Anal. Chem. 1998, 70, 27R-35R
Thermal Analysis D. Dollimore* and S. Lerdkanchanaporn
Department of Chemistry and College of Pharmacy, The University of Toledo, Toledo, Ohio 43606 Review Contents Instrumentation Thermodynamic Measurements Reaction Kinetics Inorganic Compounds Organic and Polymeric Materials Biological, Medical, and Pharmaceutical Studies Minerals and Energy-Related Topics Literature Cited
27R 28R 28R 29R 30R 30R 31R 32R
The present review covers publications that appeared in Chemical Abstracts Thermal Analysis (CA Selects) from October 1995 to 1997. The number of publications on this topic continues to grow so it is certain that some publications that deserve recognition in this review have not been noted by the present reviewers. Apologies for this type of omission are presented. It should also be noted that however strict a discipline an author practices a certain bias in selection manifests itself and this is certainly true for this present review. The outstanding event in book publication has to be the appearance of an updated and enlarged 2nd edition of Turi’s book on Thermal Characterization of Polymeric Materials (1). This is a comprehensive account of the science in this field from which all subsequent progress will be based. The new edition of Analytical Instrumentation Handbook (2) contains a chapter on thermal analysis (TA). The book on Synthetic Coordination Chemistry (3) has a chapter on solid-state thermal synthesis of coordination compounds. Physical Properties of Polymers Handbook (4) deals with thermodynamic properties and chemical reactivity of polymers. Differential Scanning Calorimetry An Introduction; (5) has also appeared. There was a commemorative issue of Thermochimica Acta (6) published in honor of Ozawas 65th birthday. Turi’s article in the issue commemorating Wunderlich’s 65th birthday should be noted (7) together with the personal review by Wunderlich himself (8). The most important event appearing as a special issue is the Proceedings of the 11th International Congress on Thermal Analysis and Calorimetry (9). Other proceedings published were the 23rd and 24th Conference of the North American Thermal Analysis Society (10, 11), the 6th European Symposium on Thermal Analysis (12), the 30th Anniversary Conference of the Japan Society of Calorimetry and Thermal Analysis (13), the U.K. National Thermal Analysis and Calorimetry Symposium (14), the XVII Conference AICAT-GI-CAT VI Meeting (15), the 14th IUPAC Conference on Chemical Thermodynamics, ICCT-96 (16), and the Joint meeting of GEFTA and the thermoanalytical group of the Hungarian Chemical Society (17). Special issues continue to appear; the first reaction calorimetry (18) and the second coupling thermal analysis and gas analysis methods (19) may be quoted. There are some individual publications that should be read as S0003-2700(98)00003-1 CCC: $15.00 Published on Web 03/25/1998
© 1998 American Chemical Society
they give an insight into progress made in thermal analysis. These include the article on 40 years of thermal analysis in Hungary by Paulik (20), the role of thermal analysis in environmental protection by Kettrup and Matuschek (21), and the article by Brown (22) on kinetic aspects of thermal analysis. Keattch (23) continues to research the origins of thermal analysis with reference to thermogravimetry. Odlyha (24-26) and co-workers use thermal analysis to investigate old paintings. Thermal analysis has also found applications in studying Byzantine mortar (27) and ancient papers (28, 29). The formation of model soil systems that might be found in planets (30) can be investigated by thermal analysis, and materials formed in the space shuttle have also been studied (31). An extremely useful review on coatings has been published (32). A paper on the photodecomposition of water over a BaTi4O9 catalyst has some possible industrial importance (33). INSTRUMENTATION The use of thermogravimetric analysis (TG) has been extended into new fields such as boiling point and vapor pressure measurement (34). In the coupled mode, thermomagnetometry can be used for temperature calibration (35) or the time-temperature plot can be used for the same purpose (36). A differential thermal analysis (DTA) instrument based on optical measurement of temperature has been described (37). Localized thermal analysis using a miniaturized resistive probe opens the way for the implementation of scanning calorimetry microscopy where the image contrast will be created from thermal analysis data (38). This method is applied to study phase separation of polymer blends (39). The use of a single pan-single-thermocouple method to construct DTA plots has been further utilized (40, 41). It must be emphasized that in differential scanning calorimetry (DSC) baseline calibration is important (42). High-temperature calibration of DTA and DSC apparatus is described using encapsulated samples (43). Modulated DSC continues to attract a variety of applications. Basic theory is covered by several publications (44-46). Reading describes the effect of modulating the gas flow (47) and the effect of temperature modulation on the TG plot is also reported (48). Modulated DSC is used to determine the reversible and irreversible components in the vicinity of the glass transition point (Tg) in various systems (49-51). There are also papers describing the application of modulated DSC to heats of fusion (52), to vitrificaiton and devitrification (53), to cold crystallization (54), and to physical aging (55) in polymer systems. A catalyst characterization study is reported making use of ratecontrolled thermal analysis (RCTA), involving temperatureprogrammed desorption (56). Mass spectroscopy technique applied to gas analysis of inorganic oxysalt systems is the subject of two papers (57, 58). Sikabwe et al. (59) combine a thermoAnalytical Chemistry, Vol. 70, No. 12, June 15, 1998 27R
gravimetric unit with evolved gas analysis employing both capillary gas chromatography and mass spectrometry. Experimental parameters associated with mass spectroscopy coupled with TA systems are also discussed (60). In environmental applications of mass spectroscopy, it is found convenient to use a TG capable of using large samples (61, 62). Other combined techniques include a description of DSC with optical video microscopy for crystallization studies (63), the use of simultaneous TM-DTA to establish magnetic transition temperatures (64) and the use of simultaneous X-ray diffraction and DSC (65, 66). Johnson et al. (67) describe a temperature-resolved molecular emission spectrometer to study solid materials. Proton magnetic resonance thermal analysis has been used to characterize coal, and this technique could be extended to an examination of polymers (68, 69). THERMODYNAMIC MEASUREMENTS In terms of chemistry, thermodynamic measurements relate to an equilibrium condition or a condition at rest whereas kinetics relates to a rate of change from one condition to another. Melting and vaporization are the simplest properties to measure. Kovacs et al. (70) report the temperature and enthalpy of fusion of UCl3. Vaporization data on various organic fluids (71) and on the incongruent vaporization of CaTeO3 and CaTe2O5 (72) is reported. Porter and Wang (73) use DSC to study the melting points of semicrystalline polyethylenes. Okazaki and Wunderlich (74) find modulated DSC the best method to study reversible local melting in polymer crystals. The multiple melting peaks observed on DSC of ultrahigh molar-mass polyethylene fibers have been analyzed as a function of sample mass (75). There are numerous papers dealing with the application of DTA or DSC to phase diagrams. There is a discussion on the correlation between DSC curves and isobaric state diagrams (76). There are studies on binary mixtures of metals (77) and ternary mixtures of metals (78-81). Ghanbari-Ahari et al. (82) used DTA and thermal expansion measurements in studying phase equilibrium and glass formation in the system ZrO2-MgO-SrO-SiO2. Liu et al. (83) included DTA and TG in constructing phase diagrams for the system CuO-PbO-Ag. The mixtures of EuI2LiI and EuI2-NaI were investigated by Zhao et al. (84) using DTA and X-ray powder diffraction. Nikolic et al. (85) continue to use DSC to study the cryoscopic behavior in binary mixtures of acetamide-sodium acetate, and acetamide-sodium acetate trihydrate. Among organic systems investigated in this way is the binary system water-β1, β-trihalose (86) and the cocrystallization of sugar alcohols (87). The phase nanoporous materials tends to cover systems that possess pores in this range or that have a particle size distribution around this value. A review of progress in this field is presented by Jaroniec (88). Materials adsorbed in such pores tend to show either greatly reduced melting points or are classified as nonfreezing. Wunderlich (89) shows that DSC is suitable for detection of multiple nanophases observed in certain polymer structures. Often the reports of nonfreezing water can be attributed to these small nanosized domains or to specific bonding (90). Other studies on melting involve the preparation of nanometer-sized particles in dispersions (91). 28R
Analytical Chemistry, Vol. 70, No. 12, June 15, 1998
DSC has proved to be a valuable technique to measure heat capacity over a wide range of temperatures. Ozawa and Kawari (92) provide a critique of the use of this method. The calculation of heat capacity, of solid proteins (93), of intermetallic compounds (94), and of inorganic nitrates (95) may be cited as examples of the use of DSC in this way. The modulated temperature version of DSC is now the accepted method of study the glass transition phenomena as it allows reversible effects to be separated from irreversible effects found in normal DSC traces in the region of the glass transition (96-99). A structure-property analysis study for gel-spun ultrahigh-mass polyethylene fibers involved DSC, X-ray diffraction, and NMR (100). The relaxation of a supercooled orientation of glassy crystal is described based on DSC measurements (101). The DSC data have also been used to interpret the aragonite-calcite transition (102). The Krafft phenomenon observed in materials used in local anesthetics has also been studied using DSC (103). The measurement of enthalpy changes in rubber pyrolysis involves DTA and TG (104). A combination of DSC with optical microscopy provides a means of studying Langmuir-Blodgett films of amphotropic polymers (105) and of luminescent terbium(III)-pyrazolone complexes (106). A differential scanning microcalorimeter was used to study vesiclesurfactant interactions (107). The combination of TG and DTA can be used to study water films on silica surfaces at subambient and elevated temperatures (108). Alternatively, thermoprogrammed reduction and thermoprogrammed hydrogen desorption from copper and chromium oxides on alumina and aluminosilicate can be studied by measuring the thermal conductivity of the evolved gas (109). A study concerning the decomposition of sodium ethyl xanthate adsorbed on activated carbon has industrial implications (110). REACTION KINETICS In reaction kinetics, the first priority is to determine the equation describing the rate of reaction at a particular temperature. This then leads to the calculation of a specific reaction rate constant. The reaction rate constant at different temperatures (provided the rate equation remains the same) then leads to the estimation of the preexponential term and the activation energy. At this point, comment usually ceases although really it is only the beginning and should lead to deductions or at the least speculations about reaction mechanism. All these features come together in the generally practiced mode of rising temperature analysis practiced by thermal analysts, but the priority of the steps outlined is often lost in the analysis. Almost all authors, including the present reviewers must own up to lapses of this kind. The kinetic analysis must be backed up by many other available techniques. There are two key articles on the subject. The first is by Brown (22), which is an article review covering all the topics noted above. The second key article is also a review by Flynn (111) dealing with the use and abuse of the “temperature integral” in its application to thermal analysis. The “isothermal” approach is discussed in detail by Galway and Brown (112). Blaine and Marcus (113) also use an isothermal approach in studying oxidative induction time but this is really a comparative technique. Nevertheless most studies involve rising temperature techniques (114-117). Baram and Erukhimovitch (118) discuss the applica-
tion of thermal analysis methods to nucleation and growth transformation kinetics. There are methods of analysis reported that use alternatives to the Arrhenius equation (119, 120). Other studies use comparative methods of assessing solid-state reactivity (40, 121). An historical review on kinetics of the isoconversional methods is presented by Ozawa et al. (122). Budrugeac and Segal (123) suggest calculations based on the Ozawa-Flynn-Wall isoconversional method provide acceptable values for the kinetics of calcium oxalate monohydrate dehydration and the degradation of polychloroprene rubber. A clear outline of the application of model-free kinetics is provided by Kelsey (124). A detailed exposition of the kinetics in solids based largely on isoconversional methods is provided by Vyazovkin and Wight (125). There are a large number of publications by Vyazovkin et al. dealing with the details of the isoconversional methods (126-131). Calculations pertaining to nth-order analyses of various solid-state reaction kinetics models have been extended to consider isoconversional Arrhenius analysis (132). Zsabo (133) discusses the compensation effect in heterogeneous processes calculated from the isoconversional model provided as a software package by Anderson et al. (134). Malek (135) reviews the applicability of the Avrami equation to the thermal analysis of crystallization kinetics studied by the rising temperature method. Controlled rate thermal analysis finds applications to thermal dehydration of clays (136), to a study of the Smith-Topley effect in dehydration of uranyl nitrate trihydrate (137), to the dehydration of yttria-doped zirconia samples (138), and to the synthesis of SiC from the carbothermal reduction of silica (139). The methods of thermal analysis continue to be applied to the dehydration of salt hydrates (140-142). The decomposition kinetics of sulfates has also been studied (141, 143). An industrially important kinetic study is the kinetic determination of the reduction of iron oxide-rich slags under different conditions (144). The controlled-rate thermal analysis of active carbon surfaces and adsorbed water layers is reported to be a convenient method of studying such systems (145). Spontaneous oxidation heat rate curves of active carbons containing oxidizable/volatile organics have been determined using a Calvet-type calorimeter (146). Apparent activation energies have been calculated for the degradation of various contaminated plastics (147). DSC is the usual but not the only thermal analysis technique used to study cure kinetics (148). A thermal analysis method of determining the kinetics of depolymerization has been presented (149). A study of the degradation kinetics of polybutadiene serves as an example of the application of thermal analysis to polymer decomposition problems (150). The retrogradation kinetics of rice starch-lauryl alcohol complexes has been determined using DSC (151). A combination of DSC and TG has been featured in a kinetic analysis of the combustion of lignite (152). Many simple organic compounds evaporate from the liquid phase, and there are several papers dealing with the evaporation rate (153-157). INORGANIC COMPOUNDS Thermal analysis finds application in studying metal alloys (158). These studies include investigation of the mechanism of milling (159), active compounds in thin-layer photovoltaic modules (CdTe and CuInSe2) (160), and crystallization behavior (161). The oxidation of silicon nitrides over the temperature range 650-1200
°C has been studied using isothermal and rising temperature TG (162). Dilatometer studies have been reported up to 1250 K on silicon carbides used as heat exchangers (163). There is also a report on the synthesis and processing of nanostructured aluminum nitride (164). The kinetics of simultaneous dehydroxylation and carbonation of precipitated Mg(OH)2 has been studied using isothermal and nonisothermal TG (165). In another study involving both TG and DTA, the growth of MgO-doped LiNbO3 single-crystal fibers was reported (166). DTA was also involved in a study of the dehydroxylation sequences of gibbsite and boehmite (167). Balek et al. (168) found that emanation thermal analysis could be used to show that maximum sorption capacity for strontium in amorphous iron(III) hydroxide decreased as the precipitated hydroxide was left to age. Venables and Brown (169) used TG to investigate the reduction of tungsten oxides with hydrogen, with hydrogen and carbon, and with carbon monoxide. The thermal behavior of CO2 laser-irradiated CeO2 doped with Yb2O3 is reported (170). Another study on the behavior of water on the surface of modified silica utilized DRS (171). Ammonium molybdate, ammonium dichromate, and ammonium tungstate deposited on ZrO2, all catalysts with superacid properties, were investigated by combined TG-DTA and TG-MS (172). The tetragonal to cubic transition in BaTiO3 has been found to be amenable for study utilizing DSC (173). Thermal analysis has been found to be useful in the characterization of sodium zirconium silicate, sodium titanium silicate, and aluminum-rich β-zeolite (174-176). It is reported that copper acetate monohydrate dehydrates at 190 °C, and then partially decomposes at 220 °C, to give CuO plus smaller quantities of Cu2O and Cu4O3 (177). Similar thermal analysis studies on nickel(II) and iron(III) acetate and their mixtures are also reported (178). Allen and co-workers continue to use thermal analysis in their studies on complexes containing cobalt, nickel, and copper (179). The thermal properties of zinc butyrate complex compounds have been established using TG, DTA, and DSC (180). The transformations occurring in the thermal decomposition of calcium oxalate monohydrate have led to it being used to study the response of various thermal analysis techniques to the known transitions (181, 182) and make it an ideal candidate to study the effect of doping (183). Strontium oxalate features in other thermal analysis studies (184). Coprecipitates of magnesium-iron oxalates, silver-(cobalt, nickel, copper, and zinc), and cobalt and copper oxalates all showed the formation of solid solutions (185-187). There is a TG study of the dehydration of gel-grown iron tartrate dihydrate (188). Other salts receive attention from thermal analysts, such as calcium carbonate doped with Bi2O3 (189) or cadmium carbonate (190). The use of simultaneous TG-DTA showed for Zr(SO4)2‚4H2O three stages of degradation followed by decomposition (191). A combination of X-ray diffraction and TG-DSC was used to determine that the thermal decomposition of ceric ammonium nitrate resulted in the formation of CeO2 and Ce(III)2(NH4)3(NO3)9 followed by further decomposition to CeO2 (192). There is a second study on cerous ammonium nitrate tetrahydrate (193). A similar combination of thermal analysis techniques was used to investigate ceric and cerous rubidium nitrates (194). Other publications include the thermal decomposition of metal nitrates on clay supports (195). An unusual research paper deals with Analytical Chemistry, Vol. 70, No. 12, June 15, 1998
29R
the thermal decomposition of colloidal calcium thiophosphate formed by reacting calcium oxide with tetraphosphorus decasulfide and water in the presence of a surfactant (196). There are also thermal analysis studies reported on a layered zirconium phosphate (197) and calcium hydrogen phosphate dihydrate (198). ORGANIC AND POLYMERIC MATERIALS There are various forms of carbon, all of which attract the attention of thermal analysts. The use of modulated DSC has led to the measurement of the heat capacity and detection of anomalies associated with the orientational melting transition of fullerene around 260 K (199). The deposition of a layer of diamond on metal surfaces offers commercial uses, and characterization of the resistance of such diamond layers to oxidation has been studied using TG and DTA (200). There are several publications on carbon fibers, dealing with the influence of their polymeric source on subsequent oxidation (201, 202) and on their characterization in composites (200). The preparation of nanostructured particles of amorphous carbon-activated palladium metallic clusters involved characterization utilizing DSC (204). These appear to be a difference in the oxidation of carbon blacks associated in elastomer formulations dependent on whether the oxidation is associated with the edge carbon atoms or the basal plane carbon atoms (205). High-resolution TG was used to characterize mesoporous carbon materials with deposited silica (206, 207). One factor that affects the oxygen surface complexes on activated carbon is aging and this can be studied by temperature-programmed desorption (208). The TG balance is an ideal unit to study adsorption and oxidation of carbon (209). There is a probability that in certain stilbenes liquid crystal properties might be present and this has attracted a certain amount of attention (210, 211). Other studies on simple organic compounds include thermoanalytical and an X-ray study of solid solution formation in the system malic acid and (R)-R-phenylethylamine (212) and a DSC study on the mechanism of optical resolution of N-methylamphetamine by tartaric acid (213). The synthesis of various polymers has been assisted by characterization studies involving thermal analysis, these include methyl acrylate-ethyl acrylate copolymer (214), poly(β-acryloxypropionic acid) hydrogels (215), poly(thioarylene)s (216), and certain polyelectrolyte complexes (217). The crystallization from the melt of metallocene-type isotactic polypropylenes has been studied by DSC (218). There are molecular segmental segregation effects in the melting behavior of linear low-density polyethylene (219). The measurement of the heat capacity of polymers by DSC is affected by the presence of a filler, but in the case of ABS resin composites, it is possible to use this phenomenon to evaluate the magnitude of interaction between the two (220). A relationship between the glass transition temperature (Tg) and fractional conversion for thermosetting systems has been established (221). Modulated DSC can be used to study miscibility in poly(methyl methacrylate) and poly(epichlorohydrin) blend (222). The Tg of DDPA-DMA polyimide films can be assessed by dynamic mechanical analysis (223), a technique that can also evaluate thermal shrinkage stress (224). Dynamic mechanical thermal analysis and dielectric thermal analysis have been found to be useful in following the physical 30R
Analytical Chemistry, Vol. 70, No. 12, June 15, 1998
aging of amorphous poly(hydroxybutyrate) and poly(ethylene terephthalate) (225, 226). Correlation between mechanical properties and physical properties in polyester-urethane coatings appears in a review article (227). Yee and Stephens (228) present a TG technique to measure the fiber content of graphite fiberreinforced polymer matrix composites. A comprehensive thermal analysis study on readily available reference thermoplastics found good correlation between Tg and Tm values and published data (229). The most obvious thermal analysis unit to study thermal degradation is TG. This was the approach used in following the degradation of polyethylene (vinyl acetate) (230), vinylidene chloride copolymers (231, 232), and styrenated unsaturated polyester resin (233). McNeill et al. in following the degradation of copolymers of poly(acenaphthylene) and its copolymers and copolymers of chlorotrifluorethylene with methyl methacrylate used a combination of TG and thermal volatilization experiments (234, 235). Isotactic poly(propylene) was subjected to oxygen and helium plasma and then subjected to thermo-oxidative degradation using TG (236). In other polymer systems, heat treatment leads to cross-linking. Sometimes cure is accompanied by degradation processes (237), but in other cases, only the curing process is considered (238-240). McGill and co-workers reported on the use of thermal analysis in studies on the sulfur vulcanization of polyisoprene (240, 241). BIOLOGICAL, MEDICAL, AND PHARMACEUTICAL STUDIES Moisture is an important factor in determining morphological forms of material. In the system water-raffinose, DSC and X-ray diffraction show that upon degradation followed by rehydration the constant relative humidity effects the rate of conversion from the amorphous substance to the crystalline trihydrate (242). Various crystalline forms of paracetamol are reported depending largely on the recrystallization conditions (242). Studies on ibuprofen include a report on its vaporization from the liquid state (156), its inclusion by heptakis(2,3,6-tri-O-methyl)-β-cyclodextrin (244), and its in vitro release from poly(ethylene glycol)-poly(vinyl acetate) mixtures (245). DSC and TG have proved to be useful in studying the compatibility of nefazodene (246), cephalexin monohydrate (247), and ascorbic acid (248) with excipients. DSC is also the accepted method for drug purity determinations (249). The crystallization and melting of maltopentose hydrate using DSC is reported (250). The evaluation of lactose crystalline forms was accomplished using both DSC and TG (251). Poly(ethylene glycol) used in pharmaceutical technology has been investigated using thermal analysis techniques (252, 253). The possibility of β-cyclodextrin or related compounds complexing with various drugs has been studied using either DSC or DTA (254257). The synthesis of homo- and copolymers of glycolic acid and lactic acid involved thermal analysis techniques in their characterization (258). The anhydrous, dihydrate, and trihydrate forms of magnesium stearate and magnesium palmitate have been prepared and characterized using thermal analysis (259). The thermal analysis of the commercial tablet (260) needs to be approached with caution as the process of tabletting introduces many extra factors. The heat treatment of starch in nitrogen or other inert gas leads eventually to a carbon residue, but in air, combustion occurs (261-263). However, many other thermal
properties of the starch may be noted (264). These include gelatinization (265, 266) and retrogradation (267). Other avenues of research in the field include the effect of lime on gelatinization (268), the effect of moisture on the baking process and in the production of cookies, crackers, and pretzels (269), and a study of the effect of polyols and NaCl on starch (270). Starch can be incorporated into films of poly(ethylene-co-vinyl alcohol) when DSC and DMA can be used for characterization purposes (271). DSC and TG have been utilized to assess the production of biodegradable polymers containing starch (272, 273). It is found that gluten and water mixes show endothermic vaporization of the water, plus a condensation reaction which is exothermic. A glass transition can also be observed, and at higher temperature a char results (274). The presence of water affects the Tg signal (275). A direct application to food is the use of DMA and DSC to determine the aging characteristics of white bread (276). The affect of antifreeze activity of various food components was studied by Mizuno et al. (277) using DSC. DMTA was used to determine the effect of water on the physicochemical and mechanical properties of gelatin (278). There are applications of thermal analysis to butter dealing with the fat crystallization and the detection of recombined butter (279, 280). It is claimed that the country of origin of peanuts can be determined from DSC results (281). Using DSC, it is found possible to measure the change in heat capacity accompanying thermal unfolding of proteins (282). DSC was used to follow thermal denaturation of rubisco (283). DNA melting and denaturation using DSC is most often interpreted on a thermodynamic basis (284), but an alternative kinetic interpretation has been tentatively suggested (285). A kinetic interpretation is also offered for the unfolding of bovine superoxide dismutase (286). MINERALS AND ENERGY-RELATED TOPICS A review by Warne (287) covers the use of thermomagnetometry, DSC, and the new method of proton resonance thermal analysis (68, 69) to coals in various atmospheres. A series of papers by Pan et al. covers the use of thermal analysis to coals, covering such subjects as cofiring high-sulfur coals with refusederived fuel (288), the behavior of chlorine during the combustion of coal (289), and the study of organic compounds evolved during the cofiring of coal and refuse fuels (290, 291). Crude oils have been studied using high-pressure TGA (292). Thermogravimetric studies have been made of the systems pertinent to the in situ combustion process for enhanced oil recovery (293). Wood can be considered chemically as composed of hemicellulose, cellulose, and lignin. Hemicellulose thermally decomposes before cellulose. Lignin decomposes over a range of temperatures, so the three components cannot be clearly differentiated by thermal analysis. In nitrogen, the end product may be carbon or depending on the type of wood and temperature destructive distillation may be observed. In air, total gasification will take place. Pyrolysis of birch wood in the absence of air followed by activation of the resultant char in CO2 and steam (294) together with a comprehensive review (295) elaborate on the outline given above. Other studies concentrate on flame retardancy usually by some kind of surface treatment on cellulose fibers (296-298). There are similar studies on fire hazards on heating cellulose diacetate (299). Other studies of note deal with flammability of thin thermoplastics
(300), of polyurethane foams (301), and hydrogenative pyrolysis of waste tires (302). Pyrotechnic systems involving perchlorate and nitrocellulose materials have been extensively studied using simultaneous TG-DTA-mass spectroscopy (303-306). Studies of accelerated aging of pyrotechnics involving 16-mm signal cartridges used DTA (307). The thermal decomposition of ammonium dinitramide, a solid rocket propellant, is reported by Vyazovkin and Wight (308). The explosive thermal decomposition of biguanidinium diperchlorate was followed using both TG and mass spectroscopy (309). Thermal analysis investigations on minerals usually involves TG and DTA (310). A sulfide, FeNi2S4, mineral violarate was synthesized and examined using a simultaneous TG-DTA unit (311). Balek et al. (311) used emanation thermal analysis to characterize kaolinitic clay minerals. Hydration studies on lime and recarbonated lime involved examination of single pellets of material on a TG balance (313). Precipitator dust from a rotating lime kiln has been investigated using TG and X-ray powder diffraction analysis (314). Allen and Hayhurst (315) studied the reaction between sulfur dioxide and calcium oxide. The low levels of crystalline silica in slag and silica fume was determined from the R-β quartz transformation using DSC (316). The R-β transformation in crystobalite can also be investigated by a similar technique (317, 318). Emanation thermal analysis shows evidence of thermal recrystallization of the disordered silica layer as a result of mechanical grinding (319). The Ca(OH)2 content in cements by DTA or TG is taken as evidence of the extent of the hydration mechanism (320, 321). In cement pastes containing metakaolin, it is claimed that portlandite, Ca(OH)2, is reduced by pozzolanic reaction (322). The presence of ethanolamines is to retard the hydration of portland cement (323). It is possible to use thermal analysis to study the deterioration of concrete in aggressive media (324). The thermal behavior of basic oxygen furnace waste slag can be used to estimate calcium and magnesium oxide content, which cause the slag to exhibit expansion deleterious to its use as an aggregate in road construction (325). Coal fly ash-sulfuric acid-calcium hydroxide has been studied using TG and DTA (326). TG and DTA has been used in the characterization of kaolin-based ceramics (327). The reaction molding of metal and ceramic powders has been investigated in a study involving TG (328). ACKNOWLEDGMENT
The help given by the Chemical Abstract Service in providing CA Selects to aid in the literature search is gratefully appreciated. D. Dollimore received his B.S. (1949), Ph.D. (1952), and D.Sc. (1976) degrees from London University. He has been a Professor of Chemistry at the University of Toledo since 1982, holds a similar position in the College of Pharmacy at that university, and serves in an adjunct capacity in the Geology Department. He has served on the editorial board of Thermochimica Acta and currently serves on the editorial board of Instrumentation Science and Technology. He was the Mettler award winner in 1979 and in 1988 received the Du Pont/ICTA award in Thermal Analysis. He was chairman of the British Thermal Methods Group (1969-1971) and is at present Vice President of NATAS. He is the author of over 400 research papers and has published several books and served as editor of various Conference Proceedings. S. Lerdkanchanaporn received her B.S. in pharmacy (1989) at Chulalongkorn University, Thailand and M.S. in pharmacy (1995) at the University of Toledo. She has published several research papers on the application of thermal analysis to pharmaceutical materials and is currently visiting scholar at the University of Toledo in the College of Pharmacy.
Analytical Chemistry, Vol. 70, No. 12, June 15, 1998
31R
LITERATURE CITED (1) Turi, E. A., Ed. Thermal Characteristics of Polymeric Materials, 2nd. ed.; Academic: San Diego, 1997; Vols. 1 and 2. (2) Dollimore, D. In Analytical Instrumentation Handbook, 2nd ed. Ewing, G. W., Ed.; Marcel Dekker: New York, 1997; Chapter 17, p 947. (3) Davies, J. A.; Hockensmith, C. M.; Kukushkin, V. Yu.; Kukushkin, Yu. N. Synthetic Coordination Chemistry; World Scientific: Singapore, 1997. (4) Mark, J. E., Ed. Physical Properties of Polymers Handbook; American Institute of Physics: Woodbury, NY, 1996. (5) Hohne, G., Hemminger, W., Flemmersheim, H. J., Eds. Differential Scanning Calorimetry: An Introduction; Springer: Berlin, 1995. (6) Flynn, J. H., Kamimito, M., Sestak, K., Eds. Thermochim. Acta 1996, 282/283. (7) Turi, E. A. J. Therm. Anal. 1996, 46, 635. (8) Wunderlich, B. J. Therm. Anal. 1996, 46, 643. (9) Keating, M. Y., Ed. J. Therm. Anal. 1997, 49. (10) Riga, A. T., Patterson, G. H., Eds. Thermochim. Acta 1996, 272. (11) Riga, A. T., Lewis, R. T., Eds. Thermochim. Acta 1996, 284. (12) Kikic, I., Cesaro, A., Eds. Thermochim. Acta 1995, 269/270. (13) Soral, M., Todoki, M., Murakami, S., Eds. Thermochim. Acta 1995, 267. (14) Charsley, E. L., Laye, P. G., Eds. Thermochim. Acta 1997, 294. (15) Maronylu, B., Ed. J. Therm. Anal. 1996, 47. (16) Atake, T., Wakihara, M., Eds. Thermochim. Acta 1997, 299. (17) Liptay, G.; Ludwig, W. J. Therm. Anal. 1996, 47, 317-671. (18) Landau, R. N., Ed. Thermochim. Acta 1996, 289, 101-378. (19) Kaisersberger, E., Ed. Thermochim. Acta 1997, 295. (20) Paulik, F. J. Therm. Anal. 1996, 47, 659. (21) Kettrup, A. A.; Matuschek, G. J. Therm. Anal. 1996, 47, 317. (22) Brown, M. E. J. Therm. Anal. 1997, 49, 17. (23) Keattch, C. J. J. Therm. Anal. 1996, 46, 1501. (24) Chan, T. Y. A.; Odlyha, M. Thermochim. Acta 1995, 269/270, 755. (25) Odlyha, M. Thermochim. Acta 1995, 269/270, 705. (26) Foster, G.; Odlyha, M.; Hackney, S. Thermochim. Acta 1997, 294, 81. (27) Moropoulou, A.; Bakolas, A.; Bisbikou, K. Thermochim. Acta 1995, 269/270, 779. (28) Wiedemann, H. G.; Guenter, J. R.; Oswald, H. R. Thermochim. Acta 1996, 282/283, 453. (29) Wiedemann, H. G. Mater. Res. Soc. Symp. Proc. 1995, 352, 711. (30) Heidbrink, J. L.; Li, J.; Pan, W.-P.; Gooding, J. L.; Aubuchen, S.; Foreman, J. Lundgren, C. J. Thermochim. Acta 1996, 284, 241. (31) Brown, K. G.; Burns, K. S.; Upchurch, B. T.; Wood, G. M. Polym. Mater. Sci. Eng. 1996, 74, 269. (32) Anderson, D. G. Anal. Chem. 1997, 69, 15R. (33) Kohno, M.; Ogura, S.; Inoue, Y. J. Mater. Chem. 1996, 6, 1921. (34) Goodrum, J. W.; Siesel, E. M. J. Therm. Anal. 1996, 46, 1252. (35) Gallagher, P. K. J. Therm. Anal. 1997, 49, 33. (36) Aggarwal, P.; Dollimore, D. Instrum. Sci. Technol. 1996, 24, 96, 299. (37) Subramanian, J. S.; Gallagher, P. K. Thermochim. Acta 1995, 269/270, 89. (38) Hammiche, A.; Reading, M.; Pollock, H. M.; Song, M.; Hourston, D. J. Rev. Sci. Instrum. 1996, 67, 4268. (39) Hammiche, A.; Song, M.; Pollock, H. M.; Hourston, D. J.; Reading, M. Polym. Mater. Sci. Eng. 1996, 75, 275. (40) Dollimore, D.; Jones, W. J. Therm. Anal. 1996, 46, 15. (41) Aggarwal, P.; Dollimore, D. Instrum. Sci. Technol. 1996, 24, 213. (42) Chen, D.; Green, A.; Dollimore, D. Thermochim. Acta 1996, 284, 429. (43) Sembira, A. N.; Dunn, J. G. Thermochim. Acta 1996, 274, 113. (44) Schawe, J. E. K. Thermochim. Acta 1996, 271, 127. (45) Boller, A.; Okazaki, I.; Ishikiriyama, K.; Zhang, G. Wunderlich, B. J. Therm. Anal. 1997, 49, 1081. (46) Hutchinson, J. M., Montserrat, S. Thermochim. Acta 1996, 286, 263. (47) Reading, M. Eur. Pat. Appl. EP 747, 694 (Cl. G01N 25/00) 11 Dec. 1996; US Appl 459, 022, 2 June, 1995. (48) Chen, D.; Dollimore, D. Thermochim. Acta 1996, 272, 75. (49) Hourston, D. J.; Song, M.; Hammiche, A.; Pollock, H. M.; Reading, M. Polymer 1997, 38, 1. (50) Schawe, J. E. K. J. Therm. Anal. 1996, 47, 475. (51) Wagner, T.; Kasap, S. O. Philos. Mag. B 1996, 74, 667. (52) Alden, M.; Wulff, M.; Herdinius, S. Thermochim. Acta 1995, 265, 89. (53) Van Assche, G.; Van Hemelrijck, A.; Rahier, H.; Van Mele, B. Thermochim. Acta 1996, 286, 209. (54) Schawe, J. E. K.; Hoehne, G. W. H. J. Therm. Anal. 1996, 46, 893. (55) Hourston, D. J.; Song, M.; Hammiche, A.; Pollock, H. M.; Reading, M. Polymer 1996, 37, 243. (56) Barnes, P. A.; Parkes, G. M. B.; Brown, D. R.; Charsley, E. L. Thermochim. Acta 1995, 269/270, 665. (57) Kumruddin, M.; Ajikumar, P. K.; Dash, S.; Purniah, B.; Tyagi, A. K.; Krishan, K. Instrum. Sci. Technol. 1995, 23, 123. (58) Dash, S.; Kumruddin, M.; Tyagi, A. K. Bull. Mater. Sci. 1997, 20, 359. 32R
Analytical Chemistry, Vol. 70, No. 12, June 15, 1998
(59) Sikabwe, E. C.; Negelein, D. L.; Lin, R.; White, R. L. Anal. Chem. 1997, 69, 1606. (60) Maciejewski, M.; Baiker, A. Thermochim. Acta 1997, 295, 95. (61) Matuschek, G.; Utschick, H.; Namendorf, Ch.; Braever, G.; Kettrup, A. J. Therm. Anal. 1996, 47, 623. (62) Kettrup, A.; Matuschek, G.; Utschick, H.; Namendorf, Ch.; Braever, G. Thermochim. Acta 1997, 295, 119. (63) Hey, J. M.; Mehl, P. M.; MacFarlane, D. R. J. Therm. Anal. 1997, 49, 991. (64) Weddle, B. J.; Robbins, S. A.; Gallagher, P. K. Pure Appl. Chem. 1995, 67, 1843. (65) Androsch, R.; Stolp, M.; Radusch, H. J. Thermochim. Acta 1996, 271, 1. (66) Yoshida, H.; Kinoshita, R.; Teramoto, Y. Thermochim. Acta 1995, 264, 173. (67) Johnson, D. W.; Saba, C. S.; Wolf, J. D.; Wright, R. Anal. Chem. 1997, 69, 532. (68) Webster, D. S.; Cao, J. Curr. Trends Polym. Sci. 1996, 1, 147. (69) Lewitt, M. W.; Lowe, A. J. Thermochim. Acta 1997, 294, 13. (70) Kovacs, A.; Cordfunke, E. H. P.; Kok-Scheele, A.; Konings, R. J. M. J. Alloys Compd. 1996, 241, 95. (71) Back, D. D.; Grzyll, L. R.; Corrigan, M. Thermochim. Acta 1996, 272, 53. (72) Mishra, R.; Kerkar, S. R.; Dharwadkar, S. R. J Alloys Compd. 1997, 248, 80. (73) Porter, R. S.; Wang, L.-H. J. Therm. Anal. 1996, 46, 871. (74) Okazaki, I.; Wunderlich, B. Macromol. Rapid Commun. 1997, 18, 313. (75) Boller, A.; Wunderlich, B. J. Therm. Anal. 1997, 49, 343. (76) Mueller, A. Borchard, W. J. Phys. Chem. B. 1997, 101, 4283. (77) Radujevic, B. B.; Maricic, A.; Novakovic, R.; Ristic, M. M. J. Serb. Chem. Soc. 1995, 60, 1117. (78) Ohtani, H.; Ishida, K. J. Phase Equilib. 1995, 16, 416. (79) Kapala, J.; Kath, D.; Hilpert, K. Metall. Mater. Trans. A 1996, 27A, 2673. (80) Zivkovic, Z.; Zirkovic, D.; Sestak, J. Rud. Metal. Zb 1995, 42, 237, 251. (81) Zivkovic, Z.; Zirkovic, D.; Pesic, D.; Sestak, J. Rud. Metal. Zb 1995, 42, 245. (82) Ghanbari-Ahari, Cable, M.; Brett, N. H. Br. Ceram. Trans. 1996, 95, 58. (83) Liu, H. K.; Dou, S. X.; Ionescu, M.; Shao, Z. B.; Liu, K. R.; Liu, L. Q. J. Mater. Res. 1995, 10, 2933. (84) Zhao, Z. G.; Wang, S. H.; Jiang, S. B. Gaodeng Xuexiao Huaxue Xuebao 1997, 18, 182. (85) Nikolic, R.; Marinkovic, M.; Pavlovic, M. Thermochim. Acta 1996, 276, 17. (86) Roberts, C. J.; Franks, F. J. Chem. Soc., Faraday Trans. 1996, 92, 1337. (87) Perkkalainin, P.; Halttunen, H.; Pitkanen, I. Thermochim. Acta 1995, 269/270, 351. (88) Jaroniec, M. Access. Nonoporous Mater. [Proc. Symp.] 1995, 255. (89) Wunderlich, B. J. Therm. Anal. 1997, 49, 513. (90) Fringant, C.; Tvaroska, I.; Mazeau, K.; Rinaudo, M.; Desbrieres, J. Carbohydr. Res. 1995, 278, 27. (91) Sheng, H. W.; Xu, J.; Yu, L. G.; Sun, X. K.; Hu, Z. Q.; Lu, K. J. Mater. Res. 1996, 11, 2841. (92) Ozawa, T.; Kanari, K. Thermochim. Acta 1996, 288, 39. (93) Zhang, G.; Wunderlich, B. J. Therm. Anal. 1997, 49, 823. (94) Ivanovic, N.; Rodic, D.; Cekic, B.; Manasijevic, M.; Koicki, S.; Babic, D.; Nikolvic, R. J. Mater. Sci. 1995, 30, 3547. (95) Jriri, T.; Roger, J.; Bergmen, C.; Mathieu, J. C. Thermochim. Acta 1995, 266, 147. (96) Hensel, A.; Dobbertin, J.; Schawe, J. E. K.; Boller, A.; Schick, C. J. Therm. Anal. 1996, 46, 935. (97) Boller, A.; Schick, C.; Wunderlich, B. Thermochim. Acta 1995, 266, 97. (98) Wunderlich, B.; Okazaki, I. Polym. Mater. Sci. Eng. 1997, 76, 217. (99) Hourston, D. J.; Song, M.; Pollock, H. M.; Hummiche, A. J. Therm. Anal. 1997, 49, 209. (100) Fu, Y.; Chen, W.; Pyda, M.; Londono, D.; Annis, B.; Boller, A.; Habenschuss, A.; Chen, J.; Wunderlich, B. J. Macromol. Sci. Phys. 1996, B35, 37. (101) Delcourt, O.; Descamps, M.; Even, J.; Bertault, M.; Willart, J. F. Chem. Phys. 1997, 215, 51. (102) Wolf, G.; Lerchner, J.; Schmidt, H.; Gamsjaeger, H.; Koenigsberger, E.; Schmidt, P. J. Therm. Anal. 1996, 46, 353. (103) Matsuki, H.; Ichikawa, R.; Kaneshina, S.; Kamaya, H.; Ueda, I. J. Colloid Interface Sci. 1996, 181, 362. (104) Yang, J.; Roy, C. Thermochim. Acta 1996, 288, 155. (105) Ali-Adib, Z.; Bomben, A.; Davis, F.; Hodge, P.; Tundo, P.; Valli, L. J. Mater. Chem. 1996, 6, 15. (106) Zhao, Y.; Zhou, D.; Yao, G.; Huang, C.-H. Langmuir 1997, 13, 4060. (107) Blandamer, M. J.; Briggs, B.; Cullis, P. M.; Engberts, J. B. F. N.; Kacperska, A. J. Chem. Soc., Faraday Trans. 1995, 91, 4275. (108) Staszczuk, P.; Jaroniec, M.; Gilpin, R. K. Thermochim. Acta 1996, 287, 225. (109) Teodorescu, I. S.; Georgescu, V.; Vass, M. I.; Segal, E. Thermochim. Acta 1996, 282/283, 61. (110) Dunn, J. G.; Avraamides, J.; Chamberlain, A. C.; Fisher, N. Proc. Aus. IMM Annual Conf., Perth, 24-28 March 1996; 163.
(111) Flynn, J. H. Thermochim. Acta 1997, 300, 83. (112) Galwey, A. K.; Brown, M. E. Thermochim. Acta 1995, 269/ 270, 1. (113) Blaine, R. L.; Marcus, S. M. J. Therm. Anal. 1997, 49, 1485. (114) Viswanath, S. G.; Gupta, M. C. Thermochim. Acta 1996, 285, 259. (115) Segal, E.; Urbanovici, E.; Popescu, C. Thermochim. Acta 1996, 274, 173. (116) Budrugeac, P.; Petre, A. L.; Segal, E. Thermochim. Acta 1996, 275, 193. (117) Varhegyi, G.; Antal, M. J.; Szabo, P.; Jakab, E.; Till, F. J. Therm. Anal. 1996, 47, 535. (118) Baram, J.; Erukhimovitch, V. Thermochim. Acta 1997, 291, 81. (119) Dollimore, D.; Tong, P.; Alexander, K. S. Thermochim. Acta 1996, 282/283, 13. (120) Dollimore, D.; Lerdkanchanaporn, S.; Alexander, K. S. Thermochim. Acta 1996, 290, 73. (121) Aggarwal, P.; Dollimore, D. Instrum. Sci. Technol. 1996, 24, 307. (122) Ozawa, T.; Kaneko, T.; Sunose, T. J. Therm. Anal. 1995, 44, 205; 1996, 47, 1105. (123) Budrugeac, P.; Segal, E. Thermochim. Acta 1995, 260, 75. (124) Kelsey, M. S. Am. Lab. 1996, 28, 13. (125) Vyazovkin, S.; Wight, C. A. Annu. Rev. Phys. Chem. 1997, 48, 125. (126) Vyazovkin, S.; Wight, C. A. J. Phys. Chem. A 1997, 101, 8279. (127) Vyazovkin, S.; Dollimore, D. J. Chem. Inf. Comput. Sci. 1996, 36, 42. (128) Vyazovkin, S.; Sbirrazzuoli, N. Anal. Chem. Acta 1997, 355, 175. (129) Vyazovkin, S. J. Therm. Anal. 1997, 49, 1493. (130) Vyazovkin, S. J. Comput. Chem. 1997, 18, 393. (131) Vyazovkin, S. Int. J. Chem. Kinetics 1996, 28, 95. (132) Elder, J. P. Thermochim. Acta 1996, 272, 41. (133) Zsabo, J. J. Therm. Anal. 1996, 47, 1679. (134) Anderson, H. L., Kemmler, A.; Strey, A. J. Therm. Anal. 1996, 47, 543. (135) Malek, J. Thermochim. Acta 1995, 267, 61. (136) Laureiro, A.; Rouquerol, F.; Rouquerol, J. Thermochim. Acta 1996, 278, 165. (137) Bordere, S.; Rouquerol, F.; Llewellyn, P. L.; Rouquerol, J. Thermochim. Acta 1996, 282/283, 1. (138) Llwellyn, P.; Montanaro, L.; Rouquerol, F. Solid State Ionics 1997, 85, 23. (139) Real, C.; Alcala, D.; Criado, J. M. Solid State Ionics 1997, 95, 29. (140) Zhang, H.; Wang, Z.; Dai, J. J. Therm. Anal. 1995, 45, 109. (141) Kamruddin, M.; Ajikumar, P. K.; Dash, S.; Krishnan, A. K. T.; Krishan, K. Thermochim. Acta 1996, 287, 13. (142) Doherty, W. O. S.; Crees, O. L.; Senogles, E. J. Therm. Anal. 1996, 46, 1201. (143) Pelovski, Y.; Petkova, V. J. Therm. Anal. 1997, 49, 1227. (144) Basu, P.; Ray, H. S. J. Therm. Anal. 1995, 45, 1533. (145) Staszczuk, P. J. Therm. Anal. 1996, 46, 1821. (146) Wu, G. G.; Leggett, D. J. Thermochim. Acta 1996, 272, 87. (147) Day, M.; Cooney, J. D.; Mackinnon, M. Polym. Degrad. Stab. 1995, 48, 341. (148) Salla, J. M.; Ramis, X. Polym. Eng. Sci. 1996, 36, 835. (149) Anderson, H. L.; Schneider, H. A.; Kemmler, A.; Strey, R. J. Therm. Anal. 1996, 47, 1063. (150) Lin, J.-P.; Chang, C.-Y.; Wu, C.-H.; Shih, S.-M. Polym. Degrad. Stab. 1996, 53, 295. (151) Dai, R.-C.; Chen, J.-W. Lai, Yu-C.; Pai, Y.-Y.; Chien, J.-T. Shipin Kexue (Taipei) 1997, 24, 32. (152) Kok, M. V.; Okandan, E. J. Therm. Anal. 1996, 46, 1657. (153) Yamato, T.; Miyake, Y.; Kohjiya, S. Nippon Gomu Kyokaishi 1995, 68, 750. (154) L′vov, B.; Novichikhin, A. V. Thermochim. Acta 1997, 290, 239. (155) Aggarwal, P.; Dollimore, D.; Alexander, K. S. J. Therm. Anal. 1997, 49, 595. (156) Lerdkanchanaporn, S.; Dollimore, D. J. Therm. Anal. 1997, 49, 879. (157) Panduranga, R. S.; Pai, V.; Surianarayanan, M.; Mallikarjunan, M. M. Thermochim. Acta 1996, 279, 157. (158) Cataldo, L.; Lefevre, A.; Ducret, F.; Cohen-Adad, M.-Th.; Valignat, N. J. Alloys Compd. 1996, 241, 216. (159) Clavaguera-Mora, M. T.; Zhu, J.; Meyer, M.; Mendoza-Zelis, L.; Sanchez, F. H.; Clavaguera, N. Mater. Res. Soc. Symp. Proc. (High Temperature Ordered Intermetallic Alloys VII) 1997, 460, 355. (160) Matuschek, G.; Finke, A.; Thumm, W.; Kettrup, A. Thermochim. Acta 1995, 263, 23. (161) Gogebakan, M.; Warren, P. J.; Cantor, B. Mater. Sci. Eng. A 1997, A226, 168. (162) Butt, D. P.; Albert, D., Taylor, T. N. J. Am. Ceram. Soc. 1996, 79, 2809. (163) Wu, Q.; Wu, J.; Wen, B.; Wuji, X. Cailiao Xuebao 1996, 11, 343. (164) Kurihara, L. K.; Chow, G. M.; Choi, L. S.; Schoen, P. E. Process Handl. Powders Dusts, Proc. Int. Symp. 1997, 3. (165) Butt, D. P.; Lackner, K. S.; Wendt, C. H.; Conzone, S. D.; Kung, H.; Lu, Y.-Ch.; Bremser, J. K. J. Am. Ceram. Soc. 1996, 79, 1892. (166) Dakki, A.; Ferriol, M.; Cohen-Adad, M. T. Eur. J. Solid State Inorg. Chem. 1996, 33, 19.
(167) Ingram-Jones, V. J.; Slade, R. C. T.; Davies, T. W.; Southern, J. C.; Salvador, S. J. Mater. Chem. 1996, 6, 73. (168) Balek, V.; Malek, Z.; Subrt, J.; Zdimera, A. J. Radioanal. Nucl. Chem. 1996, 212, 321. (169) Venables, D. S.; Brown, M. E. Thermochim. Acta 1996, 285, 361; 282/283, 265; 285, 361; 1997, 291, 131. (170) Parvulescu, V. I.; Vasiliu, F.; Segal, E. J. Therm. Anal. 1995, 45, 1313. (171) Fung Kee Fung, C. A.; Burke, M. F. J. Chromatogr. A 1996, 752, 41. (172) Bi, M.; Li, H.; Pan, W.-P.; Lloyd, W. G.; Davis, B. H. Thermochim. Acta 1996, 284, 153. (173) Gotor, F. J.; Real, C.; Dianez, M. J.; Criado, J. M. J. Solid State Chem. 1996, 123, 301. (174) Clearfield, A.; Bortun, A. I.; Borton, L. N. Spec. Publ.-R. Soc. Chem. 1996, 182, 338 (Ion Exchange Developments and Applications). (175) Borton, A. I.; Borton, L. N.; Clearfield, A. Chem. Mater. 1997, 9, 1854. (176) Borade, R. B.; Clearfield, A. Microporous Mater. 1996, 5, 289. (177) Mansour, S. A. A. J. Therm. Anal. 1996, 46, 263. (178) Elmasry, M. A. A.; Gaber, A.; Khater, E. M. H. J. Therm. Anal. 1996, 47, 757. (179) Carson, B. R.; Kenessey, G.; Allan, J. R.; Liptay, G. J. Therm. Anal. 1995, 45, 369; 1996, 46, 1577. (180) Gyoryova, K.; Balek, V.; Behrens, B. H.; Matuschek, A.; Kettrup, A. J. Therm. Anal. 1997, 48, 1263. (181) Chang, H.; Huang, P. J. Anal. Chem. 1997, 69, 1485. (182) Kociba, K. J.; Gallagher, P. K. Thermochim. Acta 1996, 282/ 283, 277. (183) Patnaik, U.; Muralidhar, J. Thermochim. Acta 1996, 274, 261. (184) Knaepen, E.; Mullens, J.; Yperman, J.; Van Poucke, L. C. Thermochim. Acta 1996, 284, 213. (185) Rupard, R. G.; Gallagher, P. K. Thermochim. Acta 1996, 272, 11. (186) Donia, A. M. Polyhedron 1997, 16, 3013. (187) Donia, A. M.; Dollimore, D. Thermochim. Acta 1997, 290, 139. (188) Joseph, S.; Joshi, M. J. Indian J. Phys. A 1997, 71A, 183. (189) Braileanu, A.; Zaharescu, D.; Crisan, D.; Fatu, D.; Segal. E.; Danciulescu, C. J. Therm. Anal. 1996, 47, 569. (190) Bultosa, G.; Mulokozi, A. M. J. Therm. Anal. 1995, 45, 1339. (191) Li, F.; He, J.; Zhang, B.; Sun, P.. Duan, X.; Wang, Z.; Beijing Huagong Daxue Xuebao, Ziran Kexueban 1996, 23, 58. (192) Audebrand, N.; Guillou, N.; Auffredic, J.-P.; Louer, D. Thermochim. Acta 1996, 286, 83. (193) Audebrand, N.; Auffredic, J.-P.; Louer, D. Thermochim. Acta 1997, 293, 65. (194) Guillou, N.; Auffredic, J.-P.; Louer, D. J. Solid State Chem. 1996, 122, 59. (195) Cseri, T.; Bekassy, S.; Kenessey, G.; Liptay, G.; Figueras, F.. Thermochim. Acta 1996, 288, 137. (196) Delfort, B.; Chive, A.; Barre, L. J. Colloid Interface Sci. 1997, 186, 300. (197) Bortun, A. I.; Bortun, L. N.; Clearfield, A. Solvent Extr. Ion Exch. 1997, 15, 305. (198) Tortet, L.; Gavarri, J. R.; Nihoul, G.; Fulconis, J. M.; Rouquerol, F. Eur. J. Solid State Inorg. Chem. 1996, 33, 1199. (199) Fischer, J. E.; McGhie, A. R.; Estrada, J. K.; Haluska, M.; Kuzmany, H.; ter Meer, H.-U. Phys. Rev. B: Condens. Matter 1996, 53, 11418. (200) Wang, M.; Wang, Y.; Guan, C.; Zang, J. Fuhe Cailiao Xuebao 1996, 13, 48. (201) Gupta, A.; Harrison, I. R. Carbon 1996, 34, 1427. (202) Lee, J. K.; Shim, H. J.; Lim, J. C.; Choi, G. J.; Kim, Y. D.; Min, B. G.; Park, D. Carbon 1997, 35, 837. (203) Sastri, S. B.; Armistead, J. P.; Keller, T. M. Polym. Compos. 1996, 17, 816. (204) Dhas, N. A.; Cohen, H.; Gedanken, A. J. Phys. Chem. B 1997, 101, 6834. (205) Azizi, J.; Dollimore, D.; Heal, G. R.; Kneller, W. A.; Manley, P.; Philip, C. J. Therm. Anal. 1996, 46, 1837. (206) Zimmerman, D.; Jaroniec, M.; Gilpin, R. K. Surf. Modif. Technol. IX, Proc. Int. Conf. 9th 1995, (Pub. 1996), 219. (207) Gilpin, R. K.; Gangoda, M. E.; Jaroniec, M. Carbon 1997, 35, 133. (208) Carrasco-Marin, F.; Rivera-Ultrilla, J.; Joly, J.-P.; Moreno-Castilln, C. J. Chem. Soc., Faraday Trans. 1996, 92, 2779. (209) Pan, D.; Jaroniec, M. Langmuir 1996, 12, 3657. (210) Tittarelli, F.; Masson, P.; Skoulios, A. Liq. Cryst. 1997, 22, 721. (211) Day, G. M.; Howell, O. T.; Metzler, M. R.; Woodgate, P. D. Aust. J. Chem. 1997, 50, 425. (212) Kozma, D.; Tomor, K.; Novak, C.; Pokol, G.; Fogassy, E. J. Therm. Anal. 1996, 46, 1613. (213) Kozma, D.; Novak, C.; Pokol, G.; Fogassy, E. J. Therm. Anal. 1996, 47, 727. (214) Leon, C.; Rodriguez, R.; Peralta, R.; Alvarez, C.; Castano, V. M. Int. J. Polym. Mater. 1997, 35, 119. (215) Runsheng, M.; Huglin, M. B. Polymer 1995, 36, 4509. (216) Ding, Y.; Hay, A. S. Macromolecules 1997, 30, 2527. (217) Huglin, M. B.; Webster, L.; Robb, I. D. Polymer 1996, 37, 1211. (218) Galante, M. J.; Mandelkern, L.; Alamo, R. G.; Lehtinen, A.; Paukkeri, R. J. Therm. Anal. 1996, 47, 913.
Analytical Chemistry, Vol. 70, No. 12, June 15, 1998
33R
(219) Chiu, F.-C.; Keating, M. Y.; Cheng, S. Z. D. Annum Technol. Conf. Soc. Plast. Eng. 53rd 1995, 2, 1503. (220) Tsukuda, R.; Sumimoto, S.; Ozawa, T. J. Appl. Polym. Sci. 1996, 59, 1043. (221) Venditti, R. A.; Gillham, J. K. J. Appl. Polym. Sci. 1997, 64, 3. (222) Song, M.; Hammmiche, A.; Pollock, H. M.; Hourston, D. J.; Reading, M. Polymer 1996, 37, 5661. (223) Kim, Y. H.; Moon, B. S.; Harris, F. W.; Chang, S. Z. D. J. Therm. Anal. 1996, 46, 921. (224) Wu, Z.; Zhang, A.; Shen, D.; Leland, M.; Harris, F. W., Cheng, S. Z. D. J. Therm. Anal. 1996, 46, 719. (225) Biddlestone, F.; Harris, A.; Hay, J. N.; Hammond, T. Polym. Int. 1996, 39, 221. (226) Aref-Azar, A.; Arnoux, F.; Biddlestone, F.; Hay, J. N.. Thermochim. Acta 1996, 273, 217. (227) Scanlan, J. C.; Webster, D. C.; Crain, A. L. ACS Symp. Ser. (Film Formation in Waterborne Coatings) 1996, No. 648, 222. (228) Yee, R. Y.; Stephens, T. S.. Thermochim. Acta 1996, 272, 191. (229) Riga, A.; Young, D.; Mlachak, G.; Kovach, P. J. Therm. Anal. 1997, 49, 425. (230) Marin, M. L.; Jimnez, A.; Lopez, J.; Vilaplana, J. J. Therm. Anal. 1996, 47, 247. (231) Howell, B. A.; Keeley, J. R.. Thermochim. Acta 1996, 272, 131. (232) Howell, B. A.; Sastry, B. B. S., Ahmed, S. I.; Smith, P. B.. Thermochim. Acta 1996, 272, 139. (233) Budrugeac, P.; Segal, E.; Stere, E.; Petre, A. L. J. Therm. Anal. 1996, 46, 1313. (234) McNeill, I. C.; Mohammed, M. H. Polymer Degrad. Stab. 1997, 56, 141, 191. (235) Zulfiqar, S.; Rizvi, M.; Munir, A.; Ghaffar, A.; McNeill, I. C. Polym. Degrad. Stab. 1996, 52, 341. (236) Bauer, M.; Rembold, M.; Marti, E.; Schneider, H. A.; Muelhaupt, R. Macromol. Chem. Phys. 1996, 197, 61. (237) Hayes, B. S.; Seferis, J. C. J. Appl. Polym. Sci. 1996, 61, 37. (238) Chinn, D.; Shim, S.-B.; Seferis, J. C. J. Therm. Anal. 1996, 46, 1511. (239) Vyazovkin, S.; Sbirrazzuoli, N. Macromolecules 1996, 29, 1867. (240) Gradwell, M. H. S.; McGill, W. J. J. Appl. Polym. Sci. 1995, 58, 2193. (241) Giuliani, B. V. K. M.; McGill, W. J. J. Appl. Polym. Sci. 1996, 62, 647, 1057. (242) Kajiwara, K.; Franks, F. J. Chem. Soc., Faraday Trans. 1997, 93, 1779. (243) Di Martino, P.; Conflant, P.; Drache, M.; Huvenne, J.-P.; GuyotHermann, A.-M. J. Therm. Anal. 1997, 48, 447. (244) Brown, G. R.; Caira, M. R.; Nassimbeni, L. R.; Van Oudtshoorn, B. J. Inclusion Phenom. Mol. Recognit. Chem. 1996, 26, 281. (245) Shehab, M. A.; Richards, J. H. Drug Dev. Ind. Pharm. 1996, 22, 645. (246) Balestrieri, F.; Magri, A. D.; Magri, A. L.; Marini, D.; Sacchini, A. Thermochim. Acta 1996, 285, 337. (247) Hassan, M. A.; Kaloustian, J.; Ramsis, H.; Khaled, K. A.; El-Faham, T. H.; Tous, S. S.; Maury, L.; Joachim, J. S.T.P. Pharma Sci. 1995, 5, 435. (248) Lerdkanchanaporn, S.; Dollimore, D.; Alexander, K. S. Thermochim. Acta 1996, 284, 115. (249) Yamamoto, K.; Momoto, M.; Kitamura, H.; Harita, K. Yakugaku, Zasshi 1997, 117, 119. (250) Moates, G. K.; Noel, T. R.; Parker, R.; Ring, S. G.; Cairns, P.; Morris, V. J. Carbohydr. Res. 1997, 299, 91. (251) Drapier-Beche, N.; Fanni, J.; Parmentier, M.; Vilasi, M. J. Dairy Sci. 1997, 80, 457. (252) Mura, P.; Manderioli, A.; Bramanti, G.; Ceccarelli, L. Drug Dev. Ind. Pharm. 1996, 22, 909. (253) Gines, J. M.; Arias, M. J.; Rabasco, A. M.; Novak, C.; Ruiz-Conde, A.; Sanchez-Soto, P. J. J. Therm. Anal. 1996, 46, 291. (254) Nagarsenkar, M. S.; Shenai, H. Drug Dev. Ind. Pharm. 1996, 22, 987. (255) Gines, J. M.; Arias, M. J.; Novak, C.; Sanchez-Soto, P. J.; RuizConde, A.; Morillo, E. J. Therm. Anal. 1995, 45, 659. (256) Bettinetti, G. P.; Mura, P.; Melani, F.; Rillosi, M.; Giordano, F. J. Inclusion Phenom. Mol. Recognit. Chem. 1996, 25, 327. (257) Winters, C. S.; York, P.; Timmins, P. Eur. J. Pharm. Sci. 1997, 5, 209. (258) Song, M.; Yu, Y.; Zhang, B.; Hao, G.; Zhou, Q.; Zhang, Y.; Liu, S.; Xiao, X. Lizi Jiaohuan Yu Xifu 1995, 11, 245. (259) Sharp, S. A.; Celik, M.; Newman, A. W.; Brittain, H. G. Struct. Chem. 1997, 8, 73. (260) Elder, J. P.; Rosen, L. A. Thermochim. Acta 1996, 282/283, 469. (261) Xu, S.; Wan, X.; Feng, C.; Wang, Y.; Zeng, Q.; Fu, Y.; Guo, X.; Chen, L. Theory Pract. Energ. Mater., [Proc. Int. Autumn Semin. Propellants, Explos. Pyrotech.] 1996, 484. (262) Aggarwal, P.; Dollimore, D. Talanta 1996, 43, 1527. (263) Aggarwal, P.; Dollimore, D. Thermochim. Acta 1997, 291, 65. (264) Yamin, F. F.; Svendsen, L.; White, P. J. Cereal Chem. 1997, 74, 407. (265) Acquistucci, R.; Bucci, R.; Magri, A. D.; Magri, A. L. Fresenius' J. Anal. Chem. 1997, 357, 97. (266) Kawabata, A.; Takase, N.; Akuzawa, S.; Sawayama, S. Oyo Toshitsu Kagaku 1996, 43, 471. (267) Gidley, M. J.; Cooke, D.; Darke, A. H.; Hoffmann, R. A.; Russell, A. L.; Greenwell, P. Carbohydr. Polym. 1995, 28, 23. 34R
Analytical Chemistry, Vol. 70, No. 12, June 15, 1998
(268) Bryant, C. M.; Hamaker, B. R. Cereal Chem. 1997, 74, 171. (269) Slade, L.; Levine, H.; Wang, M.; Ievolella, J. J. Therm. Anal. 1996, 47, 1299. (270) Huang, R.-M.; Yeh, C.-Y.; Lii, C.-Y. Zhongguo Nongye Huaxue Huizhi 1997, 35, 86. (271) Stenhouse, P. J.; Ratto, J. A.; Schneider, N. S. J. Appl. Polym. Sci. 1997, 64, 2613. (272) Jacobsen, S.; Fritz, H. G. Polym. Eng. Sci. 1996, 36, 2799. (273) Stein, T. M.; Greene, R. V. Starch/Staerke 1997, 49, 245. (274) Sartor, G.; Johari, G. P. J. Phys. Chem. 1996, 100, 19692. (275) Gontard, N.; Ring, S. J. Agric. Food Chem. 1996, 44, 3474. (276) Vodovotz, Y.; Hallberg, L.; Chinachoti, P. Cereal Chem. 1996, 73, 264. (277) Mizuno, A.; Mitsuiki, M.; Toba, S.; Motoki, M. J. Agric. Food Chem. 1997, 45, 14. (278) Pinhas, M.-F.; Blanshard, J. M. V.; Derbyshire, W.; Mitchell, J. R. J. Therm. Anal. 1996, 47, 1499. (279) Schaffer, B.; Lorinczy, D.; Szakaly, S. J. Therm. Anal. 1996, 47, 515. (280) Tunick, M. H.; Smith, P. W.; Holsinger, V. H. J. Therm. Anal. 1997, 49, 795. (281) Dyszel, S. M. Thermochim. Acta 1996, 284, 103. (282) Liu, Y.; Sturtevant, J. M. Biochemistry 1996, 35, 3059. (283) Libouga, D. G.; Aguie-Beghin, V.; Douillard, R. Int. J. Biol. Macromol. 1996. 19, 271. (284) Duguid, J. G.; Bloomfield, V. A.; Benevides, J. M.; Thomas, G. J., Jr. Biophys. J. 1996, 71, 3350. (285) Aggarwal, P.; Dollimore, D. Thermochim. Acta 1996, 284, 109. (286) Grasso, D.; Rosa, C. L.; Milardi, D.; Fasone, S. Thermochim. Acta 1995, 265, 163. (287) Warne, S. St. J. Thermochim. Acta 1996, 272, 1. (288) Lu, H.; Purushothama, S.; Hyatt, J.; Pan, W.-P.; Riley, J. T.; Lloyd, W. G.; Flynn, J.; Gill, P. Thermochim. Acta 1996, 284, 161. (289) Napier, J.; Heidbrink, J.; Keene, J.; Li, H.; Pan, W.-P.; Riley, J. T. Prepr. Pap.-Am. Chem. Soc., Div. Fuel Chem. 1996, 41, 51. (290) Purushothama, S.; Lu, R.; Yang, X.; Hyatt, J.; Pan, W.-P.; Riley, J. T.; Lloyd, W. G.; Prepr. Pap.-Am. Chem. Soc., Div. Fuel Chem. 1996, 41, 56. (291) Yang, X.; Napier, J.; Sisk, B.; Pan, W.-P.; Riley, J. T.; Lloyd, W. G.; Prepr. Pap.-Am. Chem. Soc., Div. Fuel Chem. 1996, 41, 1127. (292) Kok, M. V.; Hughes, R.; Price, D. Thermochim. Acta 1996, 287, 91. (293) Indrijarso, S.; Oklany, J. S.; Millington, A.; Price, D.; Hughes, R. Thermochim. Acta 1996, 277, 41. (294) Chen, G.; Yu, Q.; Sjoestroem, K. J. Anal. Appl. Pyrolysis 1997, 40, 41, 491. (295) Antal, M. J. Ind. Eng. Chem. Res. 1995, 34, 703. (296) Kandola, B. K.; Horrocks, A. R. Polym. Degrad. Stab. 1996, 54, 289. (297) Price, D.; Horrocks, A. R.; Akalin, M.; Faroq, A. A. J. Anal. Appl. Pyrolysis 1997, 40, 41, 511. (298) Dollimore, D.; Hoath, J. M. J. Therm. Anal. 1997, 49, 649. (299) Price, D. M.; Church, S. P. Thermochim. Acta 1997, 294, 107. (300) Nelson, M. I.; Brindley, J.; McIntosh, A. C. Polym. Degrad. Stab. 1996, 54, 255. (301) Matuschek, G. Thermochim. Acta 1995, 263, 59. (302) Muroco, F.; Garufi, E.; Smith, R. B.; Gioia, F. J. Hazard. Mater. 1996, 50, 79. (303) Sarawadekar, R. G.; Daniel, R.; Jayaraman, S. Int. Annu. Conf. ICT 1995, 26th 56/1-56/14 (Pyrotechnics). (304) Berger, B.; Charsley, E. L.; Warrington, S. B. Propellants, Explos., Pyrotech. 1995, 20, 266. (305) Berger, B.; Brammer, A. J.; Charsley, E. L. Thermochim. Acta 1995, 269/270, 639. (306) Berger, B.; Charsley, E. L.; Rooney, J. J.; Warrington, S. B. Thermochim. Acta 1995, 269/270, 687. (307) Menton, G.; Griffiths, T. T.; Starling, J. A.; Barnes, P. Proc. Int. Pyrotechnic. Semin. 22nd 1996, 559, 575. (308) Vyazovkin, S.; Wight, C. A. J. Phys. Chem. A 1997, 101, 5653, 7217. (309) Dollimore, D.; Martin, A.; Pinkerton, A. Thermochim. Acta 1996, 285, 109. (310) Abdel-Rehim, A. M. J. Therm. Anal. 1997, 48, 177. (311) Dunn, J. G.; Howes, V. L. Thermochim. Acta 1996, 282/283, 305. (312) Balek, V.; Klosova, E.; Murat, M. C. R. Acad. Sci., Ser. II: Sci. Terr Planetes 1996, 322, 543. (313) Marcil-Camacho, A.; Rodriguez, H. H.; Hills, A. W. D.; Morales, R. D. ISIJ Int. 1997, 37, 468, 477. (314) Roode, Q. I.; Potgieter, J. H. Cem. Concr. Res. 1996, 26, 1269. (315) Allen, D.; Hayhurst, A. N. J. Chem. Soc., Faraday Trans. 1996, 92, 1227, 1239. (316) Mikhail, S. A.; Turcotte, A.-M. Thermochim. Acta 1997, 292, 111. (317) Stevens, S. J.; Hand, R. J.; Sharp, J. H. J. Therm. Anal. 1997, 49, 1409. (318) Alcala, M. D.; Real, C.; Criado, J. M. J. Am. Ceram. Soc. 1996, 79, 1681. (319) Balek, V.; Fusek, J.; Kriz, J.; Murat, M. Thermochim. Acta 1995, 262, 209. (320) Hanna, R. A.; Cheeseman, C. R.; Hills, C. D.; Sollaris, C. J.; Buechler, P. M.; Perry, R. Environ. Technol. 1995, 16, 1001.
(321) Tanaka, Y.; Nawa, T. Semento, Konkurito Ronbunshu 1996, 50, 38. (322) Wild, S.; Khatib, J. M. Cem. Concr. Res. 1997, 27, 137. (323) Heren, Z.; Olmez, H. Cem. Concr. Res. 1996, 26, 701. (324) Balasubramanian, T. M.; Saravanan, K.; Srinivasan, S.; Jayalaksimi, K.; Balakrishnan, K. Bull. Electrochem. 1996, 12, 68. (325) Mikhail, S. A.; Turcotte, A. M. Thermochim. Acta 1995, 263, 87.
(326) Song, J. T.; Ahn, M. S.; Jeong, M. Y. Yoop Hakhoechi 1996, 33, 1331. (327) Papargyris, A. D.; Cooke, R. D. Br. Ceram. Trans. 1996, 95, 107. (328) Birkinshaw, C.; Buggy, M.; O’Neill, A. J. Chem. Technol. Biotechnol. 1996, 66, 19.
A19800038
Analytical Chemistry, Vol. 70, No. 12, June 15, 1998
35R