Thermal Properties of Hydrocarbons under Pressure. II - Industrial

James D. Lindsay, George Granger Brown. Ind. Eng. Chem. , 1935, 27 (7), pp 817–820. DOI: 10.1021/ie50307a015. Publication Date: July 1935. ACS Legac...
0 downloads 0 Views 588KB Size
Thermal Properties of Hydrocarbons under Pressure. I1 JAMES D. LINDSAY‘ AND GEORGE GRANGER BROWN University of Michigan, Ann Arbor, Mich.

I

N THIS paper the effect of pressure on the

in which the constants have the following values,

isothermal change in enthalpy (H or “heat content”) for n-pentane vapor is calculated, using the equation of state suggested by Young, and is found to agree with the experimental data previously reported (5). The effect of pressure on the enthalpy of benzene vapor has been experimentally determined and used in the construction of an enthalpy-pressure-temperature chart. The values for benzene are found to be similar to those for pentane when compared on the basis of the isothermal decrease in enthalpy in B. t. u. per R. per pound mole at the same reduced temperature and over the same increment in reduced pressure.

Constant R e A

Metric Units 863.56 7.473 5,420,800.0 3.135 6.695

k

0

Engineering Units 0.1486 0.1197 26.895 0.0502 0.0000275

was differentiated analytically for the value of (SV/ST)p which value was substituted in the following thermodynamic relationship, (2)

Calculated Enthalpy of Pent-ane Vapor

which may be demonstrated :

+-VdP + PdV PdV + VdP

In view of the importance and the recent experimental determinations (3, 6, 8) of the enthalpy of hydrocarbon vapors, the following computation based upon rigorous thermodynamic equations and the equation of state for n-pentane developed by Young ( I O ) was made for comparative purposes. The equation of state, -

dH = dU d U = TdS d H = TdS ( g ) T

dF

= =

($)T

VdP

+

6T6P 6p (x) - (&S) =

T

6P6T

- SdT

~

The values for (6H/ST)p were calculated for three temperatures, 284”,500°, and 536’ F. with pressures up to 1000 p o u n d s p e r s q u a r e inch. These curves were then integrated graphically, giving H as a function of P a t constant temperature to which must be added the value for H a t the initial or atmospheric pressure as a constant, of integration. Similar d e t e r m i n a t i o n s were made by an e n t i r e l y graphical method based on the isotherms determined by Young ( I O ) by transforming the thermodynamic equation into the form

FIGURE 1. ORIGIXALDATAON ISOENTHALPIC EXPANSION OF BENZENE Each pair of symbols, along the same isoenthalpic line, represent the initial and final pressures. and temperatures observed. For example, A at 665 pounds per square Inch and 741O F.Indicates this as the inltial pressure and temperature. The final ,state 16 also shown by h 40 be 30 pounds per square inch and 698O F. Along the same ieoenthrtlpio line, 0 indlcates another experlment in whtch 357 pounds per aquare inch and 721° F are the initial conditions and 67 pounds per square inch and 703’ F. the final.

817

and obtaining the values for (6V/6 In T ) , s u b t r a c t i n g them from V , and integrating the result as before. A comparison of the results obtained by the two different methods is given in Table I, with values read from the curves of Pattee and B r o m 1 Preaent address, T e n n e s s e e Valley Authority, I” 0.Boa 147% Wilson Dam, Ala.

INDUSTRIAL AKD ENGIXEERING CHEMISTRY

818

w

TEMPERATURE AT ATMOSPHERIC PRESSURE IN F'

COEFFICIENT OF Beszasxs FIGURE 2. JOI.JLE-THOMSON

(5) based on direct cleteriniiialioiis of the Joule-Thomson coefficient of pentane. The agreement between the exper.imental and computd results is good.

Enthalpy o f Benzene Vapor The apparatus and general procedure for determining the Joule-Thomson coefficient were similar t o those already described (6). A radiant heater using radiation from electric resistance wires was substituted for the low-voltage resistance heater. The pump valve box was machined from a single steel bar and equipped with spool-shaped valves Fith leather seats. The pistons were packed with Johns Manville No. 323 with satisfactory results. The experimental results on hen-, zene of c. P. grade are given in Table 11. When plotted as lines of constant enthalpy on a pressuretemperature diagram (Figure l), the data of Table I1 give straight lines within the experimental limits. Therefore the slopes of these lines, as computed in Table 11,enable the data

HEATOF BESZENEAT FIGURE 3. SPECIFIC ATMOSPHERIC PRESSURE

0 Devjardin (1) A 'Cliedrnanu ( 9 ) + Thiboui ( 7 ) 0 Leduc ( 4 ) X RegnairlL ( 6 )

to be extrapolated to atmospheric pressure as indicated in the last column, The slopes are not identical for all ternperaturebut, when plotted on semi-log paper (Figure 2), were found to vary in the manner indicated by the follon-ing eqitatiori

I

where t

=

temp. at atm,

~ F ~ B B U FP ~ ,

T a s e ~I. RELATIVE E N T ~ L PQF Y %-PENTANE VAPOR (111B. t. u. per pound, referred t o latrnospherio pressure at the indicated ternperature) ~ b s Pres. -284' E'.----r 392' E'.-r---464° P.-500' F-. lure, Lb./Ss. Bnalyti.411alytiIn. eel Graphicel Exptl. Graphical Exptl. &aphid Bxptl. ea1 Graphical Espti. 0 0 0 0 0 0 0 0 14 7 0 - 3 - 2.8 -3 - 2 . 8 - 03 - 2.6 2 - 3 - 2 - 3 8 50 5 . 7 7 . 6 8 6 5 . 5 - 5,0 5 5.0 -5 - 7 7 100 200 -17 8 -18.4 -19 -12.4 -13 -11.4 -11 -10.1 -11.0 -11 .... .. -32.4 -34 -24.6 -25 -21,6 -22.0 -23 400 , . . , .. .,.. -41,7 -41 -35.2 -35.8 -38 600 .... ... -66.6 -66' -51.7 -51,6 -52 800 .... .. -61.4 -67.8 -65G 1000 6 E:Itrspolated. I

j

.

.

.

O

*

.

.

1 o

-----_

536' F, hnalytical Graphical 0 0 -2.2 - 2 4.6 -. 8

--20.0 9.4 -32.0 -45.0 -56.3

-11 -20.7 -31.8 --45,4

--.BY

Exr,ti 0 2 ._5

--

-EX

-28

...sw

-.a6 .." 87 1

JULY, 1935

INDUSTRIAL AND ENGINEERING CHEMISTRY

819

TABLE11. RESULTS ON BENZENE bbs. Pressure, Lb./Sq. I n . High Low

Run

Temperature,

F. High Low

A T , tbbp/' O

F. Sq. In.

aT AP

t F. a t 15 Lb. Prf>ssure

Run

Abs. Pressure, Lb./Sq. In. High Low

t

Temperature, ' F. High Low

4P

Q T Lb.) F.'Sq. I n .

O F .

a t 15

%

Lb. PresAP sure

10

99 100 59 59

0.152 0.150 0.170 0.170

443 442 441 442

41 42 43 44

352 162 162 162

21 19 18 18

459 490 476 465

404 467 452 441

55 23 24 24

331 143 144 144

0.166 403 0.161 466 0.166 452 0.166 441

30 32 33 93

312 320 311 305

0.096 544 540 0.100 0.106 533 0.305 348

45 46 47 48

162 162 175 175

18 18 18 18

465 465 420 419

441 441 392 391

24 24 28 28

144 144 157 157

0.166 0.166 0.178 0.178

441 441 391 390

703 678 682 596

18 21 22 61

290 287 282 675

0.062 700 0.073 674 0.078 678 594 0.080

49 50 51 52

175 177 179 179

18 18 18 18

418 417 417 417

390 388 387 387

28 29 30 30

157 159 161 161

0.178 0.182 0.186 0.186

389 387 386 386

428 604 609 688

192 533 552 645

236 71 57 43

282 647 551 542

0.084 0.110 0,103 0.079

031 550 644

I88

53 54 55 56

180 182 182 183

18 18 18 18

417 418 421 422

387 388 391 393

30 30 30 29

162 164 164 165

0.185 0.167 0.167 0.168

386 387 390 392

29 29 44 44

657 683 642 635

613 642

44

542 557

660

528

92 107

808

910

0.081 0.014 0.114 0.118

612 641 547 524

57 58 59 60

182 677 677 672

18 31 31 31

421 692 723 733

391 645 677 689

30 47 46 44

164 646 646 641

0.167 390 0.074 644 0.071 676 0.069 688

962 976 983 989

52 412 417 424

622 609 609 609

513 520 518 518

109 89 91 91

910 564 566 565

0.120 0.158 0.161 0.161

509 457 453 452

61 62 63 64

669 667 665 662

30 30 30 31

739 741 741 746

695 697 698 703

44 44 43 43

639 637 635 631

0.069 0.069 0.068 0.068

694 696 697 702

25 26 27 28

996 1010 1007 994

427 517 511 317

609 614 616 605

519 537 538 488

90 77 78 117

569 493 496 677

0.158 0.156 0.157 0.173

454 459 460 437

65

68

657 655 653 653

30 30 30 30

722 724 711 705

677 680 665 658

45 44 46 47

627 625 623 623

0.072 0.071 0.074 0.076

676 679 664 657

29 30 31 32

999 1008 1017 1017

317 312 312 312

602 606 609 611

487 487 495 497

116 119 114 114

672 686 705 705

0.171 0.173 0.162 0.162

434 434 444 446

69 70 71 72

654 655 655 655

30 30 221 221

705 709 709 709

659 662 676 676

46 47 33 33

224 625 434 434

0.074 0.075 0.076 0.076

658 661 660 660

33 34 35 36

1014 1012 1015 992

309 112 112 107

612 607 605 606

501 464 459 466

111 143 146 140

705 900 903 885

0.158 0.159 0.162 0.158

454 449 443 452

73 74 75 76

656 656 676 676

222 221 368 368

707 707 707 705

674 673 682 681

33 34 25 24

434 435 308 308

0.081

37 38 39 40

353 354 354 353

21 21 21 21

455 459 459 459

398 403 404 404

57 56 55 55

332 333 333 332

0.172 0.168 0.165 0.166

397 402 403 403

77 78 79

723 721 722

494 493 494

705 706 707

687 687 689

18 19 18

229 228 228

0.079 649 0.083 647 0.079 651

22 21 62 62

459 458 459 460

444 443 449 450

15

2 3 4

121 121 121 121

5 6 7 8

364 372 363 382

52 52 52 77

578 576 570 460

548 544 537 367

9 10 11 12

357 353 346 712

67 64 37

721 699 704 657

13 14 15 16

302 682 583 571

20 35 32 29

17 18 19 20

571 586 852 962

21 22 23 24

1

66

15 10

41

66 67

Cp =

C p = 0.000374t sp. heat, B. t. u./lb.

t = temp.,

+ 0.251

658 657 653 0.078 653

corresponding critical temperature or pressure) combined with the molecular quantity, have been found satisfactory. I n Table I11 the calculated data for pentane, the experimental data for pentane (6) and for benzene have been compared on this basis, using 847" R. (387' F. 460') and 485 pounds per square inch absolute as the critical temperature and pressure for pentane, and 1011O R. and 702 pounds as the critical temperature and pressure for benzene. The computed values of Table I were plotted to obtain values for the reduced pressures and temperatures as used in Table 111, and the experimental values were read from the

The available specific heat data on benzene vapor a t atmospheric pressure are in good agreement as indicated in Figure 3 and may be represented by the equation: nhere

0.076 0.078

+

(5)

' F.

The increase in enthalpy (AH) 011 heating benzene from liquid a t 32' F. to vapor a t 176', under one atmosphere of pressure, is 232 B. t. u. per pound ( 2 ) . Combining this value with the sDecific heat data for the benzene vapor gives the following equation as the enthalpy of superheated benzene vapor referred to liquid benzene a t 32 ' F., TABLE111. COMPARISON OF EFFECT OF PRESSURE AT CONSTANT TEMPERATORE ON ENTHALPY OF PENTANE AND BENZENE VAPOR,ON BASISOF REDUCED (0.0003741 0.251)dt = 232 TEMPERATURES AND REDUCED PRESSURES L 6

+

+

(In B. t. u. per pound mole per

Rankine: values are for decrease in enthalpy per Rankine per pound mole, - A H / T ) Reduced Temperature Reduced Temperature Reduced Temperature

which, when integrated, gives -

H

=

+

0.000187t2 0.251t $. 182

(6)

By use of Equations 4 and 6, lines of constant enthalpy may be drawn on a pressure-temperature diagram as sho6.n in Figure 4.

Comparison o f Effect of Pressure on Enthalpy of Benzene and Pentane Vapor As a basis for comparison of the properties of different hydrocarbons, the reduced temperatures and pressures (found by dividing the absolute temperature or pressure by the

Reduced Pressure

0.03 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

0.9 1.0 1.2 1.3 1.4 1.6 a

= 0.9

= 1.1

= 1.0

-Pentane-Calcd. Exptl. Benzene

--Pentane-Pentane--Calcd. Exptl. Benzene Calcd. Exptl.

0

0

0.28 0.7 1.2 1.75 2.3

0 0 28

0.71 1.22 I .78 2.36

0

0.25 0.7 1.25 1.77 2.33

0.22 0.45 0.72 1.1 1.45 1.73 2.22

0

0.24 0.49 0.76 1.12 1.49 1.8 2.3 2.6 3.1 3.6

0

0.22 0.45 0.72 1.1

1.45

.... .... 1.7 .... .... .... 2.2 .... .... .,.. .... 2.55 .... .... .... .... 3.1 .... .... .... .... 3.7 .... .... .... .... .... .... . . . . . . . . . . . . . . . . . . . . 6.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ....

Extrapolated.

0

0.2 0.43 0 57 0.83 1.07 1.3 1.5 1.73 2.05 2 28 3.0

Benzene

0

0

0.8

0.8

0.22 0.4 0.55 1.05 1.3 1.55 1.77 2.1 2.32 2.95

0.2 0.36 0.52 1.02 1.27 1.52 1.76 2.1 2.35 3.0

. . . . . . . . . . . .

3.8 4.43

3.85 4.5

3.ga

....

INDUSTRIAL AND ENGINEERING CHEMISTRY

820

enthalpy-pressure-temperature charts for pentane (5) and benzene as in Figure 4. The values given in Table I11 represent the decrease in enthalpy per pound mole per " Rankine (' F. 460), or - AH, T referred to the enthalpy of the same vapor a t the same temperature under a pressure of one atmosphere.

+

Literature Cited (1) Desjardin, Ann. phus., 11, 253 (1919). (2) Frock, Ginnings, and Rolton, Bur. Standaids J. Reseaich, 6, 893 (1931).

VOL. 27, NO. 7 ,

(3) Gary, W. W., Rubin, L.C., and Ward, J, T., INU.E m . C a m . , 25, 178 (1933). (4) Leduc, Compt. rend., 152, 1762 (1911). (5) Pattee, E. C., and Brown, Q. O . , IND. ENG.CHEX., 26, 511 (1934). (6) Regnault, Inst. de France Mem. d e E'Acod.,26, 1 (1862). ( 7 ) Thibout, Ann. Phgsrk, 35, 349 (1911). (8) Weir, H. ha., and Eaton, G . L.,XND. EN^. Cmm., 24, 211 (1932)" (9) Viedmann, Ann. Phystk u. Chem., 2, 195 (1877). (10) Young, SidneypPhil. Mag., 67,353 (8899) RECEIVED December 17, 1934

rsion Factors HOW-IRD S. NUTTING, Dow- Chemical, Company, Rlidland, Mich.

HE reduction of the volume of a gas saturated with water vapor to standard conditions (dry, 0" C., 760 mm. pressure) is a simple process in itself, but in routine vork it often becomes a tedious and time-consuming operation. The various tables (1) and charts ( 2 ) of conversion factors available in the literature offer considerable assistance, but they all have the disadvantage of requiring either supplementary calculations or inconvenient mechanical manipulations. It is possible to arrange conversion factors, which automatically correct for the partial pressure of the water vapor in the forin of a chart in such a manner that the factor corresponding to the observed temperature and pressure may be determined simply and directly. The conversion factors for such a chart are calculated by means of the well-known equation : Factor

P

= -

-p 760

273.3 _ 273.1 t

X ~

+

_

where P

p

= =

total pressure partial pressure of vvater vapor at, t o

The chart is constructed by plotting two or more factors for each temperature on Cartesian coordinates against their respective total pressures, and drawing the straight-line isotherms as illustrated in the accompanying figure. Thus, in order to reduce t o standard condit'ions the volume of a gas collected over n-atcr-for example, at' 25" C,and 780 mm. pressure----it is necessary only to multiply the observed volume by 0.911, the factor found at, the intersection of the 25" isotherm and 780 mm. ordinate. A typical table of conversion factors is given for the convenience o€ those x h o may wish to construct charts of their own. This method of representing gas conversion facOors can be used with any other units of temperature and pressure. It is also applicable to t'hose cases in n-hich the gas is in contact with other retaining liquids, such as saturated salt solutions but', in so doing, care must be taken to use t'he proper pnrtialpressure data in calculating the conversion fact'ors. COSVERSIOX FACTORS FOR GASESIS Cos~.ic,rWITH WATER T ~ , ~ ----.---At ~ , , OC.

Following Preasure, i n Mrn.:---.----.-700 750 SO0 900

0.6405 0.6347 0.6289 0.6230

0.7502 0.8998 0.7635 0.8921 0 , 7 5 6 7 0,8845 0.7499 0.8768

0.9647 0.9566 0,9485 0,9403

10295 1.0210 1,0123 1.0040

1000 1.1592 1.2883 1.1497 1.2785 1.1402 1.2681 1.1307 1.2576

14 16 15 20

12

0.6170 0.6108 0.6045 0.5981 0.5915

0,7430 0.7860 0.7288 0.7216 0.7141

0,8690 0.8611 0.8531 0.8449 0,8367

0,9320 0,9237 0.9153 0.9067 0.8982

0.9951 0,9863 0.9774 0.9684 0.9893

1.1211 1.1116 1 1017 1.0919 1.0819

1.2472 1.2372 1.2260 1.2153 1.2043

22 24 26 28 30

0.5847 0.5777 0,5704 0.5629 0.5550

0.7065 0.8282 0.6986 0.8196 0.6906 0.8107 0.6822 0.8016 0.6738 0,7922

0.8891 0.8801

0,9500 0.9405 0.9308 0.9209 0.9107

1.0718 1.0615 1.0510 1,0403 1.0293

1.1936 1.1824 1.1711 1.1596 1.1478

32 34 36 38 40

0.5469 0.5394 0.5295 0.5201 0.5104

0.8647 0.7824 0.8413 0.9002 0.6554 0.7724 0.8309 0.8894 0.6457 0.7620 0.8201 0.8782 0.6359 0.7511 0.8089 0.8667 0.625- 0,7399 0.7973 0.8547

1.0180 1.0064 0.9946 0.9828 0.9694

1.1358 1.1234 1.1107 1,0977 1.0842

42 44 46 48 50

0,5012 0.4893 0.4778 0.4659 0.4532

0,6141 0.6026 0,5905 0,5778 0,5644

0.7862 0.8422 0.9562 0.7726 0.8292 0.9425 0,7594 0,8157 0.9283 0,7456 0,8016 0 , 9 1 3 5 0.7312 0.7868 0.8981

1.0703 1.0558 1.0409

4 6 5

10

500

600

0.7292 0.7159 0,7031 0.6887 Q.6756

0.8708 0.8612

0.8515

1,0254

1.0093

Literature Cited 740

780

820

P R E S S U R E IN MM. CHART FOR D E T E H h I l Y I S G COhVEASIOX

FACTOE

(1) Lange's Handbook of Chemistry, p. 1244 (1934) ; l'an Nostrand'a Chemical Annual, 7th ed., p. 152 (1934). (2) Patton, T. C., Chem. & M e t . Eng., 41, 488 (1934); Tropsch, H., and Mattox, JY~J., 1x11. ENG.CHEM.,,4nal. Ed., 6, 409 (1934). Rmcm96m r'iouember 30, 1934.