Article pubs.acs.org/jced
Thermal Conductivities of [EMIM][EtSO4], [EMIM][EtSO4] + C2H5OH, [EMIM][EtSO4] + H2O, and [EMIM][EtSO4] + C2H5OH + H2O at T = (283.15 to 343.15) K Qiao-Li Chen, Ke-Jun Wu,* and Chao-Hong He State Key Laboratory of Chemical Engineering, Department of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China ABSTRACT: The thermal conductivities of 1-ethyl-3-methylimidazol-3-ium ethylsulfate, 1-ethyl-3-methylimidazol-3-ium ethylsulfate + ethanol, 1-ethyl-3methylimidazol-3-ium ethylsulfate + water, and 1-ethyl-3-methylimidazol-3ium ethylsulfate + ethanol + water were reported. The measurements were performed in the temperature range from (283.15 to 343.15) K by a transient hot-wire technique covering the whole composition range at atmospheric pressure. The uncertainty of experimental thermal conductivity is 2.0 % with a coverage factor of k = 2. The second-order Scheffé polynomial was used to correlate the temperature and composition dependence of the experimental thermal conductivities for both binary and ternary mixtures. The average absolute deviation of those calculated values from the experimental data was 0.64 %.
■
INTRODUCTION Ionic liquids (ILs) have gained increasing attention over recent years due to their designability.1,2 Many researches reported the use of numerous combinations of ILs + solvent in chemical engineering processes.2−7 It is expected that ILs + solvent mixtures could be perfect heat-transfer fluids since ILs have negligibly low vapor pressures, high thermal decomposition temperatures, wide liquid temperature ranges, and excellent stability in air and water. Nakata et al.8 proposed [EMIM][TfO] + water binary mixtures as working fluids of heat pipes. Zuo et al.9 chose [EMIM][EtSO4] as novel organic working pairs for an absorption heat pump. Kim et al.10 considered [BMIM][Br], [BMIM][BF4], [HydeMIM][BF4] + water binary mixtures the prominent working fluids or additives to replace the conventional salt + refrigerant systems. It is necessary to know physicochemical properties of ILs + solvent mixtures to design these chemical engineering processes related to heat transfer. The density, viscosity, speed of sound, excess volume, isobaric expansivity, isothermal compressibility, activity coefficient, and molar conductivity of ILs + solvent mixtures had been studied.11−18 However, the reports on the thermal conductivity which is necessary for the design of heat-transfer equipment are limited. Only two articles reported thermal conductivities of ILs + solvent mixtures. Carrete et al.19 reported thermal conductivities of [BMIM][BF4] + H2O and [HMIM][PF6] + C2H5OH mixtures. Ge et al.20 studied thermal conductivities of [BMIM][OTf] + H2O and [EMIM][EtSO4] + H2O mixtures at 293 K to investigate the effect of water content on the thermal conductivities which cover six compositions. 1-Ethyl-3methylimidazol-3-ium ethylsulfate is one of the most promising ILs for industrial application owing to the halide-free © XXXX American Chemical Society
characteristic which never leads to corrosion problems or to generate HF by decomposition11 and low-cost.21 In this article, thermal conductivities of 1-ethyl-3-methylimidazol-3-ium ethylsulfate, 1-ethyl-3-methylimidazol-3-ium ethylsulfate + ethanol, 1-ethyl-3-methylimidazol-3-ium ethylsulfate + water, and 1ethyl-3-methylimidazol-3-ium ethylsulfate + ethanol + water mixtures covering the whole composition range in the temperature range from (283.15 to 343.15) K at 0.1 MPa were investigated.
■
EXPERIMENTAL SECTION Materials. Water (H2O, CAS 7732-18-5, resistivity ≥18.2 MΩ·cm at room temperature) was supplied by Yongjieda UPWS-T/b-A lab ultrapure water purification system. Information of the chemicals including 1-ethyl-3-methylimidazol3-ium ethylsulfate ([EMIM][EtSO4], CAS 342573-75-5), methylbenzene (CAS 108-88-3), and ethanol (C2H5OH, CAS 64-17-5) were given in Table 1. The water content of [EMIM][EtSO4] which was determined using Karl Fischer titration (Metrohm 870 KF Titrino plus) was less than 700 ppm. [EMIM][EtSO4] was placed in a desiccator and used without further purification. Methylbenzene was used after distillation and ethanol was used after filtration. The mass of materials was determined by an analytical balance (Mettler Toledo AL204) to a precision of ± 0.1 mg. Apparatus. The thermal conductivity instrument (Xi’an Xiatech Electronic Technology Co., Ltd., TC 3020L) used here Received: March 20, 2013 Accepted: May 26, 2013
A
dx.doi.org/10.1021/je400268t | J. Chem. Eng. Data XXXX, XXX, XXX−XXX
Journal of Chemical & Engineering Data
Article
Table 1. Description of Chemicals Used in This Work chemical name 1-ethyl-3methylimidazol -3-ium ethylsulfate methylbenzene
ethanol
a
mass fraction purity
analysis method
purification method
Lanzhou Greenchem ILS, LICP
0.990
HPLCa
none
Sinopharm Chemical Reagent Co., Ltd., China Sinopharm Chemical Reagent Co., Ltd., China
0.995
source
0.997
GCb GCb
Table 2. Experimental and Reference Thermal Conductivities λ of [EMIM][EtSO4] at Temperature T and Pressure p = 0.1 MPaa λ/W·m−1·K−1
distillation filtration
High performance liquid chromatography. bGas chromatography.
T/K
exp
283.11 293.16 303.16 313.04 323.02 332.91 342.89 352.82
0.185 0.186 0.185 0.185 0.184 0.184 0.184 0.183
λ/W·m−1·K−1 T/K
293 303 313 323 333 343 353
ref
b
0.182 0.181 0.181 0.179 0.179 0.178 0.177
λ/W·m−1·K−1 T/K
refc
273.15 283.15 293.15 303.15 313.15 323.15 333.15 343.15 353.15
0.1876 0.1882 0.1856 0.1872 0.1840 0.1833 0.1832 0.1834 0.1830
a
The expanded uncertainty (k = 2) of experimental thermal conductivity is 2.0 %, the standard uncertainty of temperature is 20 mK. bReference 20. cReference 28.
has been described eleswhere, including in our previous works.22−25 The instrument is based on the transient hotwire method. It mainly consists of two anodized 25 μm diameter tantalum wires as hot wires, a platinum resistance thermometer to measure the temperature of sample, a thermostatic bath (Hui Chuang, model YHX-2008) to provide an isothermal environment, and a data acquisition system. The apparatus and connections are all made of stainless steel (SSL 316); the total uncertainty of the temperature for the thermal conductivity measurement is ± 20 mK. Each measurement was repeated at least three times, and the volume of the sample needed in each measurement was approximately 25 cm3. The apparatus was checked by the measurement on the thermal conductivities of water and methylbenzene at temperatures from (283.15 to 343.15) K in steps of 10 K. The experimental thermal conductivities of water and methylbenzene were in good agreement with standard reference data26,27 where the maximum deviation and average absolute deviation were 1.08 % and 0.69 % for water and 0.56 % and 0.27 % for methylbenzene, respectively. With this result, and accounting for all the random errors of measurement, the relative uncertainty of the thermal conductivity data provided in this study can be estimated to be smaller than 2 % with a coverage factor of k = 2, approximately a 95 % confidence interval.
λi,calc = a0 + a1T
(1)
where λi,calc is the calculated thermal conductivity of the pure component i, T is the temperature in K, a0 and a1 are the fit parameters, subscript i represents the pure component, as 1 for [EMIM][EtSO4]. The thermal conductivities of C2H5OH and H2O in the temperature range from (283.15 to 343.15) K at 0.1 MPa and reference data26,34 are listed in Table 3. The thermal Table 3. Experimental and Reference Thermal Conductivities λ of C2H5OH and H2O at Temperature T and Pressure p = 0.1 MPaa H2O
C2H5OH −1
−1
λ/W·m−1·K−1
λ/W·m ·K
■
RESULTS AND DISCUSSION Thermal Conductivities for [EMIM][EtSO4], C2H5OH, and H2O. The thermal conductivities of [EMIM][EtSO4] in the temperature range from (283.15 to 353.15) K at 0.1 MPa and reference data20,28 measured with transient hot-wire method are listed in Table 2. The values of the thermal conductivities of [EMIM][EtSO 4 ] are between 0.183 W·m−1·K−1 to 0.186 W·m−1·K−1, which are almost the same as the data measured by Froba et al.28 and a little larger than that of Ge et al.20 In the work of Froba et al.28 and Ge et al.,20 the uncertainty is estimated to be less than 3 % (k = 2) and ± 0.002 W·m−1·K−1, respectively; the difference between this work and reference data20,28 can possibly be explained by the experimental uncertainty. The thermal conductivities of [EMIM][EtSO4] slightly decrease while temperature increases and the temperature dependence of thermal conductivity is weak. This phenomenon was also found by Froba et al.28 and Ge et al.,20 and the tendency is the same for other kinds of ILs.29−32 The thermal conductivities of [EMIM][EtSO4] can be correlated as a function of temperature in the form of a linear equation20,28,29,31−33
b
T/K
exp
ref
284.07 293.76 303.71 313.36 323.45 333.41 343.21
0.587 0.603 0.619 0.631 0.645 0.657 0.664
0.5807 0.5991 0.6152 0.6288 0.6410 0.6513 0.6598
T/K
exp
refc
283.48 293.47 303.20 313.15 323.42 333.01 342.82
0.167 0.165 0.162 0.159 0.157 0.155 0.152
0.1662 0.1629 0.1595 0.1563 0.1531
a
The expanded uncertainty (k = 2) of experimental thermal conductivity is 2.0 %, the standard uncertainty of temperature is 20 mK. bReference 26. cReference 34.
conductivities can be correlated as a function of temperature, using a second-order polynomial35−37 λi,calc = a0 + a1T + a 2T 2
(2)
where λi,calc is the calculated thermal conductivity of the pure component i, T is the temperature in K, a0, a1, and a2 are the fit parameters, subscript i represents the pure component, as 2 for C2H5OH, and 3 for H2O. The fit parameters for eqs 1 and 2 as well as the values of the average absolute deviation (AAD) and standard deviation (SD) are given in Table 4. Thermal Conductivities for [EMIM][EtSO4] + C2H5OH, and [EMIM][EtSO4] + H2O. The thermal conductivities for the binary mixtures [EMIM][EtSO4] + C2H5OH and [EMIM][EtSO4] + H2O covering the whole composition range and in the temperature range from (283.15 to 343.15) K at 0.1 MPa are listed in Tables 5 and 6, respectively. As shown in Tables 5 B
dx.doi.org/10.1021/je400268t | J. Chem. Eng. Data XXXX, XXX, XXX−XXX
Journal of Chemical & Engineering Data
Article
Table 4. Coefficients a0, a1, and a2, Average Absolute Deviation (AAD), and Standard Deviation (SD) of Equations 1 and 2 for [EMIM][EtSO4], C2H5OH, and H2O at Pressure p = 0.1 MPa a0 [EMIM][EtSO4] C2H5OH H2O
a1 −1
a2
AAD/%
SD/W·m−1·K−1
2.15 × 10−7 −7.71 × 10−6
0.20 0.26 0.18
0.0005 0.0005 0.0014
−5
1.95 × 10 2.60 × 10−1 −5.40 × 10−1
−3.35 × 10 −3.87 × 10−4 6.16 × 10−3
Table 5. Experimental Thermal Conductivities λ of [EMIM][EtSO4] (1) + C2H5OH (2) at Temperature T, Mass Fraction w, and Pressure p = 0.1 MPaa w1
T/K
λ/W·m−1·K−1
w1
T/K
λ/W·m−1·K−1
w1
T/K
λ/W·m−1·K−1
0.1000
283.19 293.32 303.35 313.05 323.19 333.07 343.08 283.22 293.19 303.28 313.11 323.28 333.09 342.85 282.94 293.09 303.25 313.18 322.96 333.09 342.91
0.169 0.167 0.164 0.161 0.160 0.157 0.155 0.174 0.173 0.171 0.169 0.168 0.166 0.164 0.179 0.179 0.178 0.178 0.176 0.175 0.174
0.2002
283.32 293.33 303.55 313.22 323.10 333.21 342.99 283.28 293.15 303.36 313.28 323.08 333.11 343.10 283.13 293.12 303.14 313.00 322.88 332.99 342.89
0.171 0.169 0.167 0.164 0.162 0.160 0.158 0.176 0.174 0.173 0.172 0.170 0.168 0.167 0.182 0.181 0.180 0.179 0.179 0.178 0.177
0.3002
283.47 293.29 303.13 313.17 322.98 333.27 343.11 283.39 293.42 303.33 313.32 323.04 333.07 343.22 283.22 293.01 303.12 313.09 323.03 332.95 342.79
0.172 0.171 0.168 0.167 0.165 0.163 0.161 0.178 0.177 0.176 0.175 0.173 0.172 0.171 0.184 0.183 0.183 0.183 0.182 0.181 0.180
0.4001
0.6992
0.4999
0.7990
0.5999
0.9001
a
The expanded uncertainty (k = 2) of experimental thermal conductivity is 2.0 %; the standard uncertainties of temperature and mass fraction are 20 mK and 0.00001, respectively.
Table 6. Experimental Thermal Conductivities λ of [EMIM][EtSO4] (1) + H2O (3) at Temperature T, Mass Fraction w, and Pressure p = 0.1 MPaa w1
T/K
λ/W·m−1·K−1
w1
T/K
λ/W·m−1·K−1
w1
T/K
λ/W·m−1·K−1
0.0980
283.35 293.18 303.30 312.99 322.85 332.68 342.71 283.26 292.92 303.05 312.85 322.87 332.64 342.65 283.11 292.99 302.89 312.74 322.66 332.64 342.50
0.533 0.545 0.557 0.569 0.583 0.593 0.607 0.380 0.388 0.397 0.403 0.412 0.417 0.421 0.260 0.263 0.266 0.269 0.271 0.274 0.274
0.2008
283.25 293.28 303.33 313.14 322.84 332.83 342.59 282.89 292.80 302.91 312.76 322.65 332.62 342.32 282.92 292.67 302.71 312.55 322.72 332.70 342.63
0.478 0.491 0.500 0.512 0.520 0.533 0.540 0.336 0.342 0.350 0.356 0.361 0.364 0.366 0.229 0.229 0.231 0.232 0.235 0.236 0.237
0.2997
283.08 293.22 302.82 312.70 322.71 332.54 342.69 282.91 292.99 302.72 312.83 322.65 332.64 342.62 282.76 292.58 302.60 312.60 322.55 332.50 342.45
0.428 0.441 0.446 0.452 0.466 0.473 0.486 0.296 0.301 0.305 0.311 0.314 0.316 0.319 0.204 0.205 0.205 0.206 0.207 0.206 0.206
0.4010
0.6999
0.4991
0.8008
0.5985
0.8978
a
The expanded uncertainty (k = 2) of experimental thermal conductivity is 2.0 %; the standard uncertainties of temperature and mass fraction are 20 mK and 0.00001, respectively. C
dx.doi.org/10.1021/je400268t | J. Chem. Eng. Data XXXX, XXX, XXX−XXX
Journal of Chemical & Engineering Data
Article
[EMIM][EtSO4] + C2H5OH and [EMIM][EtSO4] + H2O mixtures together with AAD and SD of the fits are listed in Table 7. Thermal Conductivities for [EMIM][EtSO4] + C2H5OH + H2O. The thermal conductivities for the ternary mixtures [EMIM][EtSO 4 ] + C 2 H 5 OH + H 2 O for twenty-four compositions in the temperature range from (283.15 to 343.15) K at 0.1 MPa are listed in Table 8. The thermal conductivities increase with the increase of temperature when the mass fraction of water ≥ 0.3 and decrease with the increase of temperature when the mass fraction of water < 0.2, no matter how the [EMIM][EtSO4] and ethanol ratio changes. When the mass fraction of water equals to 0.2, the thermal conductivities rise with the increase of temperature when the mass fraction of [EMIM][EtSO4] > 0.5, whereas they drop with the increase of temperature when the mass fraction of [EMIM][EtSO4] < 0.5. In addition, the results show that at the same temperature replacing [EMIM][EtSO4] by C2H5OH at the same mass fraction lowers the thermal conductivity of the mixture, while replacing [EMIM][EtSO4] by H2O or C2H5OH by H2O at the same mass fraction increases the thermal conductivity of the mixture. This is reasonable because the thermal conductivity of H2O is larger than that of [EMIM][EtSO4] and the thermal conductivity of [EMIM][EtSO4] is larger than that of C2H5OH at the same temperature. The second-order Scheffé polynomial can be used to calculate thermal conductivity for ternary mixtures with parameters determined by binary data. It can be expanded as the following equation35,36,38
and 6, the thermal conductivities decrease with an increase of temperature and a decrease of the mass fraction of [EMIM][EtSO4] in the [EMIM][EtSO4] + C2H5OH mixture, whereas they increase with an increase of temperature and a decrease of the mass fraction of [EMIM][EtSO4] in the [EMIM][EtSO4] + H2O mixture. Ge et al.20 studied the thermal conductivities of [EMIM][EtSO4] + H2O for six compositions. Figure 1 shows the data reported by Ge et al.20 and this work. The deviation is within measurement uncertainty.
Figure 1. Thermal conductivities λ of [EMIM][EtSO4] (1) + H2O (3) reported by Ge et al.20 and this work as a function of mass fraction of [EMIM][EtSO4] (w1) at temperature T = 293 K and pressure p = 0.1 MPa. The deviation is within measurement uncertainty: ■, this work; □, Ge et al.20
λcalc = λ1,calcw12 + λ 2,calcw22 + λ3,calcw32 + 2β12w1w2 + 2β13w1w3 + 2β23w2w3
The second-order Scheffé polynomial38 enjoys simplicity while keeping the facility in correlating binary data and calculating values for ternary mixtures with parameters determined by binary data. The second-order Scheffé polynomial for binary mixtures is λcalc = λi ,calcwi2 + λj ,calcwj2 + 2βijww i j
where λcalc is the thermal conductivity of the mixture, λi,calc is the thermal conductivity of pure component i, βij is the nonlinear mixing effect between components i and j, wi is the mass fraction of component i in the mixture, subscripts 1, 2, and 3 represent [EMIM][EtSO4], C2H5OH, and H2O, respectively. The parameters β12 and β13 can be calculated from A12, B12, and A13, B13 listed in Table 7. β23 was determined by our previous work.25 The coefficients A23 and B23 are listed in Table 9. The thermal conductivities of the [EMIM][EtSO4] + C2H5OH + H2O ternary mixture can be calculated using all the parameters, eqs 4 and 5. Figure 2 displays deviations between experimental data and calculated values. The values of AAD and SD are 0.64 % and 0.0028 W·m−1·K−1, respectively. The results show that eqs 4 and 5 can be satisfactorily used for calculating the thermal conductivities for the [EMIM][EtSO4] + C2H5OH + H2O ternary system based on the data of its binary systems without additional parameters. The predictive capability of the second-order Scheffé polynomial for the ternary mixture data is satisfactory.
(3)
where λcalc is the thermal conductivity of the mixture, λi,calc is the thermal conductivity of pure component i, βij is the nonlinear mixing effect between components i and j, wi is the mass fraction of component i in the mixture, subscripts i and j represent two different components, as 1 for [EMIM][EtSO4], 2 for C2H5OH, and 3 for H2O, respectively. The parameter βij is expected to be a function of temperature35 and can be assumed to have a linear dependence with temperature39 βij = Aij + Bij T
(5)
(4)
where T is the temperature in K. The thermal conductivities of binary mixtures [EMIM][EtSO4] + C2H5OH and [EMIM][EtSO4] + H2O were correlated using eqs 3 and 4. The coefficients Aij and Bij for
Table 7. Coefficients A and B, Average Absolute Deviation (AAD), and Standard Deviation (SD) of Equations 3 and 4 for [EMIM][EtSO4] (1) + C2H5OH (2), and [EMIM][EtSO4] (1) + H2O (3) at Pressure p = 0.1 MPa A [EMIM][EtSO4] + C2H5OH [EMIM][EtSO4] + H2O
i = 1, j = 2 i = 1, j = 3
B −1
2.18 × 10 1.55 × 10−1 D
−4
−1.50 × 10 4.62 × 10−4
AAD/%
SD/W·m−1·K−1
0.23 1.24
0.0005 0.0045
dx.doi.org/10.1021/je400268t | J. Chem. Eng. Data XXXX, XXX, XXX−XXX
Journal of Chemical & Engineering Data
Article
Table 8. Experimental Thermal Conductivities λ of [EMIM][EtSO4] (1) + C2H5OH (2) + H2O (3) at Temperature T, Mass Fraction w, and Pressure p = 0.1 MPaa w1,w2
T/K
λ/W·m−1·K−1
w1,w2
T/K
λ/W·m−1·K−1
w1,w2
T/K
λ/W·m−1·K−1
0.1000, 0.1004
283.29 293.45 303.27 312.99 323.16 332.85 342.74 283.11 292.89 302.88 312.75 322.98 332.90 342.95 283.47 293.30 303.15 313.12 322.95 332.90 342.89 283.07 293.13 303.25 313.15 323.05 332.88 342.98 283.23 293.11 303.27 313.05 322.93 332.75 342.66 283.11 292.89 303.04 312.74 322.85 332.79 342.77 283.26 293.04 303.20 312.79 322.90 332.99 342.82 283.04 293.04 302.98 312.80 322.73 332.83 342.65
0.462 0.473 0.489 0.497 0.512 0.525 0.544 0.191 0.189 0.187 0.185 0.184 0.182 0.180 0.322 0.327 0.331 0.336 0.338 0.341 0.343 0.216 0.216 0.216 0.215 0.215 0.213 0.213 0.285 0.289 0.293 0.295 0.297 0.298 0.300 0.289 0.292 0.297 0.299 0.303 0.305 0.307 0.256 0.258 0.261 0.261 0.264 0.266 0.266 0.227 0.229 0.230 0.230 0.232 0.234 0.233
0.0998, 0.2011
283.34 293.14 303.16 313.02 322.83 332.86 342.62 283.43 293.28 303.17 313.01 322.87 332.85 342.84 283.19 293.20 302.97 313.21 323.01 332.92 342.59 283.09 293.05 303.33 312.95 322.91 333.03 342.83 283.13 293.16 302.99 312.88 322.63 332.95 342.58 283.00 293.12 303.17 312.96 322.78 332.71 342.49 282.97 293.09 302.83 312.89 322.77 332.80 342.86 283.22 293.06 303.01 312.89 322.83 332.71 342.75
0.410 0.420 0.428 0.436 0.442 0.449 0.452 0.418 0.429 0.438 0.447 0.455 0.464 0.467 0.281 0.284 0.285 0.289 0.290 0.291 0.291 0.192 0.190 0.190 0.187 0.186 0.185 0.182 0.249 0.251 0.252 0.253 0.253 0.254 0.254 0.252 0.254 0.257 0.257 0.258 0.258 0.258 0.222 0.224 0.224 0.225 0.224 0.225 0.225 0.202 0.202 0.202 0.202 0.202 0.201 0.201
0.0999, 0.6998
282.98 293.13 303.16 313.09 322.92 332.98 342.87 283.39 293.35 303.06 313.03 323.00 332.85 342.88 283.38 293.38 303.16 313.05 323.11 332.92 342.81 283.22 293.03 303.12 313.01 322.63 332.70 342.57 283.11 293.01 303.10 313.02 323.08 332.82 342.95 283.12 293.21 303.21 312.86 322.81 332.83 342.70 283.10 292.95 303.09 312.83 322.78 332.86 342.78 283.04 292.81 302.86 312.86 322.78 332.65 342.49
0.214 0.214 0.213 0.212 0.211 0.210 0.208 0.367 0.375 0.381 0.388 0.394 0.397 0.403 0.246 0.248 0.248 0.249 0.250 0.249 0.249 0.328 0.333 0.339 0.344 0.348 0.351 0.353 0.219 0.219 0.219 0.219 0.219 0.217 0.217 0.222 0.222 0.222 0.222 0.222 0.221 0.221 0.225 0.226 0.228 0.228 0.228 0.228 0.229 0.203 0.203 0.203 0.204 0.204 0.203 0.203
0.0981, 0.8001
0.2001, 0.3002
0.1999, 0.6000
0.2994, 0.2999
0.3992, 0.1997
0.4996, 0.1998
0.6999 0.1001
0.1996, 0.1006
0.2000, 0.3999
0.1996, 0.6987
0.2986, 0.4014
0.4000, 0.3004
0.4985, 0.3021
0.6965, 0.2002
0.1999, 0.1997
0.2002, 0.5004
0.2979, 0.1988
0.2997, 0.4994
0.3987, 0.3997
0.5968, 0.2033
0.7992 0.1000
a
The expanded uncertainty (k = 2) of experimental thermal conductivity is 2.0 %; the standard uncertainties of temperature and mass fraction are 20 mK and 0.00001, respectively. E
dx.doi.org/10.1021/je400268t | J. Chem. Eng. Data XXXX, XXX, XXX−XXX
Journal of Chemical & Engineering Data
Article
Table 9. The Coefficients A23 and B23 for C2H5OH (2) + H2O (3) at Pressure p = 0.1 MPa C2H5OH + H2O
i = 2, j = 3
A
B
2.51 × 10−1
−1.37 × 10−5
(2) Harrar, A.; Zech, O.; Hartl, R.; Bauduin, P.; Zemb, T.; Kunz, W. [Emim][EtSO4] as the Polar Phase in Low-Temperature-Stable Microemulsions. Langmuir 2011, 27, 1635−1642. (3) Wang, H.; Liu, S.; Huang, K.; Yin, X.; Liu, Y.; Peng, S. BmimBF4 Ionic Liquid Mixtures Electrolyte for Li-Ion Batteries. Int. J. Electrochem. Sci. 2012, 7, 1688−1698. (4) Guerfi, A.; Dontigny, M.; Charest, P.; Petitclerc, M.; Lagace, M.; Vijh, A.; Zaghib, K. Improved Electrolytes for Li-Ion Batteries: Mixtures of Ionic Liquid and Organic Electrolyte with Enhanced Safety and Electrochemical Performance. J. Power Sources 2010, 195, 845−852. (5) Xiang, H. F.; Yin, B.; Wang, H.; Lin, H. W.; Ge, X. W.; Xie, S.; Chen, C. H. Improving Electrochemical Properties of Room Temperature Ionic Liquid (RTIL) Based Electrolyte for Li-Ion Batteries. Electrochim. Acta 2010, 55, 5204−5209. (6) Behboudnia, M.; Habibi-Yangjeh, A.; Jafari-Tarzanag, Y.; Khodayari, A. Facile and Room Temperature Preparation and Characterization of PbS Nanoparticles in Aqueous [Emim][EtSO4] Ionic Liquid Using Ultrasonic Irradiation. Bull. Korean Chem. Soc. 2008, 29, 53−56. (7) Behboudnia, M.; Habibi-Yangjeh, A.; Jafari-Tarzanag, Y.; Khodayari, A. Preparation and Characterization of Monodispersed Nanocrystalline ZnS in Water-Rich [Emim]EtSO4 Ionic Liquid Using Ultrasonic Irradiation. J. Cryst. Growth 2008, 310, 4544−4548. (8) Nakata, Y.; Kohara, K.; Matsumoto, K.; Hagiwara, R. Thermal Properties of Ionic Liquid + Water Binary Systems Applied to Heat Pipes. J. Chem. Eng. Data 2011, 56, 1840−1846. (9) Zuo, G.; Zhao, Z.; Yan, S.; Zhang, X. Thermodynamic Properties of a New Working Pair: 1-Ethyl-3-Methylimidazolium Ethylsulfate and Water. Chem. Eng. J. 2010, 156, 613−617. (10) Kim, K. S.; Park, S. Y.; Choi, S.; Lee, H. Vapor Pressures of the 1-Butyl-3-Methylimidazolium Bromide + Water, 1-Butyl-3-Methylimidazolium Tetrafluoroborate + Water, and 1-(2-Hydroxyethyl)-3Methylimidazolium Tetrafluoroborate + Water Systems. J. Chem. Eng. Data 2004, 49, 1550−1553. (11) Rodriguez, H.; Brennecke, J. F. Temperature and Composition Dependence of the Density and Viscosity of Binary Mixtures of Water + Ionic Liquid. J. Chem. Eng. Data 2006, 51, 2145−2155. (12) Lu, X. M.; Xu, W. G.; Gui, J. S.; Li, H. W.; Yang, J. Z. Volumetric Properties of Room Temperature Ionic Liquid 1. The System of {1Methyl-3-Ethylimidazolium Ethyl Sulfate + Water} at Temperature in the Range (278.15 to 333.15) K. J. Chem. Thermodyn. 2005, 37, 13− 19. (13) Yang, J. Z.; Lu, X. M.; Gui, J. S.; Xu, W. G.; Li, H. W. Volumetric Properties of Room Temperature Ionic Liquid 2: The Concentrated Aqueous Solutions of {1-Methyl-3-Ethylimidazolium Ethyl Sulfate + Water} in a Temperature Range of 278.2 to 338.2 K. J. Chem. Thermodyn. 2005, 37, 1250−1255. (14) Gonzalez, E. J.; Gonzalez, B.; Calvar, N.; Dominguez, A. Physical Properties of Binary Mixtures of the Ionic Liquid 1-Ethyl-3Methylimidazolium Ethyl Sulfate with Several Alcohols at T = (298.15, 313.15, and 328.15) K and Atmospheric Pressure. J. Chem. Eng. Data 2007, 52, 1641−1648. (15) Gomez, E.; Gonzalez, B.; Calvar, N.; Tojo, E.; Dominguez, A. Physical Properties of Pure 1-Ethyl-3-Methylimidazolium Ethylsulfate and its Binary Mixtures with Ethanol and Water at Several Temperatures. J. Chem. Eng. Data 2006, 51, 2096−2102. (16) Matkowska, D.; Goldon, A.; Hofman, T. Densities, Excess Volumes, Isobaric Expansivities, and Isothermal Compressibilities of the 1-Ethyl-3-Methylimidazolium Ethylsulfate + Ethanol System at Temperatures (283.15 to 343.15) K and Pressures from (0.1 to 35) MPa. J. Chem. Eng. Data 2010, 55, 685−693. (17) Bešter-Rogač, M.; Hunger, J.; Stoppa, A.; Buchner, R. 1-Ethyl-3Methylimidazolium Ethylsulfate in Water, Acetonitrile, and Dichloromethane: Molar Conductivities and Association Constants. J. Chem. Eng. Data 2011, 56, 1261−1267. (18) Sumartschenkowa, I. A.; Verevkin, S. P.; Vasiltsova, T. V.; Bich, E.; Heintz, A.; Shevelyova, M. P.; Kabo, G. J. Experimental Study of Thermodynamic Properties of Mixtures Containing Ionic Liquid 1-
Figure 2. Relative deviations 100(λcal·λexp−1 − 1) between experimental data λexp and the values λcal calculated by eqs 4 and 5 for [EMIM][EtSO4] (1) + C2H5OH (2) + H2O (3) at temperature T and pressure p = 0.1 MPa. The average absolute deviation (AAD) is 0.64 %, and the maximum absolute deviation is 4.06 %: ●, this work.
■
CONCLUSIONS The thermal conductivities of [EMIM][EtSO4], [EMIM][EtSO4] + C2H5OH, [EMIM][EtSO4] + H2O, and [EMIM][EtSO4] + C2H5OH + H2O systems have been determined in a transient hot-wire instrument covering the whole concentration range at the temperature range from (283.15 to 343.15) K. The experimental data of [EMIM][EtSO4] + C2H5OH and [EMIM][EtSO4] + H2O were correlated as a function of temperature and composition using the second-order Scheffé polynomial. With the parameters obtained from correlating data for relevant binary mixtures, thermal conductivities of ternary mixtures can be calculated by the second-order Scheffé polynomial, and the calculated values are in satisfying agreement with the experimental data.
■
AUTHOR INFORMATION
Corresponding Author
*Fax: + 86 571 87951742. Tel.: + 86 571 87952709. E-mail:
[email protected]. Funding
Financial support from the National Natural Science Foundation of People’s Republic of China (Project No. 21176206) and the Project of Zhejiang Key Scientific and Technological Innovation Team (Project No. 2010R50017) are gratefully acknowledged. Notes
The authors declare no competing financial interest.
■
REFERENCES
(1) Lehmann, J.; Rausch, M. H.; Leipertz, A.; Fröba, A. P. Densities and Excess Molar Volumes for Binary Mixtures of Ionic Liquid 1Ethyl-3-Methylimidazolium Ethylsulfate with Solvents. J. Chem. Eng. Data 2010, 55, 4068−4074. F
dx.doi.org/10.1021/je400268t | J. Chem. Eng. Data XXXX, XXX, XXX−XXX
Journal of Chemical & Engineering Data
Article
(38) Scheff, E, H. Experiments with Mixtures. J. R. Stat. Soc. Ser., B 1958, 20, 344−360. (39) Aguila-Hernandez, J.; Gomez-Quintana, R.; Murrieta-Guevara, F.; Romero-Mart, I.; Nez, A.; Trejo, A. Liquid Density of Aqueous Blended Alkanolamines and N-Methylpyrrolidone as a Function of Concentration and Temperature. J. Chem. Eng. Data 2001, 46, 861− 867.
Ethyl-3-Methylimidazolium Ethyl Sulfate Using Gas-Liquid Chromatography and Transpiration Method. J. Chem. Eng. Data 2006, 51, 2138−2144. (19) Carrete, J.; Mendez-Morales, T.; Garcia, M.; Vila, J.; Cabeza, O.; Gallego, L. J.; Varela, L. M. Thermal Conductivity of Ionic Liquids: A Pseudolattice Approach. J. Phys. Chem. C 2012, 116, 1265−1273. (20) Ge, R.; Hardacre, C.; Nancarrow, P.; Rooney, D. W. Thermal Conductivities of Ionic Liquids over the Temperature Range from 293 to 353 K. J. Chem. Eng. Data 2007, 52, 1819−1823. (21) Barzegar, M.; Habibi-Yangjeh, A.; Behboudnia, M. UltrasonicAssisted Preparation and Characterization of CdS Nanoparticles in the Presence of a Halide-Free and Low-Cost Ionic Liquid and Photocatalytic Activity. J. Phys. Chem. Solids 2010, 71, 1393−1397. (22) Li, X.; Wu, J.; Dang, Q. Thermal Conductivity of Liquid Diethyl Ether, Diisopropyl Ether, and Di-n-butyl Ether from (233 to 373) K at Pressures up to 30 MPa. J. Chem. Eng. Data 2010, 55, 1241−1246. (23) Wu, J.; Li, X.; Zheng, H.; Assael, M. J. Thermal Conductivity of Liquid Dimethyl Ether from (233 to 373) K at Pressures up to 30 MPa. J. Chem. Eng. Data 2009, 54, 1720−1723. (24) Che, Y. Y.; Shen, J.; Zhou, J. C.; He, C. H. Thermal Conductivity and Density of (NH4)2SO4 + H2O, NH4NO3 + H2O, and (NH4)2SO4 + NH4NO3 + H2O Solutions at T = (278.15 to 333.15) K. J. Chem. Eng. Data 2012, 57, 1486−1491. (25) Zhou, J. C.; Che, Y. Y.; Wu, K. J.; Shen, J.; He, C. H. Thermal Conductivity of DMSO + C2H5OH, DMSO + H2O, and DMSO + C2H5OH + H2O Mixtures at T = (278.15 to 338.15) K. J. Chem. Eng. Data 2013, 58, 663−670. (26) Huber, M. L.; Perkins, R. A.; Friend, D. G.; Sengers, J. V.; Assael, M. J.; Metaxa, I. N.; Miyagawa, K.; Hellmann, R.; Vogel, E. New International Formulation for the Thermal Conductivity of H2O. J. Phys. Chem. Ref. Data 2012, 41, 033102−1−033102−23. (27) Ramires, M. L. V.; de Castro, C. A. N.; Perkins, R. A.; Nagasaka, Y.; Nagashima, A.; Assael, M. J.; Wakeham, W. A. Reference Data for the Thermal Conductivity of Saturated Liquid Toluene over a Wide Range of Temperatures. J. Phys. Chem. Ref. Data 2000, 29, 133−139. (28) Froba, A. P.; Rausch, M. H.; Krzeminski, K.; Assenbaum, D.; Wasserscheid, P.; Leipertz, A. Thermal Conductivity of Ionic Liquids: Measurement and Prediction. Int. J. Thermophys. 2010, 31, 2059− 2077. (29) Gardas, R. L.; Ge, R.; Goodrich, P.; Hardacre, C.; Hussain, A.; Rooney, D. W. Thermophysical Properties of Amino Acid-Based Ionic Liquids. J. Chem. Eng. Data 2010, 55, 1505−1515. (30) Tomida, D.; Kenmochi, S.; Tsukada, T.; Qiao, K.; Yokoyama, C. Thermal Conductivities of [Bmim][Pf6],[Hmim][Pf6], and [Omim][Pf6] from 294 to 335 K at Pressures up to 20 MPa. Int. J. Thermophys. 2007, 28, 1147−1160. (31) Valkenburg, M. E. V.; Vaughn, R. L.; Williams, M.; Wilkes, J. S. Thermochemistry of Ionic Liquid Heat-Transfer Fluids. Thermochim. Acta 2005, 425, 181−188. (32) Liu, H.; Maginn, E.; Visser, A. E.; Bridges, N. J.; Fox, E. B. Thermal and Transport Properties of Six Ionic Liquids: An Experimental and Molecular Dynamics Study. Ind. Eng. Chem. Res. 2012, 51, 7242−7254. (33) Tomida, D.; Kenmochi, S.; Tsukada, T.; Qiao, K.; Bao, Q. X.; Yokoyama, C. Viscosity and Thermal Conductivity of 1-Hexyl-3Methylimidazolium Tetrafluoroborate and 1-Octyl-3-Methylimidazolium Tetrafluoroborate at Pressures up to 20 MPa. Int. J. Thermophys. 2012, 33, 959−969. (34) Mallan, G. M.; Michaelian, M. S.; Lockhart, F. J. Liquid Thermal Conductivities of Organic Compounds and Petroleum Fractions. J. Chem. Eng. Data 1972, 17, 412−415. (35) Focke, W. W. Correlating Thermal-Conductivity Data for Ternary Liquid Mixtures. Int. J. Thermophys. 2008, 29, 1342−1360. (36) Focke, W. W.; Du Plessis, B. Correlating Multicomponent Mixture Properties with Homogeneous Rational Functions. Ind. Eng. Chem. Res. 2004, 43, 8369−8377. (37) Ro, S. T.; Kim, J. Y.; Kim, D. S. Thermal Conductivity of R32 and Its Mixture with R134a. Int. J. Thermophys. 1995, 16, 1193−1201. G
dx.doi.org/10.1021/je400268t | J. Chem. Eng. Data XXXX, XXX, XXX−XXX