and biochemistry (111, 110). Other reviews include use of thermal analysis in studying catalysts and the chemisorption protein (83))DSC for determining the state of proteins, lipids, carbohydrates, and moisture in foods (39),characterics of frozen biological tissues and thermal behavior of water in frozen food (328),thermal properties of starch gelatinization (317) and starch (332))palm oil crystallization (178), application of DTA in the pharmaceutical industry (392),characterization of elastomers (323)) application of thermal analysis to the rubber industry (240), assessment of polymer inflammability (70))recent developments in thermotropic liquid-crystalline polymers (335))and the suitability of the Arrhenius model for kinetic evaluation of TG curves (106).

ELECTRICAL METHODS The E, can be estimated for various a by computer iteration with Z1/Z2> (RH),/(RH)2. The sensitivity of kinetic parameters to experimental errors was examined (5). By use of simple mathematical deductions, conditions were given at which 10% precision of the kinetic parameters could easily be achieved. An iterative method was described for deter-

-

Thermovoltaic detection (TVD), a new technique in which the EMF generated by a sample in contact with two dissimilar electrodes is recorded as a function of temperature, has been applied to inorganic substances, polymers, organic acids, coal, tobacco, and others (377,376). A similar technique, spontaneous current emission (SCE), in which an electrogalvanic current is measured between two dissimilar metal electrodes ANALYTICAL CHEMISTRY, VOL. 56, NO. 5, APRIL 1984

255 R

THERMAL ANALYSIS

in contact with a polymer film, has also been described. It has been used to study nylon films (166) and poly(viny1alcohol) (312). The SCE in the latter study is a water-activated phenomenon, which is also influenced by the transitional changes of the polymer. Thermally stimulated discharge currents in poly(viny1butyral) films at different polarizing fields, temperatures, and heating rates have been described (123). Similar studies were used to investigate virgin polyamide films (166). Electrical conductivity (EC) measurements have been used to study high density polyethylene, polystyrene, and poly(vinylidenefluoride) in the molten state (336). Using EC, the thermal decomposition characteristics of several phenolic and silicone resins reinforced with chopped glass fabric or cloth were measured at 5600-700 "C in nitrogen (161). Similar studies were reported on glass-reinforced alkyl phenylsiloxane and henolic resins at 25-700 "C and heating rates of 10 "C min- (162). The glass transition temperatures of mixtures of acrylonitrile-styrene copolymer and LiCl were detected by EC measurements (57). Results were in agreement with those determined by DTA. EC was employed to study the following inorganic systems: gel-grown cadmium oxalate trihydrate in single crystals and polycrystalline pellets (13); hydrated aluminosilicates such as kaolimite, montmorillonite, and zeolites (197); and silver niobate (216). Dielectric constant and/or permeabilitymeasurementswere used to study the ferroelectric phase transition at 2-50 "C in (NH4)2S04(21), the ferroelectric Curie temperature of Rb,ZnBr4(303, and the glass transition temperature of isotactic polypropylene and high density polyethylene (274). All of their measurements were performed concurrently with other thermal analysis techniques such as DSC, thermomechanical analysis, dynamic mechanical spectroscopy, high-temperature X-ray diffraction, and others. DSC was used to study the effect of electric fields on the thermal decomposition of KMn04 and NH4C104(292). In certain cases, the decomposition temperature was lowered by as much as 100" in the presence of an electrical field. Ac conductivity measurements of a number of Li salt-poly(ethy1ene oxide) complex polymer electrolytes were correlated with DTA (381). Two types of water of crystallization in the crystalline state of berberine chloride (XIX) were confirmed by dielectric constant mea-

P

' +A+

0

I3

CI-

XIX

surements and thermal behaviors in the processes of adsorption and desorption isotherms (395). Anhydrous XIX was very hygroscopic, absorbed moisture immediately, and was transformed to a a-hydrate even at low humidity.

EVOLVED GAS ANALYSIS By far the most popular EGA technique is TG-MS. Many different types of mass spectrometers and coupling interfaces are employed permitting TG studies at atmos heric pressure or at low pressures similar to those require in most mass spectrometers. Papers describing the coupling of a thermobalance to a mass spectrometer include a P E TGS-2 with a Sciex TAGA 3000 (89, 88), TG with a quadrapole mass spectrometer (264),DTA, TG coupled to a gas-liquid chromatograph-MS (%), coupling two MS to a derivatograph (36), and automated system which permits DTA, TG, DTG, and MS (396),a glass-tee interface for TG-MS (60),a computer program to control operation of a Stanton Redcroft TG 770 thermobalance connected to an Extranuclear Spec EL 275-50 mass spectrometer (269), and high-temperature furnaces for TG-MS (319, 250). The TG-MS technique was used in the following studies: compare and evaluate the gaseous decomposition of phosphate fire retardants (198); the thermal decomposition of kerogens (341); the thermal decomposition of poly(l,2acenaphthenediylidene) and poly(1,2-acenaphthylenylene)in

B

256R

ANALYTICAL CHEMISTRY, VOL. 56, NO. 5, APRIL 1984

vacuo (283,282); reaction between Pt(NH3)42C and Fe(N03), on a silica gel surface during bimetallic catalyst preparation (128);thermal decomposition kinetics of lead oxalate (310); and the thermal stability of fine-fibered cotton (172). An automated TG-FTIR (Fourier transform IR) interface between a Du Pont Model 951 thermobalance and a Nicolet 7199 FTIR spectrometerwas described (300). A nondispersive IR analyzer was interfaced to a simultaneous TG-DTA apparatus permitting simultaneousTG, DTA, DTG, DDTA, and EGA analyses to 2400 "C (105). FTIR-EGA was used to determine the pyrolysis products of lignin, cellulose, and the complex tabacco matrix (207). The thermal degradation of cellulose, as studied by EGA and IR spectroscopy,reveals the presence of COz, CO, and H20 (81). Emanation thermal analysis (ETA) was used in the following applications: phase transition in Fe-S and Ni-S systems (173);characterization of uranyl gels (24);Rn diffusion in melts of Ni sulfides (397); and the sintering of Thoz (11100 "C) and a-FezO3 (11300 "C) powders and compacts (23). The coupling of a gas chromatograph to DTA or TG permitted investigation of the rapid determination of reaction mechanism, acidity, and toxicity of various substances (400), polymers (226), and the ZnS-CaO-C system (325). EGA studies were reported by using specific molecular detectors for water vapor (115, 192, 193), hydrogen sulfide (212), hydrogen chloride (391), and the gases evolved from silicate rocks, meteorites, and glass and ceramic materials (85). A microprocessor-based EGA system in which measurements could be performed in a external magnetic field was described (164). The detection of evolved products (aerosols or gases) by atomic and molecular absorption techniques has been described (170,171). The atomic absorption spectrometerwas coupled to TG and DTA systems. The detection of smokes evolvedfrom-organic matter using light-scattering detectors is also described. Reviews on EGA include the following: emanation thermal analvsis in materials science and technoloev (22):the value and iersatility of EGA (114);advances in EGA (2i); thermal analysis by FTIR (209); and FTIR-EGA (208).

MISCELLANEOUS METHODS Thermosononimetry was used to study the polymorphic transformations of CazSi04and NazBeF, (145) and of glass (64). A method for determining the frequency spectrum of a thermoacoustic event is described and evidence is presented to illustrate that various chemical, physical, and mechanical processes generate sound (63). o-Nitrobenzylbromide was studied by an accelerating rate calorimeter (ARC) (52). The exothermic decomposition starts at 100 "C and develops in two stages with evolution of gases. TG and DSC show analogous behavior. ARC was also used to study the exothermic decomposition reaction of o-nitroaniline (86). DSC was used to determine the thermal conductivity of elastomer vulcanizates (324)and of polymeric and propellant samples (141). Thermal X-ray diffraction was found to be valuable for characterizing structural changes, such as alloying, reaction, recrystallization, and phase transformations, which occur upon heating electronic materials (61). A differential thermal detector based on a low frequency, ac heated pyroelectric crystal was described (287). The detection limit of the device is -1 kcal. The effect of strong magnetic fields (4and 7 kOe) on the reduction of NiO, COO,Co304,Fe304,and Fe to metals was studied, using EGA to monitor the evolved gases (18, 113). Thermomagnetic and TG measurements were used to study the preparation of NiFez04in the solid state (348). A new instrument, which could be used to detect Curie point temperatures, can also be coupled to a thermodilatometer (174, 175). New estimates were determined for the "true" magnetic transition temperatures of the ICTA reference materials, using a six-point calibration method traceable to the standards of the International Practical Temperature Scale of 1968 (40). These new estimated values have a pooled standard deviation of f2.0 "C, making them acceptable as temperature calibration standards for TG.

OPTICAL METHODS A simultaneousthermoluminescence (TL)-DSCinstrument was used to study mixtures of irradiated LiF and KNOB(231). The intensity of luminescence of LiF and the AHt of KNOB

THERMAL ANALYSIS

in the mixture were a linear function of the weight fraction of the individual salts. A computerizedTL readout technique was described which improved the precision of dose readout and facilitated the dose management and storage of a commercial TL dosimeter (276). y-Irradiated extended-chain crystals of polyethylene exhibited TL curve peaks at 50,90, 120, and 140 O C , respectively (135). The simultaneous optical changes (by reflected light measurements) and DSC behavior of a sample was described b using a simple, low-cost modification of the Perkin-Elmer DSe 1-B calorimeter (129). Phase changes, liquid crystals, the dehydration and decomposition of inorganic salt hydrates, and other studies were reported. Polymer ignition and smoke generation were detected by an photometer attached to a Du Pont Model 950 thermobalance (159). Thus, simultaneous measurements can be made covering char yield, decomposition kinetics, and the above measurements. Microscopic optical measurements (microscopicthermal analysis) have been described to determine transition phenomena in polymers (262).

THERMOMECHANICAL METHODS Three clays from the Biella area (Piedmont) were studied by thermodilatometry and DTA (20). A dilatometry attachment, which records the normal and derivative curves, has been described for use with the Derivatograph OD-102s (33) in the 20-1000 "C temperature range. Calcium hydroxyapatite, Calo(P04)6(OH)2, was studied from 0 to 1000 O C by dilatometry and other thermal and X-ray methods (35). TMA has been used to investigate the raw materials, purity, and properties of mortars and cements (385). The effect of Ni on the sintering of Ti, Fe, and Ni compacted powders was studied by dilemetry and DTA (185). TMA and/or dynamic thermomechanicalanalysis (DTMA) were used to determine the mechanical properties of a wide variety of polymers. These investigations include applications to nylon 66 annealed in glycerol (246),poly(ethy1ene oxide) (384), poly(ethy1ene terephthalate) (59), thermal aging in poly(viny1 chloride) ( 2 9 3 ,polyisobutylene (I79),polysulfide, polyarylate, polyurethane, and silicone rubber joint sealants (296),Goodrite 2508 and Penacolite R2170 (288),Esprene EPDM 502 rubber (266),fiber-resin composites (144),heatresistant polymers (200),impact-resistant polystyrene (260), acrylated bisphenol A diglycidyl ether resin (124), polyolefin-polystyrene blends (286),water-soluble, secondary and triacetate cellulose acetates (320),a number of poly(ether ester urethane) and poly(urea urethanes) (340),and linear iso- and terephthalate polyesters (259). An a paratus for TMA was described which consisted of an a x d y movable sensing unit that touches one surface and the sample and has an electromagnetic motion sensor (4). Reviews on TMA and thermadilatometry include those with applications to ceramic sciences (251), metallurgy (257), coating properties (301), and the general principles of the techniques (73).

ACKNOWLEDGMENT The financial support for the writing of this review by the Robert A. Welch Foundation, Houston, TX, is gratefully acknowledged. LITERATURE CITED

(1) Abhat, A. Sol. Energy 1983, 30 (4), 313-32. (2) Abhat. Ashok; Aboul-Enein, Saad Malatldls, Nikolaus, A. Report 1962, BMFT-FB-T-62-016, 193 pp. Avail. NTIS; FIZ. (3) Achar, E. N.; Fohlen, G. M.; Parker, J. A. J. Polym. Scl., Polym. Chem. Ed. 1983, 27 (4), 1025-32. (4) Achermann, Heinz; Daetwyler, Juerg Ger. Offen. DE 3,111,060 (Cl. G01N25/00), 18 Feb 1962, CH Appl. 80/4,566, 13 Jun 1960. (5) Adonyl, 2. Thermochim. Acta 1982, 55 (3), 269-85. (6) Alfonso, Glovanni Carlo; Pedemonte, Enrico; Re, Marina; Turturro, Antonio Gazz. Chim. Ital. 1982, 772(3-4), 99-104. (7) Almendros, G.; Polo, A.; Vizcayno, C. J. Therm. Anal. 1982, 24 (2), 175-62. (6) Anderson, H.; Wltte, E.; J . Therm. Anal. 1981, 27 (2), 327-41. (9) Anderson, H.; Witte, E.; Haberiand, D. Z . Phys. Chem. (Leipzb)1983, 264 (3), 409-16. (10) Antonucci, J. M.; Toth. E. E. J . Dent. Res. 1983, 62(2), 121-5. ( 1 1 ) Appelt, E. K. Polym. Eng. Scl. 1983, 23 (3), 125-8. (12) Artus, Luis Thermochim. Acta 1982, 59 (2), 133-6. (13) Arora, S. K.; Abraham, Tomy; Godbole, R. S.; Lakshmlnarayana, D. J . Mafer. Sci. 1983, 78 ( I ) , 56-63. (14) Asaga, Kiyoshl; Ohkado, Masakl Gypsum Lime 1983, 786, 273-9,

(15) Asfour, H. M.; Wahhab, M. A.; Nassar, M. M.; Wahid, S. S. Aitern. Energy Sources 1082, 4 ( l ) , 337-55. (16) Avramov, L. God. Vissh. Khim.-Tekhnoi. Inst., Sofia 1982, 27 (2), 87-92. (17) Ayaia, J. A.; Rlncon, M. E. Prepr. Pap.-Am. Chem. SOC.,Div. Fuel Chem. 1981, 26 (3), 120-30. (16) Aylmer, D.; Rowe, M. W. Therm. Anal., Proc. Int. Conf., 7th 1902, 7 , 141-7 (Eng). Edited by Mliler, Bernard; Wiley: Chichester, UK. (19) Each, Diana; Miller, Israel, R.; Sela, Ben Ami. Biochim, Biophys. Acta 1082, 686 (2), 233-9. (20) Bachiorrini, A.; Stafferl, L. Rass. Chim. 1981, 33 (3), 143-6. (21) Badr, Y. A. Phys. Status SolidlA 1982, 72 (I), K27-K29. (22) Balek, Viadlmir Jad. €nerg. 1982, 28 (6-9), 284-9. (23) Balek, Vladimlr Sillkaty (Prague) 1983, 27 (3), 257-69. (24) Baiek, Vladimlr; Baran, Vaclav Jad. Energ. 1983, 29 (l), 2-6. (25) Balta, Petru; Balta, Eugenia Rom. RO 72,962 (Cl.GOlN25/20),25 Mar 1981, Appl. 66,041, 16 Oct 1976. (26) Baranski, A.; Lagan, J. M.; Pattek, A,; Reizer, A. Appl. Catai. 1082, 3 (3), 201-6. (27) Barnes, P. A.; Stephenson, G. Anal. Proc. (London) 1081, 78 (12), 536-40. (26) Barnes, P. A.; Stevenson, G.; Warrington, S. E. Proc. Eur. Symp. Therm. Anal., 2nd 1981, 47-50. (29) Bart, G.; Petrlk, F.; Sprunger, E.; Grltsch, P. Thermochim. Acta 1982, 52 (1-3), 169-74. (30) Baur, Paul Power 1983, 727 (3), 91-3. (31) Bayer, 0.; Wiedemann, H. G. Therm. Anal., Proc. Int. Conf., 7th 1982, 2, 1470-6 (Eng). Edited by Miller, Bernard; Wiley: Chlchester, UK. (32) Bebchuk, T. S. flektrotekhnika 1983, (6), 30-3. (33) Belltskli, I.A.; Khanzhenkov, E. I.Fiz.-Khlm. Issled. Mineraloobraz. Sist. 1982, 145-9. Edited by Godovikov, A. A. Akad. Nauk SSSR,Sib. Otd., Inst. Geol. Geofk .; Novosibirsk, USSR. (34) Beninate, John V.; Trask, Brenda J.; Calamari, Timothy A., Jr.; Drake, George L., Jr. J . Fire Sci. 1083, 7 (2), 145-54. (35) Berak, Jozef; Szuszkiewlcz, Wladysiawa. Pr. Nauk. Akad. Ekon. im. Oskara Langego Wroclawiu 1982, 200, 21 1-13 (Pol). (36) Berecz, I.; Bohatka, S.; Langer, 0.; Szoor, G. Int. J . Mass Spectrom. Ion Phys. 1983, 4 7 , 273-6. (37) Bihari-Varga, Magdolna J . Therm. Anal. 1982, 23 ( l ) , 7-13. (36) Biharl-Varga, Magdoina, Magy. Kem. Lapla 1983, 38 (l), 16-20. (39) Biiiaderis, Costas G. Food Chem. 1983, 70 (4), 239-65. (40) Blaine, Roger L.; Falr, Paul G. Thermochlm. Acta 1983, 67 (2-3), 233-40. (41) Blecic, D.; Zlvkovic, 2. D.; Martlnovic, M. Tbermochim.Acta 1983, 60 (l), 61-6. (42) Bosselet, F.; Letoffe, J. M.; Ciaudy, P.; Albert, M. Calorim. Anal. Therm. 1983, 74, 53-61. (43) Brazier, D. W. NBS Spec. Pub/. ( U S . ) 1980, 580, 55-68. (44) Breuer, K. H.; Eysel, W. Thermochim. Acta 1982, 57 (3), 317-29. (45) Bros, J. P.; Gaune-Escard, M. Calorim. Anal. Therm. 1983, 74, 8-21. (46) Burger, Artur Pharm. Unserer Zeit. 1982, 7 7 (6), 177-69. (47) Burmistrova, N. P.; Fltseva, R. G.; Shakirova, D. M. Deposited Doc. 1961, SPSTL 629 Khp-D61, 9-16 Avail. SPSTL. (46) Caiiiot, C. Bull. Dlr. Efud. Rech., Sew. B . (Electr. Fr.) 1982, (3), 25-32. (49) Cameron, G. Gordon; Rudin, Alfred J . Polym. Sci., Polym. Phys. Ed. 1981, 19 ( l l ) , 1799-600. (50) Caneiro, A.; Bavdaz, P.; Fouletler, J.; Abriata, J. P. Rev. Sci. Instrum. 1982, 53 (7), 1072-5. (51) Card, Roger J.; Schmitt, J. Lawrence; Slmpson, John M. J. Catai. 1983, 79 (I), 13-20. (52) Cardiiio, P.; Girelli, A. Rlv. Combust. 1982, 36 (10). 304-9. (53) Carter, Margaret, A.; Glasson, D. R.; Jayaweera, S. A. A. Thermochim. Acta 1981, 57 (I), 25-31. (54) Catalano, Edward; Crawford, Patricia C. Thermochim. Acta 1983, 67 (1-2), 23-36. (55) Ceipidor. U. Blader; Tomassettl, M.; Curlni, R. Thermochim.Acta 1982, 56 (2), 125-33. (56) Chan, R. K. Annu. Rep., Conf. Electr. Insul. Dlelectr. Phenom. 1981, 123-6. (57) Chand, Navin, Pop. Plast. 1982, 2 7 ( 1 ) , 3, 6. (56) Chandrasekhar, K. V.; Rao, K. V. Res. Bull.-Birla Archaeol. Cult. Res. Inst. 1982, 4 , 1-10. (59) Chauchard, J.; Lachenai, G. Thermochim. Acta 1083, 62 ( l ) , 53-64. (60) Chlu, Jen; Beattie, A. J. Thermochim. Acta 1081, 50 (1-3), 49-56. (61) Chung, D. D. L. Therm. Anal. Proc. Int. Conf., 7th 1982, 2 , 1392-401 (Eng). Edited by Mlller, Bernard; Wiiey: Chichester, UK.

(62) Cizmarlk, J.; Harangozo, M.; Toigyessy, J.; Uher, M. Pharmazie 1982, 37 (6), 457-8. (63) Clark, G. M. Proc. Eur. Symp. Therm. Anal., 2nd 1981, 85-6. (64) Clark, G. M. Therm. Anal., Proc. Int. Conf., 7th 1982, 7 , 300-5 (Eng). Edited by Miller, Bernard; Wiley: Chichester, UK.

(65) Claudy, P.; Commercon, J. C.;Letoffe, J. M. Thermochim. Acta 1983, 68 (2-3), 317-27. (66) Claudy, P.; Commercon, J. C.; Letoffe, J. M. Thermochim. Acta 1983, 88 (2-3). 305-16. (67) Ciements, L. Davis; Jeffery, James P. Proc. Biomass Thermochem. Convers. Contract Meet., 74th 1982, (DE63 002004), 202-29. NTIS: Sprlngfleld, VA.

(66) Coimenero, J.; Barandlaran, M. M.; Criado, J. M. Tbermochim. Acta 1982, 55 (3), 367-71. (69) Cser, F.; Nyitral, K.; Hardy, 0. A&. Liq. Cryst. Res. Appl., Proc. Liq. Cryst. Conf. Soc. Countr/es, 3rd 7979 1981, 2 , 845-67 (Eng). Edited by Bata, Lajos; Pergamon: Oxford, Engl.

(70) Cullls, C. F.; Hlrschler, M. M. Polymer 1983, 24 (7), 834-40. ANALYTICAL CHEMISTRY, VOL. 56, NO. 5, APRIL 1984

257 R

THERMAL ANALYSIS

(71) Cummlng, John W.; McLaughlin, Joseph Thermochim. Acta 1982, 57 (3),253-72. (72) Cummlng, I. W. Inst. Energy 1981, 54 (421),201-4. (73) Daniels, T. Anal. Proc. (London) 1981, 18 (IO), 412-16. (74) Davles, D.; Horrocks, A. R.; Greenhalgh, M. Therm. Anal. 1981, Znd, 588-92. ... (75) Davles, D.; Horrocks, A. R.; Greenhalgh, M. Thermochim. Acta 1983, 63 (3\.351-62. ~~

(76)-Debelr, M-Sect. Mater., Eur. Space Agency, [Spec. Pub.] €SA SP 1982, ESA SP-178,Spacraft Mater. Space Environ., 293-303. (77) Deshpande, D. A.; Ghormare, K. R.; Jawadekar, V. L.; Deshpande, N. D. Thermochim. Acta 1983, 60 (3),295-302. (78) Dewally, Danys; Trldot, Gabriel Proc. Eur. Symp. Therm. Anal. 1981, Znd, 344-7. (79) Dlckens, Brian J . Polym. Sci., Polym. Chem. Ed. 1982, 20 (4),

1065-87. (80) DILorenzo, A.; Barbella, R.; Cornetti, G. M.; Eiagglnl, G. U . S . Environ.

Prot. Agency, Off. Res. Dev., [Rep.] EPA 1960, EPA-600/9-80-057a, Health Eff. Diesel Engine Emlss.: Proc. Int. Symp., PB81-173809,49-81. (81) Dolffmore, D.; Hoath, J. M. Proc. Eur. Symp. Therm. Anal. l981, Znd, 576-9 (Eng). (82) Dolllmore, D.; Gamlen, G. A.; Taylor, T. J. Thermochim.Acta 1981, 51

(2-3),269-76. (63) Dolllmore, David Thermochlm. Acta 1981, 50 (1-3),123-46. (84) Draguet-Brughmans, M.; Draux, P.; Bouche, R. J . Pharm. Beig. 1981, 36 (6), 397-403. (85) Dubansky, Alols; Straka, Pavel. Chem. Llsty 1982, 76 (4),430-4.

(86) Duch, Michael W.; Marcali, Kalman; Gordon, Michael D.; Hensler, Charles J.; OBrlen, Gerald J. Plantloper. hog. 1982, 1 (I), 19-28. (87) Duchscherer, Wllllam, Jr. Oil Gas J . 1982, 80 (27),163-4, 167, 170,

173, 176. (88) Dyszel, Susan M. Thermochim. Acta 1983, 61 (1-2),169-83. (89)Dyszel, Susan M. Therm. Anal., Proc. Int. Conf., 7th 1982, 1 , 272-8 (Eng). Edited by Miller, Bernard; Wlley: Chlchester, UK.

(90) Earnest, C. M. Thermochim. Acta 1982, 58 (3),271-8. (91) Ebert, Mlroslav; Havllcek, David, Collect. Czech. Chem. Commun. 1982, 47 (7),1923-30. (92) Eckermann, R.; Langer, H.; Blllmeier, G. Chem. Eng. Thermwn. 1983, 469-82 (Eng). Edited by Newman, Stephen A.; Ann Arbor Scl.: Ann Arbor, MI.

(93) Elgenberg, Kenneth E.; Croasmun, William R.; Chan, Sunney I.Biochim. Biophys. Acta 1982, 679 (3),353-60. (94) Elder, J. P. Thermochim. Acta 1982, 52 (1-3),235-44. (95) El-Shanawy, Hamed H.; Klldslg, Dane 0.; Peck, Garnet E. Drug Dev. Ind. Pharm. 1982, 8 (9, 651-62. (96) El-Shanawy, Hamed H.; Peck, Garnet E.; Klldslg, Dane 0. Drug Dev. Ind. Pharm. 1981, 7(5),805-19. (97) El-Shanawy, Hamed Hamed Drug D e v . Ind. Pharm. 1982, 8 (a), 819-31. (98) Eshchanov, R. A.; Gafurov, A. Kh.; Asamov, M. K.; Usmanov, Kh. U. Doki. Akad. Nauk Uzb. SSR 1983, (I), 30-1. (99) Ezrin, M.; Harten, J. T. Mod. Plast. 1981, 58(12),64,66. (100) Fabrettl, Antonio Costantino; Ferrarl, Marco; Franchlnl, Glan Carlo; Glusti, Aleardo; Pretl, Carlo; Tosl, Gluseppe Transition Met. Chem. (Weinheim, Ger .) 1983, 8 (I), 8-10. (101) Fahim, M. A.; Ford, J. D. Chem. Eng. J . (Lausanne) 1983, 2 7 ( 1 ) , 21-8. (102) Fatemi, N. S.;Dolllmore, D.; Heal, G. R. Thermochim.Acta 1982, 54 (I-2), 167-80. (103) Fearn, T.; Lawson, R.; Marls. P. I.; Russell, P. L. Thermochim. Acta 1983, 62 (2-3),187-96. (104) Field, J. E.; Chaudhrl, M. M.; Swallowe, G. M.; Tang, Tong B. Report 1980,Order No. AD-A096771,66 pp (Eng). Avail. NTIS. (105) Fllsinger, D. H.; Bourrle, D. B. Thermal Anal., Proc. In$. Conf., 7th 1982, 1 , 284-90 (Eng). Edited by Miller, Bernard; Wlley: Chlchester, UK. (106) Flora, Terez, Thermochim. Acta 1983, 65 (l),113-25. (107) Flynn, Joseph H. Therm. Anal. Polym. Charact., Sel. Pap. East. Anal. Symp. 1980 1981, 43-59 (Eng). Edited by Turl, Edith A,; Heyden: Phlladelphla, PA. (108) Flynn. Joseph H. Proc. Eur. Symp. Therm. Anal. 1981, Znd, 223-6. (109) Ford, J. L.; Rubinstein, M. H. Drug Dev. Ind. Pharm. 1981, 7 (e),

675-82. (110) Fu, Yazhen Huaxue Yu Shengwu Wuli Jinzhan 1982, 4 4 , 26-32. (1 11) Fu, Yazhen Huaxue Yu Shengwu Wuli Jinzhan 1982, 43, 27-30. (112) FuJlta, Yukihisa; Noda, Yuklnao Bull. Chem. SOC.Jpn. 1981, 54(10), 3233-4. (113)Gallagher, P. K.; Gyorgy, E. M.; Jones, W. R. J . Chem. Phys. 1981, 75 (E),3847-9. (114)Gallagher, P. K. J . Therm. Anal. 1982, 25 (l),7-20. (115) Gallagher. P. K.; Gyorgy, E. M.; Jones, W. R. J . Therm. Anal. 1982, 23 (l),185-92. (116) Gargallo Esteban. M. F.; Puerta Vlzcalno, M. C.; Ganzalez-Viichez, F. Thermochim . Acta l983, 62 (2-3),267-78. (117) Garn, P. D.; Kenessy, H. E. J . Therm. Anal. 1981, 20 (2),401-7. (118) Gast, T.; Jakobs, H.; Mlrahmadi, A. Proc. Eur. Symp. Therm. Anal. 1981, Znd, 3-6. (1 19) German, Bruce; Damodaran, Srlnlvasan; Klnsella, John E. J . Agric. FoodChem. 1982, 30(5),807-11. (120) Gervasl, P.; Slnsollller, C. Cim. Betons, Piatres, Chaux 1981, 733, 330-4. (121) Ghodsl, M.; Prossnltz, J. P. Proc. €or. Symp. Therm. Anal. 1981, Znd, 572-5. (122) Ghodsl, M.; Neumann-Tllte, C. Thermochim. Acta 1983, 62(1),1-7. (123) Gil-Zambrano, J. L.; Juhasz, C. J . Phys. D 1981, 14 (9),1661-70. (124) Gluiianl, Giampaolo; Prlola, Aldo Polymer 1982, 23 (5),761-5.

258R

ANALYTICAL CHEMISTRY, VOL. 56,

NO. 5,

APRIL 1984

(125) Goldstein, Sandu; Duca, Alexandru Thermochim. Acta 1982, 59 (2), 211-30. (126) Goodfield, Jonathan A. C.; Rees, Gwllym J. Fuel 1982, 61 (9),843-7. (127) Griffin, Anseim C.; Havens, Stephen J. Polym. Prep., Am. Chem. Soc., Div. Polym. Chem. 1980, 21 (2),266-8. (128) Guczl, L.; Till, F. Mater. Sci. Monogr. 1982, 10 (React. Solids, v2), 908-12. (129)Halnes, P. J.; Skinner, G. A. Thermochim. Acta 1982, 59(3),343-59. (130) Hale, John E.; Schroeder, Frledhelm Lipids 1981, 18 (ll),805-9. (131) Handa, Takashl; Morlta, Masahiro; Sugawa, Osaml; Ishll, Tadahlro; Hayashl, Kenjl Fire Sci. Technoi. 1982, 2 (2),109-16. (132) Hardy, M. J. Therm. Anal., Proc. Int. Conf. 7th 1982, 2 , 887-92 (Eng). Edited by Mlller, Bernard; Wiley: Chlchester, UK.

(133) Hardy, M. J. Therm. Anal., Proc. I n t . Conf., 7th 1982, 2 . 876-86 (Eng). Edited by Miller, Bernard; Wiley: Chlchester, UK.

(134) Harnlsch, K.; Lanzenberger, R. J . Non-Cryst. Solids 1982, 53 (3), 235-45. (135)Hashlmoto, Toshlmasa; Oglta, Klyoshl; Umemoto, Susumu; Sakal, Tetsuya J . Polym. Sci. Polym. Phys. Ed. 1983, 21 (8), 1347-56. (136) Hen, B. W.; Sheena, H. H. Comm. Eur. Communities [Rep.] EUR 1983, EUR 8245,Energy Biomass, 919-24. (137) Hay, J. N.; Mills, P. J. Polymer 1982, 23 (9),1380-4. (138) Henderson, P. J. Proc. Eur. Symp. Therm. Anal. 1981, Znd, 544-9. (139) Henderson, David E.; DlTaranto, Marie, 6.; Tonkln, Wllllam G.; Ahlgren, David J.; Gatenby, David A,; Shum, Tuck Woh Anal. Chem. 1982, 54

(12),2087-72. (140) Hill, J. 0.; Jessup, P. J.; Relss, J. A. J . Therm. Anal. 1981, 21 (2), 271-6. (141) Hlllstrom, Warren W. Therm. Conduct. 1979 1983, 16, 483-6. (142) Hlramatsu, Nobuyasu; Hlrakawa, Susumu Polym. J . (Tokyo) 1982, 14 (3),165-71. (143) Hlronaka, Sellchlro; Moriuchl, Tsutomu; Sakural, Toshio Seklyu Gakkaishi 1983, 26 (4),298-302. (144) Hognat, J. Fibre Sci. Technol. 1983, 18 (2),109-18. (145) Holm, J. L.; Loenvlk, K. J . Therm. Anal. 1982, 25(1), 109-15. (146) House, J. E., Jr. Thermochim. Acta 1982, 5 7 ( 1 ) ,47-55. (147) Hsu, S. M.; Cummlngs. A. L.; Clark, D. B. SOC. Automot. Eng., [spec. Pub/.] SP 1982, SP-526(Ease Oils Automot. Lubr.), 127-39. (148) Ikeda, Masao; Nakamura, Takashl; Nagase, Yu; Ikeda, Kojl; Seklne Yoshlro J. Polym. Sci., Polym. Chem. Ed. 1981, 19 (IO), 2595-607. (149) International Union of Pure and Applied Chemistry; International Confederation for Thermal Analysis Pure Appl. Chem. 1981, 53 (8),

1597-603. (150) Isa, Kimlo; Nogawa, Masahlro Netsu Sokutei 1983, 10 (l),2-7. (151) Ishlda, Hlroyuki: Ikeda, Ryulchi; Nakamura, Dalyu J . Phys. Chem. 1882, 86 (8), 1003-6. (152) Ishll, T. Mater. Sci. Monogr. 1982, 10 (React. Solids, v2), 927-32. (153) Ishlwatari, Marlko Sogo Shlkensho Nenpo (Tokyo Daigaku Kogakubu) 1982, 4 1 , 207-11. (154) Ito, Naotsugu; Obata, Kenzaburo; Hakuta, Toshlkatsu; Yoshltome, HIroshi Kagaku Kogaku Ronbunshu 1983, 9 (4),434-40. (155) Jalal, I.M.; Zografl, G.; Rakshlt, A. K.; Gunstone, F. D. Chem. Phys. Lipids 1982, 31 (4),395-404. (156) Jarvls, Christine W.; Drews, Michael J.; Leibner, James E. Org. Coat. Plasf. Chem. 1980, 4 3 , 181-8. (157) Jennlngs, Thomas A. Med. Device Diagn. Ind. 1980, 2(11),49-57. (158) Jlrlcyn, Josef; Reese, Colin B. Br. Polym. J . 1980, 12(3),81-4. (159) Johnson, Bruce 6.; Chiu, Jen Thermochim. Acta 1981, 50 (1-3), 57-67. (160)Johnson, Robert Chandler Eur. Pat. Appl. EP 51,266(Cl.G01N25/48), 12 May 1982,U.S. Appl. 206,639,03 Nov 1980;15 pp. (161) Johnson, R. T., Jr.; Eiefeld, R. M. Annu. Rep., Conl. Neck. Insul. Dielectr. Phenom. 1981, 85-92. (162) Johnson, R. T., Jr.; Blefeld, R. M. Polym. Eng. Sci. 1982, 22 (3), 135-41. (163) Jones, E. G.; Goldfarb, I. J. Thermochim. Acta 1982, 54 (I-2), 131-40. (164) Jones, Walter R. Thermochim. Acta 1982, 52(1-3),305-15. (165) Judd, M. D. Eur. Space Agency [Spec. Publ.] €SA SP 1982, ESA SP-178, Spacecraft Mater. Space Envlron., 279-88. (166) Juhasz, C.; Gll-Zambrano, J. L. J . Phys. D 1982, 15 (2),327-36. (167) Kalsersberger, E. InterCeram 1983, 32 (l),38-9. (168) Kala, H.; Moldenhauer, H.; Glese, R.; Kedvessy, G.; Selmeczl, 6.; Plntye-Hodi, Klara Pharmazie 1981, 36 (12),833-8. (189) Kamal, Ibtlsam M.; Adam, Georglus A,; AI Getta, Husen K. T h e r m chim. Acta 1983, 62 (2-3), 355-9. (170)Kantor, Tlbor; Bezur, Laszlo; Statlsz, Janisz; Pungor, Ern0 Magy. Kem. FOly. 1982, 88 (2),87-96. (171)Kantor, T.; Bezur, L.; Sztatlsz, J.; Pungor, E. J . Therm. Anal. 1981, 22 (2),179-97. (172) Kapkaeva, S. Kh.; Mulnov, T. M.; Marupov, R. Dokl. Akad. Nauk Tadzh. SSR 1981, 24 (e), 352-5. (173) KapusNn, 0. A.; Zaborenko, K. 6.; Bryukvin, V. A. Zh. Flz. Khim. 1982, 56 (2),341-4. (174) Karmazsln, E.; durand, 6.; Satre, R.; Romand, M. Journ. Caiorim. Anal. Therm. 1981, 12, M71-M76. (175)Karmazsln, E.; Satre, P.; Romand, M.; Durand, B. Thermochim. Acta 1982, 55 (3),287-91. (176) Karpuj, Llliana; Gartl, Nlssim; Sarlg, Sara Isr. J . Chem. 1982, 22 (3), 256-8. (177) Katime, I.; Penaflel, J.; Cesteros, L. C.; Vegulllas, J. Thermochim. Acta 1982, 59 (2),199-203. (178)Kawamura, Klnichl Nippon Nogei Kagaku Kaishi 1983, 57 (5),475-85. (179) Kelnath, Steven E.; Boyer, Raymond F. J . Appl. Polym. Sci. 1983, 28 (6), 2105-18.

THERMAL ANALYSIS

(180) Kim, Chong Kook; Kwak, Hyo Sung; Shin, Hee Jong Yahhak Hoe Chi 1981, 25 (l),37-42. (181)Kiselev, Yu. M.; Goryachenkov, S. A. Zh. Neorg. Khim. 1983, 28(1), 16-19. (182) Kishi, Aklra; Saito, Kiyoshi; Ichlhashi, Masahiko Netsu Sokutei 1982, 9 (3),89-95. (183) Kishore, K. J . Therm. Anal. 1981, 22 (2).239-45. (184) Kishore, K.; Verneker, V. R. Pai; Shidhara, K. J . Solid State Chem. 1983. 209-14. (185) Kivalo, L. 1.; Skorokhod, V. V.; Petrishchev, V. Ya. foroshk. Metall. (Klev) 1983, (E), 24-7. (186) Kleinhans, H. D.; Konrad, R.; Schnelder, G. M. Thermochlm. Acta 1983, 61 (3),371-4. (187) KoJlma, Takakazu; Fujii, Terumasa; Hosaka, Yoshlnobu Mem. Natl. Def. Acad., Math., fhys., Chem. Eng. 1980, 20 (4),117-24. (188) Kojima, Takakazu; Ito, Jinichi; Hosaka, Yoshinobu Mem. Nati. Def. Acad., Math., Phys., Chem. Eng. 1981, 21 (3),105-11. (189) Kolaczkowski, Andrzej; Biskupski, Andrzej J . Chem. Techno/. Blotechno/. 1981, 31 (7),424-30. (190) Kotra, R. K.; Gibson, E. K.; Urbancic, M. A. Icarus 1982, 51 (3), 593-605. (191) Kovacs, Laszlo Banyasz. Kohasz. Lapok, Ontode 1981, 32 (E), 169-79. (192) Kristof, J.; Inczedy, J.; Paulik, J.; Pauiik, F. R o c . Eur. Symp. Therm. Anal. 1981, Znd, 38-41. (193) Kristof, J.; Inczedy, J.; Pauiik, J.; Paulik, F. Thermochim. Acta 1982, 56 (3),285-90. (194) Kuhnert-Bandstaetter, Maria; Wurian, I.Scl. fharm. 1982, 50 (l), 3-11. (195) I.Kuhnert-Bandstaetter, Maria; Proell, Friedrich Mikrochlm, Aceta 1983, 2 (5-6), 463-76. (196) Lahlrl, A. K. Thermochim. Acta 1982, 55(1),97-111. (197) Lahodny-Sarc, 0.; Dosen-Sver, D. Rad Jugosl. Akad. Znan. Umjet. 1982, 394, 15-22. (198) Langer, H. G.; Fellmann, J. D.; Wood, C. D. Therm. Anal., f r o c . Int. Conf., 7th 1982, 2 , 1350-5 (Eng). Edited by Miller, Bernard; Wiley: ChlChester, UK.

(199) Langier-Kuzniarowa, Anna Mineral. Pol. 1980 1981, 1 I (2),81-71. (200) Laius, L. A.; Dergacheva, E. N.; Bessonov, M. I.Vysokomol. Soedin., Ser. A 1982, 24 (6),1328-30. (201) Lambelet, P.; Ganuli, N. C. JAOCS, J . A m . Oil Chem. SOC. 1983, 6 (5),1005-8. (202)Latocha, Czeslaw; Uhniat, Maria; Schneider, Zenon foiimery (Warsaw) 1982, 27 (2),67-9. (203) Latrous, K.; Cavrot, J. P.; Rietsch, F . Eur. fo/ym. J . 1981, 17(12), 1205-9. (204) Lee, Hee Cheoui; Cha, Ki Won; Choi Jae Seung. Nonmunjip-Sanop Kwahak Klsul Yonguso (Inha Taehakkyo) 1980, 7, 75-9. (205) Lehtlnen, Maire Acta fharm. Fenn. 1981, 90 (2),187-93. (206)Leont'eva, I.A.; Sereda, B. P. Deposited Doc. 1981,SPSTL 829 KhpD81, 19-30. (207) Lephardt, John 0.; Fenner, Robert A. fo/ym. frepr. (Am. Chem. Soc., Div. fo/ym. Chem.) 1981, 22 (l),282-3. (208) Lephardt, John 0.Appl. Spectrosc. Rev. 1982, 18 (2). 265-303. (209) Lephardt, John 0.R o c . S f I E - l n t . SOC. Opt. Eng. 1981, 289 (Int. Conf. Fourier Transform Infrared Spectrosc.), 300-7. (210) Levelut, A. M.; Zaghloul, B.; Hardouln, F. J . fhys., Lett. 1982, 43 (3), 83-7. (211) Lewis, I. C.; Barr, J. B. Mol. Cryst. Ll9. Cryst. 1981, 72 (2-3),65-6. Khomskaya, A. G.; Egunov, V. P.;Nemkov, A. V.; Grun(212) Llsov, N. I.; val'd, V. V. Deposited Doc. 1981,SPSTL 829 Khp-Del, 73-7. (213) Liu, Jinxiang Xiandai Huagong 1982, 14, 12-18. (214) Longton, J.; LeGrys, G. A. Starch (Welnheim, Fed. Repub. Ger.) 1981, 33 (12),410-14. (215) Louie, Mlng K.; Harrison, Ian R. J . Therm. Anal. 1982, 23 (l), 209-26. (216) Lukaszewski, M. Acta Univ. Wratislav., Mat., Fiz., Astron. 1981, 34 (2),143-9. (217) McCown, M. Steven; Harrison, Douglas P. Fuel 1982, 61 (11), 1149-54. (218) McGhie, A. R.; Chiu, J.; Fair, P. G.; Blaine, R. L. Thermochim. Acta 1983, 67 (2-3), 241-50. (219) McGhie, Andrew R. Anal. Chem. 1983, 55 (6),987-8. (220) McMurchie, E. J.; Teubner, J. K.; Gibson, R. A. Comp. Biochem. fhyslol. A 1983, 74A (2),295-9. (221) Mabrey-Gaud, Susan Compr. Anal. Chem. 1982, 12 (Part B), 217-48. (222) Mackenzie, R. C. Isr. J . Chem. 1982, 22(3),203-5. (223) Mackenzie, Robert C. Dev. Sedlmentol. 1982, 34 (Adv. Tech. Clay Miner. Anal.). 5-29. (224) Mackenzie, R. C. Anal. f r o c . (London) 1982, 19 (4),202-4. (225) Mackenzie, R. C. Therm. Anal., froc. Int. Conf., 7th 1982, 1, 25-36 (Eng). Edited by Miller, Bernard; Wiiey: Chichester, UK.

(226) MacLaury, Michael R.; Schroii, Alayne L. R o c . Int. Conf. Fire. Saf. 1981, 6 , 223-32. (227) Makino, Kazuo. Jpn. Kokai Tokkyo Koho JP 58 92,942[83 92,9421 (Cl.GOlN25/02),02 Jun 1983,Appi 81/192,097,30 Nov 1981. (228)Malatidis, Nikolaos, A.; Abhat, Ashok Forsch. Ingenieurwes . 1982, 48 (l),15-26. (229) Maiavasic, Tatjana; Vizovisek, Ivan; Zigon, Majda Nova froizvod. 1982, 33 (12-),19-24. (230) Maihotra, S. L.; Ly Minh; Blanchard, L. P. J . Macromol. Scl., Cbem. 1982, A 18 (3),455-75. (231) Manche, Emanuei P.; Anal. Chem. 1982, 54 (7).1236-7. (232)Marcotegui, F.; Sanchez Monge, J. M.; Martlnez Recari, C. Rev. Asoc. ESP. Farm. Hosp. 1981, 5(2), 133-7.

(233) Marcotegul, F.; Sanchez Monge, J. M.; Perez de Ciriza, J. A. Rev. Asoc. ESP. Farm. Hosp. 1981, 5(3),219-24. (234) Marky, LUIS A.; Blumenfeld, Kenneth S.; Breslauer, Kenneth J. Nucleic Acids Res. 1983, 1 1 (e),2657-70. (235) Marky, Luis A.; Breslauer, Kenneth J. Blopo/ymers 1982, 21 (ll), 2185-94. (236) Marotta, A.; Saiello, S.; Buri, A. Thermochim. Acta 1982, 56 (2), 193-7. (237) Marotta, A.; Saiello, S.; Branda, F.; Burl, A. J . Mater. Scl. 1982, 17 (l),105-8. (238) Masuoka, Tadao; Suda, Yoshio; Kori, Michiko Kenkyu Hokoku-Sen 'I KobenshiZalryo Kenkyusho 1981, (130),51-8. (239) Matsuura, Iwao; Seike, Yasuko; Kawamata, Masanobu Yakugaku Zasshi 1983, 103 (l), 85-93. (240)Maurer, J. J.; Brazier, D. W. Kautsch. Gumml, Kunstst. 1983, 36(1), 37-45. (241) Melsei, Tibor; Seybold, Karoly CRC Crlt. Rev. Anal. Chem. 1981, 12 (4),267-343. (242) Meisel, T. Fresenlus' 2.Anal. Chem. 1982, 312 (2),83-95. (243) Mellander, Benat Erik; Lunden, A,; Friesel, M. Solid State Ionics 1981, 5 . 477-9

(244)'Mllle;, Bernard; Martin, J. Ronald; Turner, Rudolph. J . Appl. fo/ym. Sei. 1983, 28 (I), 45-56. (245) Miller, B.; Martin, J. R. NBS Spec. fubl. (US.)1980, 580, 89-98. (248)Mitomo, H.; Kuriyama, I. fo/ymer 1982, 23 (9),1377-80. (247) Miyoshi, Fumihisa Yakugaku Zasshi 1982, 102 (I),36-42. (248) Moehler, Heinz; Weilert, Reiner Farbe Lack 1982, 88 (9),722-30. (249) Mok, William S.;Antal, Michael J., Jr. f r o c . Biomass Thermochem. Convers. Contract. Meet ., 14th 1982, (DE83 002003),403-51. (250)Molltor, K.; Jagdfeid, H. J.; Odoj, R. Spez. Ber. Kernforschungssnlage Juelich 1982, Juel-Spez-148, 67 pp. (251) Morreli, R. Anal. R o c . (London) 1981, 18(10),443-7. (252)Mu, Jacob; Perlmutter, D. D. Thermochlm. Acta 1982, 56(3),253-80. (253) Mu, J.; Kloos, D. Thermochlm.Acta 1982, 57(1), 105-8. (254) Muralshl, Kazuo; Takano, Takemi; Nagase, Kenzo; Tanaka, Nobuyuki J . Inorg. Nucl. Chem. 1981, 43 (lo),2293-7. (255) Nakamura, Takashi; Noguchi, Fumio; Ueda, Yasuaki Nippon Klnzoku Gakkalshl 1981, 45(11),1130-7. (256) Natu, G. N.; Kuikarni, S. B.; Dhar, P. S. J . Therm. Anal. 1982, 23(1), 101-10. (257) Newall, R. H. Anal. Proc. (London) 1981, 18 (lo),440-3. (258) Nichols, S.;Laohavirojana, F. J . fhys. E. 1982, 15 (5),506-7. (259)Ng, Tie Hwee; Williams, H. Leverne Makromol. Chem. 1981, 182(11), 3323-30. (260)Nlkltin, Yu. V.; Shlyakhova, T. G.; Efremova, N. M. flast. Massy 1982, (5),42-3. (261) Nikonorov, E. M.; Sazonova, N. S.;Petrova, L. N.; Irisova, K. N.; Kaiinina, E. V. Khim. Tekhnol. Topl. Masel 1983, (4).38-8. (262) Novikova, L. V.; Ovchinnikov. Yu. V.; Teplov, B. F. Vysokomol. Soedin., Ser. A 1982, 24 (11), 2459-60. (263) Oguni, Masaharu; Yamamuro, Osamu; Matsuo, Takasuke; Suga, Hiroshi Netsu Soketei 1982, 9 (4),135-9. (264) Ohrbach, K. H.; Radhoff, G.; Kettrup, A. Fresenlus' 2.Anal. Chem. 1983, 314 (4),398-401. (265)Ohtani, H.; Hirano, T.; Akita, K. Nlppon Kasal Gakkai Ronbunshu 1982, 32 (2),49-55. (266) Oklno, Takayuki; Maruta, Michio; Ito, Kiyosyi Therm. Anal., R o c . Int. Conf., 7th 1982, 1, 331-6,(Eng). Edlted by Miller, Bernard; Wiley: ChiChester, UK.

(267) Otsuka, Ryohei; Tanabe, Sachio; Iwafuchi, Kengo Nippon Kogyo Kaishi 1980, 96(llll),581-6. (268).Pais, K.; Gyore, J. KolloMkem. Konf. Eioadasai, 3rd 1981, 209-12. Edited by Pinter, Janos, Wolfram, Ervin; Eotvos Lorand Tudomanyegy: BudaDest, Huna.

(269)'Parker, i n d a M.; Patterson, John E. Rep. N . Z . , Dep. Sci. Ind. Res., Chem. Dlv. ,1983. C.D.. 2330. (270)Parkhurst, W. A.; Dailek, S.; Larrick, B. F. Report 1982,NSWC/TR-82420,SBl-AD-F500115; Order No. AD-A123881,30 pp. (271) Patel, 0. N. Poiym. Prepr., Am. Chem. SOC.,Div. fo/ym. Chem. 1979, 20 (2),452-6. (272) Pavlath, Attlla, E.; Gregorski, Kay S. R o c . Eur. Symp. Therm. Anal. 1981, Znd, 251-4. (273) Perchenko, V. N.; Sytov, G. A.; Ledina, L. E.; Ishmukhanbetova, N. K.; Krapivin, A. M.; Nametkln, N. S. Akad. Nauk SSSR 1981, 262 (I), 114-17. (274) Petrovic, Zoran; Budinski, Jaroslava; Divjakovic, Viadimir Hem. Ind. 1982, 36 (4),115-20. (275) Phillips, Colin R.; Luymes, Richard; Haiahel, Tarek M. Fuel 1982, 61 (7),639-46. (276) Pia, C.; Podgorsak, E. B. Med. fhys. 1983, 10 (4),462-6. (277)Pope, M. I. Roc. Eur. Symp. Therm. Anal. 1981, Znd, 603-7 (Eng). (278) Popkov, V. A.; Tyrina, E. A.; Trofimova, L. I.; Reshetnyak, V. Yu. KhlmJarm. Zh. 1981, 15(12),63-7. (279) Porslus, N. Chem. Mag. (Rijswijk, Neth.) 1982, (Nov.) 699-700. (280) Porsius, N. Chem. Mag. (Rijswijk, Nerh.) 1982, (Oct.), 635-7. (281) Prasad, T. P. Thermochlm. Acta 1983, 65(1),147-9. (282)Price, D.; Milnes, G. J.; Lukas, C.; Schopov, I.Dyn. Mass Spectrom. 1981, 6 , 291-303. (283) Price, D.; Lukas, C.; Mllnes, G. J.; Whitehead, R ; Schopov, 1. Eur. fO/yt??. J . 1983, 19 (3),219-23. (284)Provder, Theodore; Holsworth, Richard M.; Grentzer, Thomas H.; Kline, Sally A. Adv. Chem. Ser. 1983, 203 (Polym. Charact.), 233-53. (285) Przyluski, J.; Plocharski, J.; Bujwan, W. J . Therm. Anal. 1981, 21 (2), 235-8. ANALYTICAL CHEMISTRY, VOL. 56, NO. 5, APRIL 1984

259R

THERMAL ANALYSIS

(286) Ragosta, 0.; Greco, R.; Martuscelll, E.; Sadocco, P.; Seves, A,; Vicinl, L. Polymer 1982, 23 (3),466-72. (287) Rahnamai, Hamld Anal. Chim. Acta 1983, 746, 243-8. (288) Rahrig, Douglas B. Proc. IUPAC, I . U . P. A . C.,Macromoi. Symp., 28th f982, 623 (Eng). Int. Union Pure Appl. Chem: Oxford, UK. (289) Rajeshwar, Krishnan; Jones, Donald 8.; DuBow, Joel 8. Fuel 1982, 67 (3),237-9. (290) Rajeshwar, Krlshnan; Rosenvold, Robert J.; DuBow, Joel B. Thermochim. Acta 1983, 66 (1-3), 373-8. (291) Raemy, A.; Hurrell, R. F.; Loellger, J. Thermochim. Acta 1983, 65(1), 81-92. (292) Rajeshwar, K.; Rosenvold, R.; DuBow, J. Nature (London) 1983, 307 (5895), 48-9. (293) Razmerova, M. V.; Ronova, I. A,; Pavlova, S. A,; Zhuravleva, I. V. Vysokomoi. Soedin., Ser. A 1983, 25(6), 1332-4. (294) Relch, L.; Stivala, S. S. Thermochim. Acta 1983, 62 (l), 129-32. (295) Reich, Leo; Stivala, S. S. Thermochim. Acta 1982, 55 (3), 385-7. (296) Riesen, Rudolf; Bartels, Waldemar Therm. Anal., Proc. I n f . Conf., 7th 1982, 2, 1050-8 (Eng). Edlted by Miller, Bernard; Wlley: Chichester, UK. (297) Roche, E. J. Polym. Eng. Sci. 1983, 23 (7), 390-3. (298) Rogers, J. A.; Anderson, A. J. Pharm. Acta Helv. 1982, 57 (IO-ll), 278-8 1. (299) Rosenvold, R. J.; Rajeshwar, K.; DuBow, J. 6.Thermochim. Acta 1982, 57 (I), 1-3. (300) Roush, P. B.; Luce, J. M.; Totten, G. A. Am. Lab. (Fairfieid, Conn.) 1983, 75 (lo), 90-3. (301) Rumsey, Jennifer A,; Ottaway, Martyn R. Polym. Paint, Colour J . 1983, 773 (4089), 124-5. (302) Russell, P. L. StarchlStaerke 1983, 35 (E), 277-81. (303) Ryumln, A. I.; Chumakov, V. G.; Smirnov, I. I.; Sorkinova, G. A. Zh. Neorg. Khim. 1982, 27 (5), 1223-5. (304) Salto, Kiyoshi; Kosaka, Mineo: Klshl, Akira; Ichihashi, Masahiko; Maesono, Aklkazu. Therm. Anal., Proc. Int. Conf., 7th 1982, I , 258-63 (Eng). Edited by Miller, Bernard; Wiley: Chichester, UK.

(305) Sandrock, R. Rev. Sci. Instrum. 1982, 53(7), 1079-81. (306) Sato, Toyomi, Okada, Akira; Sekiguchl, Kelji; Tsuda, Yasuyuki Chem. Pharm. Bull. 1981, 29 (9), 2675-82. (307) Sawada, Shozo; Yamaguchi, Toshlhisa; Shiroishi, Yoshihiro; Yamamoto, Akitoshi; Takashige, Masaski J . Phys. SOC. Jpn. 1981, 50 ( l l ) , 3677-80. (308) Schmidt, Reinhard; Schoen, Guenter Thermochim. Acta 1982, 57 (2), 125-40. (309) Schullery, Stephen E.; Seder, Thomas A,; Welnsteln, Davld A.; Bryant, Darrell A. Biochemistry 1981, 20 (24), 6818-24. (310) Selcuk, A.; Price, D. Dyn. Mass Spectrom. 1981, 6 , 126-33. (31 1) Senderovlch, R. B.; Pavlov, V. P. Vopr. Teor. Raschefa Rab. Protsessov Tepl. Duigateiei 1981, 5, 77-80. (312) Shareef, A. U.; Saraf, K. K.; Srlvastava, A. P. Phys. Status Solidi A 1983, 77 (I), 381-6. (313) Shashidhar, R.; Herrmann, J.; Klelnhans, H. D. Mol. Cryst. Li9. Cryst. 1982, 72 (5-6), 177-82. (314) Shiihashl, Toru Gosei Gomu 1982, 88, 14-23. (315) Shlmadzu Seisakusho Ltd. Jpn. Kokai Tokkyo Koho JP 58 21,150 [83 21,1501 (Cl.GOlN25/02), 07 Feb 1983, Appl. 81/119,918, 30 Jul 1981. (316) Shimadzu Seisakusho Ltd. Jpn. Kokai Tokkyo Koho 81 76,816 (Cl. G05D23/22), 24 Jun 1981, Appl. 79/153,309, 26 Nov 1979. (317) Shiotsubo, Toshiko New Food Ind. 1983, 25 (6), 33-48. (318) Shiraishi, Masato Reito 1982, 5 7 (655), 517-25. (319) Shobotenko, S. A,; Zverev, E. G. R i b . Tekh. Eksp. 1982, (2),189-90. (320) Shoshina, V. I.; Enikeeva, A. K.; Nikonovlch, G. V.; Usmanov, Kh. U. Cellul. Chem. Technol. 1981, 75 (5), 567-88. (321) Slmon, J.; Androsits, B. Isr. J. Chem. 1982, 22(3), 273-8. (322) Slrnpson, T. D.; Hagemann, J. W. JAOCS, J . Am. Oil Chem. SOC. 1982, 59 (4), 189-71. (323) Slrcar, Ani1 K. J . Sci. Ind. Res. 1982, 4 1 (9), 536-60. (324) Sircar, Ani1 K.; Wells, John L. Rubber Chem. Technol. 1982, 55 (l), 191-207. (325) Skopov, G. V.; Kharitidi, G. P.; Veksler, S.F. Deposited Doc. 1961, SPSTL 839 Khp-DBl, 38-48. (326) Smith, Alan Anal. Proc. (London) 1982, 79 (12), 559-61. (327) Smykatr-Kloss, W. J . Therm. Anal. 1982, 23 (1). 15-44. (328) Soerensen, 0. Toft Thermochim. Acta 1981, 50 (1-3), 163-75. (329) Steinmetz, D.; Ducarroir, M.; Romero Paredes, H.; Rlvot, M. Entropie 1981, 77(102), 18-27. (330) Sugita, Shlzuo Nlppon Kaisui Gakkaishi 1983, 36 (203), 304-9. (331) Swallowe, G. M. Thermochh. Acta 1983, 65 (l), 151-4. (332) Takahashi, Koji Denpun Kagaku 1982, 29 (I), 56-67. (333) Takahashi, Koshl; Wada, Keizo Shokuhin no Bussel 1982, 8 , 37-49. (334) Takahashi, Y.; Sakamoto, R.; Kamimoto, M.; Kanarl, K.; Ozawa, T. Thermochim. Acta 1981, 50 (1-3), 31-9. (335) Takeda, Masataml Therm. Anal., Proc. Int. Conf., 7th 1982, 2, 927-49 (Eng). Edited by Mlller, Bernard; Wiley: Chlchester, UK. (336) Takeuchi, M.; Nagasaka, H. J. Elecfrost. 1982, 72, 189-95. (337) Tanaka, Haruhlko; Sadamoto, Tomoko Thermochim. Acta 1982, 54 (3),273-80. (338) Tanaka, Haruhiko; Maeda, Kelko Thermochim. Acta 1981, 57 (2-3), 97-103. (339) Taru, Yasunori; Takaoka, Kyo Shikizai Kyokaishi 1982, 55 (E), 537-45.

260R

ANALYTICAL CHEMISTRY, VOL. 56,

NO. 5,

APRIL 1984

(340) Teitel'baum, 8. Ya; Yagfarova, T. A. J . Therm. Anal. 1981, 2 1 (I), 67-74. (341) Thevand, G.; Rouquerol, F.; Rouquerol, J. Therm. Anal., Proc. Int. Conf., 7th 1982, 2, 1524-9 (Eng). Edited by Miller, Bernard; Wlley: ChiChester, UK.

(342) Tomimatsu, Yoshio; Donovan, John W. Plant Physiol. 1981, 68 (4), 808-13. (343) Tompa, A. S. J . Hazard. Mater. 1980, 4 (l), 95-112. (344) Tompa, A. S. Thermochim. Acta 1983, 63 (l), 9-32. (345) Toth, A.; Bertoti, 1.; Szekely, T. Themochim. Acta 1982, 52 (1-3), 211-15. (346) Tseng, H. P.; Christman, P. G.; Edgar, T. F. Chem. Biomed. Envlron. Instrum. 1981, I 7 (5-6), 377-409. (347) Tsukada, Masuhlro. Nippon Sanshigaku Zasshi 1982, 51 (6), 499-502. (348) Tzehoval, Hannah; Steinberg, Menachem Isr. J. Chem. 1982, 22 (3), 227-31. (349) Udupa, M. R. Propellants. Explos., Pyrotech. 1983, 8 (4), 109-11. (350) Udupa, M. R. Propellants, Explos., Pyrotech. 1982, 7(6), 155-7. (351) Udupa, M. R. Thermochim. Acta 1982, 53 (3),383-5. (352) Ueda, Haruhisa; Nambu, Naoki; Nagai, Tsuneji Chem. Pharm. Bull. 1982, 30 (7), 2618-20. (353) Urmanova, A. M. Probl. Osad. Geol. Dokembr. 1981, (7, Pr.2,), 121-7. (354) Van der Heyden, J. Plastica 1983, 36 (3),4-7. (355) Van Dooren, Adrlanus A.; Mueller, Bernd W. Thermochim. Acta 1983, 65 (2-3), 257-67. (356) Van Dooren, Adrianus A.; Mueller, Bernd Thermochim. Acta 1983, 65 (2-3), 269-84. (357) Van Dooren, A. A.; Mueller, 8. W. Thermochim. Acta 1982, 54 (1-2), 115-29. (358) Van Dooren, A. A.; Mueller, B. W. Thermochim. Acta 1981, 49 (2-3), 163-73. (359) Van Dooren, A. A.; Mueller, B. W. Thermochim. Acta 1981, 49 (2.3), 151-61. (360) Van Dooren, A. A. Anal. Proc. (London) 1982, 79 (12), 554-6. (361) Van Dooren, Adrian A,; Mueller, Bernd W. Thermochim. Acta 1983, 66 (1-3), 161-86. (362) Vargha-Butler, Eva I.; Neumann, A. Wllhelm; Hamza, Hassan A. Can. J . Chem. 1982, 60 (14), 1853-6. (363) Varhegyl, Gabor; Szekely, Tamas Thermochim. Acta 1982, 57 (l), 13-28. (364) Varhegyi, Gabor Thermochim. Acta 1983, 65 (2-3), 333-50. (365) Varma, Raghunath P.; Jain, Praveen K. Transition Met. Chem. (Weinheim, Ger.) 1982, 7 (3), 129-30. (366) Vasilenko, I. P. Tepio-Massoperenos: Issled. Razrab. 1981, 13-16. Edited by Soloukhin, R. I.; Akad Nauk BSSR, Inst. Teplo Massoobmena: Minsk, USSR.

(367) Vernon, Gregory A. Report 1982, NWC-TP-6337; Order No. ADA119300, 73 pp, (368) Videnov, N.; Bozadzhlev, P.; Radoeva, G.; Mlkhailov, E.; Gochev, V. God. Vlssh. Khim.-Tekhnol. Inst., Sofia 7979 1980, 26 (l), 81-5. (369) Vogel, Kurt Therm. Anal., Proc. Int. Conf., 7th 1982, 7 , 248-53 (Eng). Edited by Miller, Bernard; Wiley: Chichester, UK.

(370) Wadsten, Tommy Proc. Eur. Symp. Therm. Anal. 1981, Znd, 608-1 1. (371) Wakakura, Masahlde Kasai 1982, 740, 19-25. (372) Wakakura, Masahide; Sato, Toru Sekiyu Gakkaishi 1981, 24 (6), 385-92. (373) Wakihara, Masataka; Taniguchi, Masao Kagaku Kyoiku 1983, 37 (I), 38-41. (374) Wang, Shihua; Jiang, Shengbang; Tang, Zhongxing; Yang, Hongzhong; Li, Xlngmin Juaxue Tongbao 1981, (1l), 654-6. (375) Warne, S. S. J.; Morgan, D. J.; Mllodowski, A. E. Thermochim. Acta 1981, 57 (2-3), 105-1 1. (378) Wendlandt, W. W.; Contarinl, S. Thermochim. Acta 1983, 65 (2-3), 321-32. (377) Wendlandt, W. W. Therm. Anal., Proc. Int. Conf., 7th 1982, 7 , 320-4 (Eng). Edited by Miller, Bernard; Wiley: Chichester, UK. (378) Wendlandt, W. W. Anal. Chem. 1982, 54 (5), 97R-105R. (379) Wendlandt, W. W. NBS Spec. Pubi. (U.S.) 1980, 580, 219-34. (380) Wendlandt, W. W. Thermochim. Acta 1981, 50 (1-3), 7-16. (381) Weston, J. E.; Steele, B. C. H. Solid State Ionics 1981, 2 (4), 347-54. (382) Wesolowski, Marek Acta Pharm. Jugosl. 1982, 32 (4), 303-13. (383) Wesolowski, Marek Mikrochim. Acta 1982, 7 (5-6), 451-64. (384) Wetton, R. E.; Croucher, T. G.; Fursdon, J. W. M. Polym. Prepr. (Am. Chem. Soc., Div. Polym. Chem.) 1981, 22(1), 256. (385) Wiedemann, H. G.; Roessler, M. Therm. Anal., R o c . Int. Conf., 7th 1982, 2. 1318-24. Edited by Miller, Bernard; Wlley: Chichester, UK. (386) Wledemann, Hans G. NBS Spec. Pub/. ( U S . ) 1980, 580, 201-18. (387) Wiederholt, Erwln J . Chem. Educ. 1983, 60 (5), 431-4. (388) Wiederholt, Erwin Naturwiss. Unterr., Phys ./Chem. 1981, 29 (9), 350-4. (389) Wiederholt, Erwln CLB, Chem. Labor Betr. 1882, 33 (6), 264, 266-7, 270-1. (390) Willis, Jocelyn M.; Brown, G. R.; St. Plerre, L. E. Therm. Anal., Proc. Int. Conf., 7th 1982, 2 , 1030-9 (Eng). Edited by Miller, Bernard: Wiley: Chlchester, UK.

(391) Wlmberley, J. W.; Carel, A. 6 . ;Cabblness, D. K. Anal. Lett. 1982, 75 (Al), 89-100. (392) Wollmann, H.; Braun, V. Pharmazie 1983, 38 (I), 5-21 (Ger). (393) Yamaguchi, Hisashl; Kawamata, Masanobu; Nakai, Yoshinobu; Yamamto, Keiji. Yakugaku Zasshi 1982, 702 (5), 463-8. (394) Yokoyama, Shinichi; Ueda, Shigeru; Ishil, Tadao Hokkaido Kogyo Kaihatsu Shikensho Hokoku 1981, (22), 1-7. (395) Yoshimatsu, Kiyonobu; Nakabayashi, Susumu; Ogaki, Junko; Kimura, Masayuki; Horkoshl, Isamu Yakugaku Zasshi 1981, 107 (12), 1143-8.

Anal. Chem. 1984, 56,261 R-277 R (398) Zeman, A. Schmiertech. Tribol. 1982,29 (2), 55-8. (399) Zeman, S.;Zemanova, E. J. Therm. Anal. 1981, 20 (2), 331-7. (400)Zhou, Lixing: Chen, Shuxia; Gao, Xiuying Huaxue Tongbao 1981, (12), 733-7.

(396) Yuen, H. K.; Mappes, 0. W.; Grote, W. A. Thermochim. Acta 1982,52 (1-3), 143-53. (397) Zaborenko, K. B.; Kapustin, 0. A,; Bryukvin, V. A. Zh. Fir. Khim. 1 ~ 8 2 56 , (e), 1454-8.

Chemometrics Michael F. Delaney Department of Chemistry, Boston University, Boston, Massachusetts 02215

processing. At this same time ANALYTICAL CHIMICA ACTA discontinued its ‘Computer Techniques and Optimization’ issues (IN2, IN17) in favor of publishing these papers in the regular volumes, since chemometrics topics had come to be considered mainstream analytical chemistry. Toward the middle of the period under consideration, an excellent and informative feature began to appear in THIS JOURNAL. Edited, and often written, by Raymond E. Dessy, the ‘A/C Interface’ column has addressed local area networks, operating systems, programming languages, laboratory information managements systems, and analytical robotics (IN7, INS). During the latter half of the period covered by this review it became increasingly obvious that while computer hardware developments continue to be spectacular, the corresponding software is either lacking, secret, or non-existent. As discussed by S. A. Borman (‘Math is Cheaper Than Physics’) (IN5), chemometric techniques, and their corresponding realization in computer software, is the critical link between a dumb instrument and the resulting chemical knowledge. A controversv between instrument manufacturers and instrument users began playing itself out during 1983. The editor of THIS JOURNAL expressed a serious concern reeardine the lack of detail on the aleorithms used bv the m&ufa&rer of a computerized instriment (IN21). Ii was stated that the technologicaland legal restrictions should be sufficient to protect the manufacturer’s investment in software development. A letter to the editor (IN231 and a FOCUS article (IN6) in THIS JOURNAL discussed the issue from the both the instrument company’s and user’s point of view. The basic user issue is the following: how do I know whether my data is being manipulated properly. The answer is provided by Bruce Kowalski (IN6) who reminds us that “software is just soft electronics, and you don’t have to know exactly what it’s doing, you just have to validate that the software’s performance is correct. This is done in the same way as with any instrument, using standards, calibration, and various other tests. Two important trends in chemometrics are worthy of note. The first is the increasing rate of data production typically found in automated instruments. An example would be the data acquisition rates needed to keep up with the information being generated in a gas chromatography - mass spectrometry experiment (IN14). An instrument is being built which acquires raw data at a rate of 200 megasamples per second. The developments in instrumentation and computer technology will continue to put pressure on information processing resources to meaningfully and efficient extract results from raw data. The second trend is in response to the first. Chemometrics developments and the accompanying realization of these developments as computer software provide the means to convert raw data into information,information into knowledge and finally knowledge into intelligence. Two example papers are from the laboratory of Jack W. Frazer. Interactive graphics were used on the one hand to model experimental data (IN4) so that functional relationships could be defined, plotted, modified and fit to experimental data. The second use of interactive graphics was to facilitate the simulation of systems of chemical reactions so that sufficiently powerful experiments could be designed (IN11).

This is the third Fundamental Review formally named ‘Chemometrics’. This review will continue to provide some degree of organization and critical appraisal of a rapidly developing subdiscipline of Analytical Chemistry. The author considers himself at best a nephew of the Father of Chemometrics, having never had a formal association with Bruce R. Kowalski. With this change of authorship comes a somewhat different perspective on the topic, which will be reflected in the organization and selectivity of the review. The period covered by this review is December 1981 to December 1983 with the focus remaining on the analytical aspects of chemometrics. Continuity with the two previous Chemometrics Reviews (IN15, IN10) is preserved by using a similar classification of sub-sections. Even though the topic is reasonably narrow, an all-encompassing summary has been avoided so that a more selective evaluation of the field can be made. During the course of this review several notable activities have served to establish the importance of chemometrics and to disseminate the developments in this field. A NATO Advanced Study Institute on Chemometrics was held in Italy, bringing together a number of experts and interested individuals for two weeks of intensive interaction. The second conference on ‘Computer-Based Anaytical Chemistry’ (COBAC) was held in Munich in 1982 (IN18, IN25). An ‘International Conference on Chemometrics in Analytical Chemistry’ was held in Petten, The Netherlands, in 1982 (IN3). Also a symposium was held at the 1983 National ACS Meeting in Seattle, on ‘the Role of Chemometrics in Pesticide - Environmental Residue Analytical Determinations’. Much of an issue of ‘Chemical and Engineering News’ concerned the topic, ‘Computers in Chemistry - Managing a Revolution’, which included three articles (IN9, IN13, IN16) discussing computational chemistry, computerized planning of organic syntheses, isomer generation, molecular structure elucidation, and graph theory. An issue of ‘American Laboratory’ was devoted to Information Management (IN1). Also, several new journals were initiated which will probably be of interest to chemometricians ‘Computer Applications in the Laboratory’ (IN12), ‘Journal of Molecular Graphics’ (IN19), ‘Computer Enhanced Spectroscopy’ (IN24)). In as much as we regard chemometrics as the interface between chemistry and mathematics (IN10) it is reasonable to expect new ventures in chemometrics to involve ‘new’ fields of mathematics. One such development is the increasingly extensive use of graph theory for describing and manipulating chemical structures. For this reason we have added a new section, ‘Graph Theory and Structure Handling’. In addition we have added a section ‘Library Searching’ to contain references describing structure elucidation using stored libraries of reference spectra, and have changed the name of the ‘Spectral Analysis’ section to ‘Signal Processing’ to indicate that these techniques for manipulating waveforms includes application to non-spectrometric signals. New Developments. In the beginning of the time period covered by this review the editor of THIS JOURNAL, described ‘computerphobia’, (IN20) and the salvation to those who do not program provided by ‘intelligent programs’ which will program for you. In the same issue, the ‘Editor’s Column’ (IN22) discussed THIS JOURNAL’S move into the computer age with computerized selection of reviewers and manuscript 0003-2700/84/0356-26 lR$06.50/0

0

1984

American Chemical Society

261 R