Subscriber access provided by UB + Fachbibliothek Chemie | (FU-Bibliothekssystem)
Article
Thermochemistry of Hydroxyl and Hydroperoxide Substituted Furan, Methylfuran and Methoxyfuran Jason M. Hudzik, and Joseph William Bozzelli J. Phys. Chem. A, Just Accepted Manuscript • Publication Date (Web): 01 May 2017 Downloaded from http://pubs.acs.org on May 2, 2017
Just Accepted “Just Accepted” manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides “Just Accepted” as a free service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. “Just Accepted” manuscripts appear in full in PDF format accompanied by an HTML abstract. “Just Accepted” manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are accessible to all readers and citable by the Digital Object Identifier (DOI®). “Just Accepted” is an optional service offered to authors. Therefore, the “Just Accepted” Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the “Just Accepted” Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these “Just Accepted” manuscripts.
The Journal of Physical Chemistry A is published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036 Published by American Chemical Society. Copyright © American Chemical Society. However, no copyright claim is made to original U.S. Government works, or works produced by employees of any Commonwealth realm Crown government in the course of their duties.
Page 1 of 51
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
The Journal of Physical Chemistry
Thermochemistry of Hydroxyl and Hydroperoxide Substituted Furan, Methylfuran and Methoxyfuran Jason M. Hudzikǂ and Joseph W. Bozzelli* Chemistry, Chemical Engineering and Environmental Science New Jersey Institute of Technology, Newark, NJ 07102 Abstract Reaction pathways are influenced by thermochemical properties, species stability, and chemical kinetics. Understanding these factors allows for an understanding of the reaction paths and formation of intermediate species. Enthalpies of formation (∆Hf °298), entropies (S°298), heat capacities (Cp(T)), oxygen–hydrogen (O–H), and oxygen- oxygen (O–O) bond dissociation energies (BDEs) are reported for hydroxyl and hydroperoxide substituted furan, methylfuran, and methoxyfuran species. Standard enthalpies of formation for parent and radical species have been determined using density functional theory B3LYP/6-31G(d,p) , B3LYP/6-311G(2d,2p), and M06-2X/6-31G(d,p) along with higher level CBS-QB3 and CBS-APNO composite methods. Isodesmic work reactions were employed to improve accuracy by cancelling error and show consistency between the levels of theory. Corresponding O–H and O–O BDEs are determined and compared to other similar structures. The stability of the furan moiety coupled with the double bond forming capability of the oxygen moiety, results in a number of bond energies significantly lower than one might have expected. Substituted hydroperoxides are calculated to have ROO–H BDEs between 86.9- 94.2 kcal mol-1 and their RO–OH BDEs show a large, 49 kcal mol-1 range of -2.3 to 46.8 kcal mol-1. Substituted alcohols also show a wide 48 kcal mol-1 range with RO–H BDEs, ranging from 59.3 to 106.9 kcal mol-1. Bond lengths of parent and radical species are presented to highlight potential bonds of interest leading to furan ring opening. Group additivity is discussed and groups for substituted furan, methylfuran, and methoxyfuran species are derived. Structures, moments of inertia, vibrational frequencies, and internal rotor potentials are calculated at the B3LYP/6-31G(d,p) density functional level and are used to determine the S°298 and Cp(T) values. ǂ
Current Address Department of Biology and Chemistry County College of Morris Randolph, NJ 07869 *Corresponding Author e-mail:
[email protected] 1
ACS Paragon Plus Environment
The Journal of Physical Chemistry
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Introduction Advances in the development of biofuels has resulted in several groups of compounds that are emerging as potential next generation fuels. The versatile intermediate compounds, such as highenergy substituted furans, created in the production processes of these fuels are sometimes just as important. The review by Lewkowski1 summarizes the importance of one such compound, 5hydroxymethylfurfural (HMF), and its use in deriving a vast array of compounds including organic acids, aldehydes, amines, and ethers. HMF has also been efficiently produced from fructose using room temperature ionic liquids2 and acid-catalyzed dehydration3. Other substituted furans, such as 2,5-dimethylfuran (25DMF), can also be produced from HMF and have been shown to have possible biofuel applications.4,5 As the amount of research focused on these types of furan-based alternative fuels increases, understanding the properties of all involved species is necessary. Properties of furan, mono-, and di-substituted furans and related derivatives have been studied experimentally and computationally by several groups.6-8 2-Methylfuran (2MF) is one of the simplest substituted furans and has different involvement in several chemical systems and has been the basis for a number of studies. It has been used in testing cycloaurated gold (III) complex catalytic activities9 and in producing second-generation biofuels suitable for high-quality diesel fuels.10 Its synthesis has been explored through a coupling process involving the simultaneous furfural hydrogenation and cyclohexanol dehydrogenation 11 and through conversion of pentoses.12 The products formed from 2MF hydrogenation,13,14 and hydrogen-abstraction and pyrolysis15 along with reactions with OH radicals16-19 and chlorine atoms20,21 have also been studied. Several groups have completed comprehensive studies on the combustion chemistry of disubstituted furans. Tran et al.22 described specific reactivity of acyclic and cyclic oxygenated species including unimolecular initiation via a carbene intermediate and β-scissions of furan and 25DMF. The combustion chemistry and flame structure of furan, 2MF, and 25DMF was analyzed using molecular-beam mass spectrometry and gas chromatography and included the main reaction pathways.23-25 Simmie and Metcalfe26 looked at the thermal decomposition of 25DMF using computational methods. Somers et al.27 developed a detailed chemical kinetic mechanism of 2768 reactions and 545 species to accurately reproduce the experimental data from the combustion of 25DMF. In our initial work on 2- and 3-methoxyfuran28 (2MeOF and 3MeOF) we reported that the C–H bonds on the furan ring are very high, some 7 kcal mol-1 stronger than even those on benzene. The methoxy- methyl bond energy decreases and would be a favorable abstraction target. Simmie et al.29 studied the H-atom abstraction and methyl radical addition to 2MeOF to illustrate its high reactivity and its characteristic strong and weak bonds. Along the way to developing a system for the oxidation reactions of several of the 2MF radicals, thermochemical properties for the hydroperoxide and hydroxyl species were needed. Since these
2
ACS Paragon Plus Environment
Page 2 of 51
Page 3 of 51
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
The Journal of Physical Chemistry
were not available in the literature, we set to study these to provide accurate and reliable values for them. We will show here the bond energies for these substituted furan, methylfuran, and methoxyfuran species can be very low, specifically for the RO–OH bonds in the hydroperoxides. This study provides enthalpies of formation (∆Hf °298), entropies (S°298), and heat capacities (Cp(T)) including radicals corresponding to the loss of hydrogen atom. Oxygen-hydrogen and oxygen-oxygen bond dissociation energies (O–H and O–O BDEs) are determined from the parent and radical species and allow for the prediction of initial reaction pathways for these compounds. Overall, we look to enhance the accuracy of modeling combustion systems and serve as useful data for this important group of compounds. Nomenclature Abbreviations are utilized as described below according to the furan numbering in Figure 1: •
F, 2MF, 3MF, 2MeOF, and 3MeOF denote furan, 2-methylfuran, 3-methylfuran, 2methoxyfuran, and 3-methoxyfuran respectively.
•
—OOH or —OH substituent positioning on the furan ring denoted with number position after the prefixes: F, 2MF, 3MF, 2MeOF, or 3MeOF. The —OOH or —OH substituent positioning on a methyl or methoxy substituent has the same number position after the prefix. For example, 2MF2OH has the —OH substituent on the methyl group at the two position of the furan ring and 3MeOF3OOH has the —OOH substituent on the methoxy group at the three position of the furan ring.
•
J represents a radical site on the preceding atom.
3
ACS Paragon Plus Environment
The Journal of Physical Chemistry
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Figure 1: Example Nomenclature and Numbering Convention for Substituted Furan, Methylfuran, and Methoxyfuran Species in This Study.
Computational Methods Optimized geometries for the parent and radicals were determined using potential energy curves for internal rotation at the B3LYP/6-31G(d,p) level of theory. Enthalpies of formation in the gas phase were calculated using isodesmic work reactions to achieve greater accuracy with the popular density functional theory (DFT) method B3LYP. This method combines the three parameter Becke exchange functional, B3, with Lee- Yang- Parr correlation functional, LYP. 30,31 The moderate 6-31G(d,p) and the larger 6-311G(2d,2p) basis sets are employed which we have shown previously to provide acceptable thermochemical properties for cyclic hydrocarbons and oxygenates.28,32 For comparison, the hybrid meta-GGA exchange-correlation functional M06-2X33,34 by Zhao and Truhlar with the 6-31G(d,p) basis set is utilized. Higher level composite methods are also utilized to provide accurate thermochemical properties and allow us to validate the use of the lower level DFT methods. CBS-QB335,36 uses geometries and frequencies from the B3LYP/6-311G(2d,d,p) level followed by single point energy calculations at the CCSD(T), MP4SDQ, and MP2 levels with a final CBS extrapolation. The CBS-APNO37 method was also used which uses a HF/6-311G(d,p) geometry optimization for reference force constants to help in optimization in the structure calculation at the QCISD/6311G(d,p) level of theory. Single point energy calculations are then done using the QCISD(T),
4
ACS Paragon Plus Environment
Page 4 of 51
Page 5 of 51
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
The Journal of Physical Chemistry
MP2(Full), and MP2 methods with a CBS-APNO extrapolation for the final energies. All calculations were performed using the Gaussian 0338 and Gaussian 0939 programs. Oxygen-hydrogen and oxygen-oxygen bond dissociation energies are derived using a bond cleavage reaction with our calculated ∆Hf °298 energies. Established literature values of 52.103 ± 0.001 kcal mol-1 for a hydrogen atom40 and 8.89 ± 0.09 kcal mol-1 for a hydroxyl radical41 were used. Contributions to entropy and heat capacities from translations, vibrations, and external rotations are calculated using the rigid-rotor harmonic-oscillator approximation Statistical Mechanics for Heat Capacity and Entropy (SMCPS) program.42 The SMCPS program uses geometry, mass, electronic degeneracy, symmetry, frequencies, number of optical isomers, and moments of inertia, at the B3LYP/6-31G(d,p) level of theory, as input parameters for each compound. Zeropoint vibration energies (ZPVE) are also included and are scaled by 0.9806 as recommended by Scott and Radom.43 The program ROTATOR is used to determine contributions from internal rotational potential energy curves from the B3LYP/6-31G(d,p) level to entropy and heat capacities.44 The method employs expansion of the hindrance potential in the Fourier series (see I), calculation of the Hamiltonian matrix in the basis of wave functions of free internal rotor, and subsequent calculation of energy levels by direct diagonalization of the Hamiltonian matrix. In this work the internal rotor potential calculated at discrete torsion angles is represented by a truncated Fourier series: V(φ) = a0 +∑ai cos(iφ) +∑bi sin(iφ), where i = 1-7
(I)
Values of the coefficients (a0, ai, and bi) are calculated to provide the minima and maxima of the torsion potentials with allowance for a shift of the theoretical extreme angular positions. Summing the SMCPS and ROTATOR contributions gives the total entropy and heat capacity values for these species. Results and Discussion Enthalpy of Formation ∆Hf °298 Isodesmic work reactions were used to calculate the ∆Hf °298 for each target species using the standard well-established ∆Hf °298 values for reference species listed in Table 1. We located several different experimental and computational ∆Hf °298 values for furan, 2MF, and 3MF in the literature and present them in Scheme 1.
5
ACS Paragon Plus Environment
The Journal of Physical Chemistry
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Page 6 of 51
Scheme 1: Literature ∆Hf °298 Values for Furan, 2-Methylfuran, and 3-Methylfuran Species Furan 2MF 3MF
∆Hf °298 (kcal/mol) Experimental -8.29 ± 0.21 6 -8.3 ± 0.2 45 -18.3 ± 0.3 47
Computational -8.32 ± 0.72 8 -7.7 ± 0.5 46 -19.2 ± 1.2 8 -19.3 ± 0.1 48 -16.6 ± 0.1 48
This Study -7.5 a -18.0 b -18.8 c -15.3 b -16.1 c -15.6 ± 0.3 d
Bold represents values used in this study a Calculated using isodesmic work reactions. b Calculated using isodesmic work reactions and our calculated -7.5 kcal/mol ∆Hf °298 value for Furan. c Calculated using isodesmic work reactions and experimental -8.29 kcal/mol ∆Hf °298 value for Furan. d Calculated using isomerization work reaction and experimental -18.3 kcal/mol ∆Hf ° 298 value for 2MF.
These values are an important component to this study, since the work reactions utilized for the hydroxyl and hydroperoxide species incorporate these species. In order to validate the values for furan, we performed calculations at the CBS-QB3 and CBS-APNO levels and created twentyseven isodesmic work reactions. The results of these twenty-seven isodesmic work reactions yield a standard enthalpy of formation for furan of -7.5 kcal/mol (standard deviation of 1.1 kcal/mol and 95% confidence of -7.5 ± 0.3 kcal/mol) compared to the experimental values of -8.29 and -8.3 kcal/mol. Using our value for furan, we determined 2MF and 3MF values of -18.0 and -15.3 kcal/mol respectively from six isodesmic work reactions. Our 2MF value is 0.3 kcal/mol higher than the experimental value of -18.3 kcal/mol. Using the experimental -8.29 kcal/mol value for furan in our work reactions generates 2MF and 3MF values slightly lower at -18.8 and -16.1 kcal/mol which are 0.5 kcal/mol higher than those determined computationally. Using the experimentally determined ∆Hf °298 value for 2MF from Ribeiro da Silva and Amaral47 of -18.3 ± 0.3 kcal mol-1, we calculated the 3MF value using the isomerization work reaction of 2MF → 3MF from both CBS-QB3 and CBS-APNO methods to get -15.6 ± 0.3 kcal mol-1. We evaluate the experimental values of -8.29, -8.3 and -18.3 kcal/mol and the computed -15.6 kcal/mol for furan, 2MF, and 3MF respectively, to be the most reliable and these are utilized as reference in this study. Clarification of these values would be important. ∆Hf °298 values from each of the methods as well as averages for the B3LYP with the 6-31G(d,p) and 6-311G(2d,2p) basis and composite CBS-QB3 and CBS-APNO methods are presented in 6
ACS Paragon Plus Environment
Page 7 of 51
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
The Journal of Physical Chemistry
Tables 2-6 for the substituted furans, methylfurans, and methoxyfurans. A summary of the recommended enthalpies of formation and their uncertainties can be found in Table 7. Error analysis on our calculated values incorporates uncertainties from the work reactions at each calculation method and from the reference species. The sum of the reference species error limit is added to the standard deviation (σ) of the calculated enthalpies of formation from the calculation methods. The root mean square (RMS) of these values is taken to determine the overall uncertainty in the B3LYP, M06-2X, and composite values. This procedure is described in detail in the Supporting Information. Tables 2-6, show good agreement for the ∆H°f 298 values between the DFT and composite resulting from the use of the error cancelling work reactions and work reactions where the reference and target radical are identical types. We recommend the ∆Hf °298 values from the composite method, average of CBS-QB3 and CBS-APNO, for the parent and radical species in Table 7. Table 1: Standard Enthalpies of Formation for Reference Species in Isodesmic Work Reactions Species ∆Hf° 298 (kcal mol-1) Reference H 52.103 ± 0.001 40 O 59.567 ± 0.0005 49 O2 0.0 OH 8.89 ± 0.09 41 OOH 2.7 ± 0.2 50 CH4 -17.8 ± 0.1 45 CH3CH3 -20.0 ± 0.1 45 -25.0 ± 0.1 45 CH3CH2CH3 -48.2 ± 0.1 45 CH3OH -56.2 ± 0.1 45 CH3CH2OH -61.0 ± 0.1 45 CH3CH2CH2OH -31.0 ± 0.2 51 CH3OOH -39.1 ± 0.2 51 CH3CH2OOH -43.8 ± 0.3 51 CH3CH2CH2OOH F -8.29 ± 0.21 6 2MF -18.3 ± 0.3 47 a -15.6 ± 0.3 3MF -45.0 ± 1.0 28 2MeOF -41.1 ± 1.0 28 3MeOF 4.9 ± 0.4 50 CH3OJ -3.1 ± 0.4 50 CH3CH2OJ -8.1 ± 0.9 50 CH3CH2CH2OJ 2.9 ± 0.2 51 CH3OOJ -5.6 ± 0.2 51 CH3CH2OOJ -10.5 ± 0.3 51 CH3CH2CH2OOJ ° a Calculated from ∆H f 298 value 2MF using the isomerization reaction of 2MF → 3MF. See Results and Discussion section 7
ACS Paragon Plus Environment
The Journal of Physical Chemistry
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
for details.
Oxygen-Hydrogen and Oxygen- Oxygen Bond Dissociation Energies (O–H and O–O BDEs) There is good agreement for the ∆H°f 298 value calculations between the B3LYP, M06-2X, and composite methods as seen in Tables 2- 6. Our recommended values from the average of the composite methods on analysis of BDEs will be discussed, these are also included in Table 7 and illustrated in Figure 2. Table 8 also has a summary of the BDEs broken down into bond type, location (either directly on the furan ring or on a methyl/methoxy substituent), and position on the furan ring. These average BDEs are shown graphically in Scheme 2; the individual BDEs for substitution on the methyl/methoxy substituents are illustrated in Scheme 3. Scheme 2: Average RO–H, ROO–H, and RO–OH BDEs for Hydroxyl and Hydroperoxide Substitutions Directly onto the Furan Ring.
8
ACS Paragon Plus Environment
Page 8 of 51
Page 9 of 51
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
The Journal of Physical Chemistry
Scheme 3: RO–H, ROO–H, and RO–OH BDEs for Hydroxyl and Hydroperoxide Groups on the Methyl/Methoxy Substituents of the Furan Ring.
The ROO–H BDEs for the hydroperoxide substitutions, regardless of position on the furan ring, for the furans, methylfurans, and methoxyfurans, fall within a 7 kcal mol-1 range of 86.9- 94.2 kcal mol-1 and correlate well to BDEs for similar species. ROO–H BDEs for substitution on the 3 or 4 positions, as shown in Table 8, fall in a range of 86.9- 89.5 kcal mol-1 with the exception of 3MeOF3OOH with a slightly higher energy of 91.1 kcal mol-1. These are similar to the energies of 84-88 kcal mol-1 seen in primary, secondary, and tertiary alkyls, and vinylic, allyl, and phenyl hydroperoxides.51-56 ROO–H BDEs of the hydroperoxide group on either the 2 or 5 position of the furan ring is slightly higher in energy at 90.8-94.2 kcal mol-1, with the exception of 2MF2OOH at 87.3 kcal mol-1, these are similar to the 91- 94 kcal mol-1 for ethynyl and substituted phenyl hydroperoxides.53,54 Unlike the ROO–H BDEs above, the overall range of the RO–OH BDEs for the furan, methyfuran, and methoxyfuran hydroperoxide substituted species encompass a 49 kcal mol-1 range, from -2.3 to 46.8 kcal mol-1. Common hydroperoxide RO–OH BDEs are relatively weak and have energies which normally range from 43-47 kcal mol-1 for primary, secondary, and tertiary alkyl hydroperoxides51,53,54,56,57 and slightly lower at 36- 40 kcal mol-1 for di-alkyl peroxides.54,58 The RO–OH BDEs for hydroperoxide substitution directly on to the methyl/methoxy position, for example 2MF2OOH and 3MeOF3OOH, creates a similar bonding environment to standard alkyl peroxides and supports the 46.7- 45.5 kcal mol-1 calculated energies.
9
ACS Paragon Plus Environment
The Journal of Physical Chemistry
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Weaker RO–OH BDEs of 10.7- 17.5 kcal mol-1 are seen for hydroperoxide substitution directly on the furan ring to the 3 and 4 positions and still weaker energies of -2.3- 2.7 kcal mol-1 for substitution at the 2 and 5 positions. These low energies are due to a combination of weak RO– OH bonds and strong resonance within the furan moiety creating a stabilized radical. The ether link oxygen atom with the methoxyfurans adds greater stability generating two negative RO–OH BDE’s in 2MeOF5O-OH and 3MeOF2O-OH. These are approximately 25 kcal mol-1 lower than phenyl hydroperoxide and 10 kcal mol-1 lower than ethynyl hydroperoxide as calculated by Sebbar et al.53 RO–H BDEs for hydroxyl (-OH) substitution on the furans, methylfurans, and methoxyfurans also shows a similar 48 kcal mol-1 range trend with the RO–OH BDEs values of 59.3 - 106.9 kcal mol-1. Common RO–H BDEs for alcohols range from 103- 106 kcal mol-1 for primary, secondary, and tertiary alcohols and 105- 106 kcal mol-1 for benzyl alcohol and cyclohexanol.54,55,58,59 RO–H BDEs for hydroxyl substitution directly on to the methyl/methoxy position shows great correlation of 106.3-106.9 kcal mol-1 to these values. Hydroxyl substitution on the 3 and 4 positions of the furan ring result in low RO–H BDEs with values ranging from 72.9- 81.7 kcal mol-1: these are almost 30 kcal mol-1 lower in energy than the alkyl alcohol bond energy. The RO–H BDEs of 59.3- 66.8 kcal mol-1 on the 2 and 5 positions are also 30 kcal mol-1 lower than the 89- 90 kcal mol-1 for phenol55,60. Similar to the hydroperoxide substitutions with the RO—OH bond cleavage, a significantly more stable environment for the oxy radical formation is created by the resonant system with the ether link by these RO—H and RO—OH bond cleavages. There are also strong trends in the BDEs for the R–OOH, R–OOJ, R–OH, and R–OJ bonds. These values utilize the standard ∆H°f 298 values developed in this study, values for radicals corresponding to loss of a hydrogen atom from furan, methylfuran, and methoxyfuran from Hudzik and Bozzelli28 and from Simmie and Curran48, along with standard ∆H°f 298 values for OOH, O2, OH, and O in Table 1. Our recommended values are included in Tables 7 and 8. These BDEs are shown graphically in Schemes 4 and 5. As described for the previous sets of BDEs, there are definitive trends. The R–OOH BDEs for attachment to the furan ring range from 86.8 - 93.1 kcal/mol and decrease into the 53- 59 and 75 kcal/mol ranges when on methyl groups of methylfurans and methoxyfurans. The R–OOJ BDEs drop significantly compared to the R–OOH BDEs which is expect with the formation of π bond in O2. These BDEs range from 48.0-50.6 kcal/mol for attachment on the furan ring and decrease to below 20 kcal/mol when on the methyl group of methylfurans and around 34 kcal/mol for the methoxyfurans. The R–OH BDEs range from 112.9-119.3 kcal/mol for attachment to the furan ring and decrease to 76.4- 99.1 when placed on the methyl or methoxy positions. The R–OJ BDEs provide the largest BDEs of 136.7- 161.2 kcal/mol for furan ring placement and decrease to 72.2 - 95.6 kcal/mol when on a methyl or methoxy position.
10
ACS Paragon Plus Environment
Page 10 of 51
Page 11 of 51
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
The Journal of Physical Chemistry
Scheme 4: Average R–OOH, R–OOJ, R–OH and R–OJ BDEs for Hydroxyl and Hydroperoxide Substitutions Directly onto the Furan Ring.
Scheme 5: R–OOH, R–OOJ, R–OH and R–OJ BDEs for Hydroxyl and Hydroperoxide Groups on the Methyl/Methoxy Substituents of the Furan Ring.
11
ACS Paragon Plus Environment
The Journal of Physical Chemistry
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48
Figure 2: Nomenclature, Oxygen- Hydrogen, and Oxygen- Oxygen (red italics) Bond Dissociation Energies in kcal mol-1 for Substituted Furan, Methylfuran, and Methoxyfuran Species. These figures do not necessarily represent the optimized geometries.
12
ACS Paragon Plus Environment
Page 12 of 51
Page 13 of 51
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
The Journal of Physical Chemistry
Bond Lengths Scheme 6 shows the average Cf –Of –Cf bonds lengths for bonds which change more than 0.020 Å in going from the parent to radical species. The bond lengths are from the B3LYP/6-31G(d,p) optimized species and f denotes the atoms are in the furan ring. A full analysis of the bond length changes is included in the Supporting Information. During radical formation, one of the Cf –Of –Cf bonds will elongate while the other compresses. General trends for bond elongation and compression within the furan ring upon radical formation would be of interest for consideration of initiating ring opening. Radical formation for the hydroxyl species substituted have the largest effect on bond lengths. This change is more pronounced compared to hydroperoxides due to one less oxygen atom with which the electron can be stabilized through. Hydroxyl substitution on the methyl or methoxy substituent, as well as the hydroperoxide substituted species in general, shows almost no effect on furan bond lengths. Scheme 6: Average Change in Cf–Of–Cf Bond Lengths from Parent to Radical of Hydroxyl and Hydroperoxide Groups Substituted on the Furan Ring.
Entropy (S°298) and Heat Capacities (Cp(T)) S°298 and Cp(T) for these species are determined by summing the contributions from the translations, vibrations, and external rotations to those from internal rotation. These total entropy and heat capacity values are presented in Table 9. 13 ACS Paragon Plus Environment
The Journal of Physical Chemistry
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Page 14 of 51
When analyzing the internal rotors, rotations under 5 kcal mol-1 were analyzed with the ROTATOR program to more accurately model their contributions to entropy and heat capacity. In the Supporting Information these rotors with large rotational barriers are denoted and an example input file is included. Group Additivity (GA) Values The group additivity method developed by Benson61 allows for the rapid estimation of thermochemical properties for a molecule by summing the individual contributions of representative groups in the molecule(s) and their established linear consistency in thermochemical property contribution. Somers et al.27 developed specific groups for a variety of substituted furans. With the addition of these substituted furan, methylfuran, and methoxyfuran species, we create more groups to expand their work. The groups utilized from Somers and the ones we developed are located in Table 10. Benson type groups are developed for the OOH and OH substituents on furans denoted CF/FxOH and CF/FxOOH where CF denotes a carbon furan atom and x is the position on the furan ring as seen in the examples in Figure 3. Similar groups were created for the substituted 2- and 3methylfurans and 2- and 3-methoxyfurans seen, for example, in the CF/2MF5OOH and CF/2MeOF5OOH groups in Figure 3. We have developed C/O/H2/OOH, C/O/H2/OH, C/CF/H2/OOH, and C/CF/H2/OH groups for substitution directly onto a methyl or methoxy group, by averaging the values from multiple groups (ex: C/CF/H2/OOH is averaged from 2MF2OOH and 3MF3OOH). Although there are sufficient groups that could be utilized to model these species, the entropies, specifically for the methoxyfuran substituted hydroperoxides, had some cases where they were over predicted by 5 – 8 cal mol-1 K-1. The methylfuran substituted species were off approximately 2 - 3 cal mol-1 K-1 for entropies and heat capacities. Utilizing these new optimized groups, enthalpies of formation are within 1 kcal mol1 and entropies and heat capacities are under 1 cal mol-1 K-1. It is important to note that these groups result in slightly higher variation for 2MeOF2OOH and 3MeOF3OOH of 2 and 1.2 cal mol-1 K-1 for the entropies and heat capacities respectively due to a wider deviation in values for the species that were averaged. Table 10 lists hydrogen bond increment groups which provide thermochemical properties of the radicals when the entropy and heat capacity properties are added to the corresponding parent molecules. The enthalpy of formation value of a hydrogen bond increment group corresponds to the C—H bond energy determined from the enthalpy of the parent, the H atom, and the bond dissociation energy at the indicated site.62 Although some of the calculated group values are similar, we withhold calculating general groups that can describe several sites since the resulting calculated values would provide larger deviations from the specific site calculated values.
14 ACS Paragon Plus Environment
Page 15 of 51
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
The Journal of Physical Chemistry
It is important to note that our developed groups are intrinsic. One must consider contributions from symmetry, electron degeneracy, optical isomers, and other interactions as described by Benson61.
Figure 3: Example Group Additivity Notation for Hydroperoxide Substituted Furan, Methylfuran, and Methoxyfuran Species
Summary Enthalpies of formation for hydroxyl and hydroperoxide substituted furan, methylfuran, and methoxyfuran species and their radicals have been determined using density functional theory and higher level composite computational methods. Isodesmic work reactions were employed to improve accuracy by cancelling error and show good consistency between the levels of theory. Corresponding oxygen- hydrogen and oxygen-oxygen bond dissociation energies are determined and compared to other similar species. Due to high stability resulting from the resonance and ether link in the furans, the radical compounds in some cases have bond energies that are much lower than would be expected. Substituted hydroperoxides have consistent ROO–H BDEs of 86.9- 94.2 kcal mol-1 but RO–OH BDEs vary in energy from -2.3- 46.8 kcal mol-1. Substituted hydroxyls also have a large range of RO–H BDEs between 59.3- 106.9 kcal mol-1. Furan ring bond lengths for hydroxyl substituted species are discussed as potential locations of interest for ring opening. S°298 and Cp(T) values are also determined for the parent and radical species. Group additivity groups for substituted furan, methylfuran, and methoxyfuran species are derived. Results from this study will hopefully serve as useful data for this important family of compounds. Supporting Information Available: Calculation of uncertainties, hindered internal rotor potential energy diagrams, optimized structures, vibration frequencies, moments of inertia, example input file for ROTATOR, bond length analysis, 15 ACS Paragon Plus Environment
The Journal of Physical Chemistry
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
and complete references. This information is available in the supplemental electronic material, free of charge via the Internet at http://pubs.acs.org. Author Information: The authors declare no competing financial interest.
Acknowledgements: The authors thank the editor and reviewers for their valuable suggestions and comments and the NJIT Advanced Research Computing (ARC) group for help and facility maintenance.
16 ACS Paragon Plus Environment
Page 16 of 51
Page 17 of 51
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
The Journal of Physical Chemistry
References (1) Lewkowski, J. Synthesis, Chemistry and Applications of 5-Hydroxymethyl-Furfural and its Derivatives. ARKIVOC 2001, 2001, 17-54. (2) Hu, S.; Zhang, Z.; Zhou, Y.; Han, B.; Fan, H.; Li, W.; Song, J.; Xie, Y. Conversion of Fructose to 5-Hydroxymethylfurfural using Ionic Liquids Prepared from Renewable Materials. Green Chem. 2008, 10, 1280-1283. (3) Román-Leshkov, Y.; Chheda, J. N.; Dumesic, J. A. Phase Modifiers Promote Efficient Production of Hydroxymethylfurfural from Fructose. Science 2006, 312, 1933-1937. (4) Binder, J. B.; Raines, R. T. Simple Chemical Transformation of Lignocellulosic Biomass into Furans for Fuels and Chemicals. J. Am. Chem. Soc. 2009, 131, 1979-1985. (5) Román-Leshkov, Y.; Barrett, C. J.; Liu, Z. Y.; Dumesic, J. A. Production of Dimethylfuran for Liquid Fuels from Biomass-Derived Carbohydrates. Nature 2007, 447, 982-986. (6) Guthrie Jr, G. B.; Scott, D. W.; Hubbard, W. N.; Katz, C.; McCullough, J. P.; Gross, M. E.; Williamson, K. D.; Waddington, G. Thermodynamic Properties of Furan. J. Am. Chem. Soc. 1952, 74, 4662-4669. (7) Simmie, J. M.; Somers, K. P.; Metcalfe, W. K.; Curran, H. J. Substituent Effects in the Thermochemistry of Furans: A Theoretical (CBS-QB3, CBS-APNO and G3) Study. J. Chem. Thermodyn. 2013, 58, 117-128. (8) Feller, D.; Simmie, J. M. High-level ab Initio Enthalpies of Formation of 2,5-Dimethylfuran, 2Methylfuran, and Furan. J. Phys. Chem. A 2012, 116, 11768-11775. (9) Kilpin, K. J.; Jarman, B. P.; Henderson, W.; Nicholson, B. K. Catalytic Activity of Cycloaurated Complexes in the Addition of 2-Methylfuran to Methyl Vinyl Ketone. Appl. Organometal. Chem. 2011, 25, 810-814. (10) Corma, A.; De La Torre, O.; Renz, M.; Villandier, N. Production of High-Quality Diesel from Biomass Waste Products. Angew. Chem., Int. Ed. 2011, 50, 2375-2378. (11) Zheng, H. Y.; Zhu, Y. L.; Huang, L.; Zeng, Z. Y.; Wan, H. J.; Li, Y. W. Study on Cu-Mn-Si Catalysts for Synthesis of Cyclohexanone and 2-Methylfuran Through the Coupling Process. Catal. Commun. 2008, 9, 342-348. (12) Lessard, J.; Morin, J. F.; Wehrung, J. F.; Magnin, D.; Chornet, E. High Yield Conversion of Residual Pentoses into Furfural via Zeolite Catalysis and Catalytic Hydrogenation of Furfural to 2Methylfuran. Top. Catal. 2010, 53, 1231-1234. (13) Aliaga, C.; Tsung, C. K.; Alayoglu, S.; Komvopoulos, K.; Yang, P.; Somorjai, G. A. Sum Frequency Generation Vibrational Spectroscopy and Kinetic Study of 2-Methylfuran and 2,5Dimethylfuran Hydrogenation Over 7 nm Platinum Cubic Nanoparticles. J. Phys. Chem. C 2011, 115, 8104-8109. (14) Zheng, H. Y.; Zhu, Y. L.; Teng, B. T.; Bai, Z. Q.; Zhang, C. H.; Xiang, H. W.; Li, Y. W. Towards Understanding the Reaction Pathway in Vapour Phase Hydrogenation of Furfural to 2Methylfuran. J. Mol. Catal. A: Chem. 2006, 246, 18-23. (15) Wu, X.; Huang, Z.; Yuan, T.; Zhang, K.; Wei, L. Identification of Combustion Intermediates in a Low-Pressure Premixed Laminar 2,5-Dimethylfuran/Oxygen/Argon Flame with Tunable Synchrotron Photoionization. Combust. Flame 2009, 156, 1365-1376. (16) Aschmann, S. M.; Nishino, N.; Arey, J.; Atkinson, R. Kinetics of the Reactions of OH Radicals with 2-and 3-Methylfuran, 2,3-and 2,5-Dimethylfuran, and e -and Z -3-Hexene-2,5-Dione, and Products of OH + 2,5-Dimethylfuran. Environ. Sci. Technol. 2011, 45, 1859-1865.
17 ACS Paragon Plus Environment
The Journal of Physical Chemistry
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Page 18 of 51
(17) Gómez Alvarez, E.; Borrás, E.; Viidanoja, J.; Hjorth, J. Unsaturated Dicarbonyl Products from the OH-Initiated Photo-Oxidation of Furan, 2-Methylfuran and 3-Methylfuran. Atmos. Environ. 2009, 43, 1603-1612. (18) Zhang, W.; Du, B.; Mu, L.; Feng, C. Computational Study on the Mechanism for the Reaction of OH with 2-Methylfuran. J. Mol. Struct. (THEOCHEM) 2008, 851, 353-357. (19) Bierbach, A.; Barnes, I.; Becker, K. H. Product and Kinetic Study of the OH-Initiated GasPhase Oxidation of Furan, 2-Methylfuran and Furanaldehydes at ≈ 300 K. Atmos. Environ. 1995, 29, 2651-2660. (20) Cabañas, B.; Villanueva, F.; Martín, P.; Baeza, M. T.; Salgado, S.; Jiménez, E. Study of Reaction Processes of Furan and Some Furan Derivatives Initiated by Cl Atoms. Atmos. Environ. 2005, 39, 1935-1944. (21) Villanueva, F.; Cabañas, B.; Monedero, E.; Salgado, S.; Bejan, I.; Martin, P. Atmospheric Degradation of Alkylfurans with Chlorine Atoms: Product and Mechanistic Study. Atmos. Environ. 2009, 43, 2804-2813. (22) Tran, L. S.; Sirjean, B.; Glaude, P. A.; Fournet, R.; Battin-Leclerc, F. Progress in Detailed Kinetic Modeling of the Combustion of Oxygenated Components of Biofuels. Energy 2012, 43, 418. (23) Liu, D.; Togbé, C.; Tran, L. S.; Felsmann, D.; Oßwald, P.; Nau, P.; Koppmann, J.; Lackner, A.; Glaude, P. A.; Sirjean, B. et al. Combustion Chemistry and Flame Structure of Furan Group Biofuels Using Molecular-Beam Mass Spectrometry and Gas Chromatography - Part I: Furan. Combust. Flame 2014, 161, 748-765. (24) Togbé, C.; Tran, L. S.; Liu, D.; Felsmann, D.; Oßwald, P.; Glaude, P. A.; Sirjean, B.; Fournet, R.; Battin-Leclerc, F.; Kohse-Höinghaus, K. Combustion Chemistry and Flame Structure of Furan Group Biofuels Using Molecular-Beam Mass Spectrometry and Gas Chromatography - Part III: 2,5Dimethylfuran. Combust. Flame 2014, 161, 780-797. (25) Tran, L. S.; Togbé, C.; Liu, D.; Felsmann, D.; Oßwald, P.; Glaude, P. A.; Fournet, R.; Sirjean, B.; Battin-Leclerc, F.; Kohse-Höinghaus, K. Combustion Chemistry and Flame Structure of Furan Group Biofuels Using Molecular-Beam Mass Spectrometry and Gas Chromatography - Part II: 2Methylfuran. Combust. Flame 2014, 161, 766-779. (26) Simmie, J. M.; Metcalfe, W. K. Ab Initio Study of the Decomposition of 2,5-Dimethylfuran. J. Phys. Chem. A 2011, 115, 8877-8888. (27) Somers, K. P.; Simmie, J. M.; Gillespie, F.; Conroy, C.; Black, G.; Metcalfe, W. K.; BattinLeclerc, F.; Dirrenberger, P.; Herbinet, O.; Glaude, P. A. et al. A Comprehensive Experimental and Detailed Chemical Kinetic Modelling Study of 2,5-Dimethylfuran Pyrolysis and Oxidation. Combust. Flame 2013, 160, 2291-2318. (28) Hudzik, J. M.; Bozzelli, J. W. Structure and Thermochemical Properties of 2-Methoxyfuran, 3-Methoxyfuran, and Their Carbon-Centered Radicals Using Computational Chemistry. J. Phys. Chem. A 2010, 114, 7984-7995. (29) Simmie, J. M.; Somers, K. P.; Yasunaga, K.; Curran, H. J. A Quantum Chemical Study of the Abnormal Reactivity of 2-Methoxyfuran. Int. J. Chem. Kinet. 2013, 45, 531-541. (30) Becke, A. D. Density-Functional Thermochemistry. III. The Role of Exact Exchange. J. Chem. Phys. 1993, 98, 5648-5652. (31) Lee, C.; Yang, W.; Parr, R. G. Development of the Colle-Salvetti Correlation-Energy Formula into a Functional of the Electron Density. Phys. Rev. B. 1988, 37, 785-789.
18 ACS Paragon Plus Environment
Page 19 of 51
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
The Journal of Physical Chemistry
(32) Hudzik, J. M.; Asatryan, R.; Bozzelli, J. W. Thermochemical Properties of exoTricyclo[5.2.1.02,6]decane (JP-10 Jet Fuel) and Derived Tricyclodecyl Radicals. J. Phys. Chem. A 2010, 114, 9545-9553. (33) Zhao, Y.; Truhlar, D. G. The M06 Suite of Density Functionals for Main Group Thermochemistry, Thermochemical Kinetics, Noncovalent Interactions, Excited States, and Transition Elements: Two New Functionals and Systematic Testing of Four M06-Class Functionals and 12 Other Functionals. Theor. Chem. Account 2008, 120, 215-241. (34) Zhao, Y.; Truhlar, D. G. Density Functionals with Broad Applicability in Chemistry. Acc. Chem. Res. 2008, 41, 157-167. (35) Montgomery Jr, J. A.; Frisch, M. J.; Ochterski, J. W.; Petersson, G. A. A Complete Basis Set Model Chemistry. VI. Use of Density Functional Geometries and Frequencies. J. Chem. Phys. 1999, 110, 2822-2827. (36) Montgomery Jr, J. A.; Frisch, M. J.; Ochterski, J. W.; Petersson, G. A. A Complete Basis Set Model Chemistry. VII. Use of the Minimum Population Localization Method. J. Chem. Phys. 2000, 112, 6532-6542. (37) Ochterski, J. W.; Petersson, G. A.; Montgomery Jr, J. A. A Complete Basis Set Model Chemistry. V. Extensions to Six or More Heavy Atoms. J. Chem. Phys. 1996, 104, 2598-2619. (38) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A., Jr, ; Vreven, T.; Kudin, K. N.; Burant, J. C. et al. Gaussian 03, Revision D.01; Gaussian, Inc.: Wallingford, CT, 2003. (39) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A. et al. Gaussian 09, Revision C.01; Gaussian, Inc.: Wallingford, CT, 2009. (40) Cox, J. D.; Wagman, D. D.; Medvedev, V. A. CODATA Key Values for Thermodynamics; Hemisphere Publishing, Corp.: New York, NY, 1989. (41) Ruscic, B.; Feller, D.; Dixon, D. A.; Peterson, K. A.; Harding, L. B.; Asher, R. L.; Wagner, A. F. Evidence for a Lower Enthalpy of Formation of Hydroxyl Radical and a Lower Gas-Phase Bond Dissociation Energy of Water. J. Phys. Chem. A 2001, 105, 2-4. (42) Sheng, C. Ph.D. Dissertation. Department of Chemical Engineering, New Jersey Institute of Technology, Newark, NJ, 2002. (43) Scott, A. P.; Radom, L. Harmonic Vibrational Frequencies: An Evaluation of Hartree-Fock, Moller-Plesset, Quadratic Configuration Interaction, Density Functional Theory, and Semiempirical Scale Factors. J. Phys. Chem. 1996, 100, 16502-16513. (44) Lay, T. H.; Krasnoperov, L. N.; Venanzi, C. A.; Bozzelli, J. W.; Shokhirev, N. V. Ab Initio Study of α-Chlorinated Ethyl Hydroperoxides CH3CH2OOH, CH3CHClOOH, and CH3CCl2OOH: Conformational Analysis, Internal Rotation Barriers, Vibrational Frequencies, and Thermodynamic Properties. J. Phys. Chem. 1996, 100, 8240-8249. (45) Pedley, J. B. Thermochemical Data and Structures of Organic Compounds; Thermodynamics Research Center: College Station, TX, 1994. (46) Feller, D.; Franz, J. A. Theoretical Determination of the Heats of Formation of Furan, Tetrahydrofuran, THF-2-yl, and THF-3-yl. J. Phys. Chem. A 2000, 104, 9017-9025. (47) Ribeiro da Silva, M. A. V.; Amaral, L. M. P. F. Standard Molar Enthalpies of Formation of Some Methylfuran Derivatives. J. Therm. Anal. Calorim. 2010, 100, 375-380. (48) Simmie, J. M.; Curran, H. J. Formation Enthalpies and Bond Dissociation Energies of Alkylfurans. The Strongest C-X Bonds Known? J. Phys. Chem. A 2009, 113, 5128- 5137.
19 ACS Paragon Plus Environment
The Journal of Physical Chemistry
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Page 20 of 51
(49) Ruscic, B. Active Thermochemical Tables: Sequential Bond Dissociation Enthalpies of Methane, Ethane, and Methanol and the Related Thermochemistry. J. Phys. Chem. A 2015, 119, 7810-7837. (50) Goldsmith, C. F.; Magoon, G. R.; Green, W. H. Database of Small Molecule Thermochemistry for Combustion. J. Phys. Chem. A 2012, 116, 9033-9057. (51) Simmie, J. M.; Black, G.; Curran, H. J.; Hinde, J. P. Enthalpies of Formation and Bond Dissociation Energies of Lower Alkyl Hydroperoxides and Related Hydroperoxy and Alkoxy Radicals. J. Phys. Chem. A 2008, 112, 5010-5016. (52) Blanksby, S. J.; Ramond, T. M.; Davico, G. E.; Nimlos, M. R.; Kato, S.; Bierbaum, V. M.; Lineberger, W. C.; Ellison, G. B.; Okumura, M. Negative-Ion Photoelectron Spectroscopy, GasPhase Acidity, and Thermochemistry of the Peroxyl Radicals CH3OO and CH3CH2OO. J. Am. Chem. Soc. 2001, 123, 9585-9596. (53) Sebbar, N.; Bockhorn, H.; Bozzelli, J. W. Structures, Thermochemical Properties (Enthalpy, Entropy and Heat Capacity), Rotation Barriers, and Peroxide Bond Energies of Vinyl, Allyl, Ethynyl and Phenyl Hydroperoxides. Phys. Chem. Chem. Phys. 2002, 4, 3691-3703. (54) Luo, Y.-R. Comprehensive Handbook of Chemical Bond Energies; CRC Press: Boca Raton, FL, 2007. (55) Blanksby, S. J.; Ellison, G. B. Bond Dissociation Energies of Organic Molecules. Acc. Chem. Res. 2003, 36, 255-263. (56) Wang, H.; Bozzelli, J. W. Thermochemical Properties (∆fH°(298 K), S°(298 K), Cp(T)) and Bond Dissociation Energies for C1-C4 Normal Hydroperoxides and Peroxy Radicals. J. Chem. Eng. Data 2016, 61, 1836-1849. (57) Wijaya, C. D.; Sumathi, R.; Green Jr, W. H. Thermodynamic Properties and Kinetic Parameters for Cyclic Ether Formation from Hydroperoxyalkyl Radicals. J. Phys. Chem. A 2003, 107, 4908-4920. (58) Tumanov, V. E.; Denisov, E. T. Estimation of Enthalpies of Alkoxy Radical Formation and Bond Strengths in Alcohols and Ether. Kinet. Catal. 2004, 45, 621-627. (59) McMillen, D. F.; Golden, D. M. Hydrocarbon Bond Dissociation Energies. Annu. Rev. Phys. Chem. 1982, 33, 493-532. (60) da Silva, G.; Chen, C. C.; Bozzelli, J. W. Bond Dissociation Energy of the Phenol O-H Bond from Ab Initio Calculations. Chem. Phys. Lett. 2006, 424, 42-45. (61) Benson, S. W. Thermochemical Kinetics; 2nd ed.; Wiley-Interscience: New York, NY, 1976. (62) Lay, T. H.; Bozzelli, J. W.; Dean, A. M.; Ritter, E. R. Hydrogen Atom Bond Increments for Calculation of Thermodynamic Properties of Hydrocarbon Radical Species. J. Phys. Chem. 1995, 99, 14514-14527.
20 ACS Paragon Plus Environment
Page 21 of 51
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48
The Journal of Physical Chemistry
Table 2: Isodesmic Work Reactions, Calculated ∆Hf °298, and Bond Dissociation Energies for Substituted Furan Hydroperoxide and Hydroxyl Species. See Figure 1 for nomenclature. ∆H°f 298 (kcal mol-1) Isodesmic Work Reactions
F2OOH
+
F2OOH
+
F2OOH
+
F2OOH System → CH4 → CH3CH3 CH3CH2CH3
→
B3LYP 6-31G(d,p)
6-311G(2d,2p)
6-31G(d,p)
+
F2OOJ
+
F2OOJ
+
+
F2OH
+
F2OH
+
CH3OOH
-31.19
-30.51
-29.69
-29.35
-29.22
F
+
CH3CH2OOH
-31.89
-31.10
-29.81
-29.58
-29.49
F
+
CH3CH2CH2OOH
-31.61
-30.85
-28.94
-29.18
-29.17
Average
-31.6
-30.8
-29.5
-29.4
F2OOJ System → F2OOH CH3OOH → F2OOH CH3CH2OOH CH3CH2CH2OOH → F2OOH
+
-31.2
CH3OOJ
8.93
+ +
F2OJ
+
8.88
8.42
9.63
9.47
+
CH3CH2OOJ
9.08
8.94
8.40
9.86
9.64
CH3CH2CH2OOJ
8.90
8.81
8.14
9.74
9.48
9.0
8.9
8.3
9.7
9.5
Method Average
8.9
ROO–H Bond Dissociation Energy
90.4
89.8
90.9
RO–OH Bond Dissociation Energy
4.9
7.3
2.7
9.6
F2OH System → CH4 → CH3CH3
F
+
CH3OH
-51.76
-51.34
-52.15
-49.94
-50.29
F
+
CH3CH2OH
-52.07
-51.55
-52.19
-50.08
-50.46
→
F
+
CH3CH2CH2OH
-51.72
-51.12
-51.33
-49.90
-50.34
-51.9
-51.3
-51.9
-50.0
-50.4
CH3CH2CH3
Method Average
F2OJ
-29.3 -29.3
+
Average
F2OJ
CBS-APNO
+
Average
F2OH
CBS-QB3
F
Method Average F2OOJ
M06-2X/
-51.6
-50.2
F2OJ System → CH3OH → CH3CH2OH
F2OH
+
CH3OJ
-33.32
-33.68
-30.98
-35.51
-35.49
F2OH
+
CH3CH2OJ
-33.11
-32.86
-30.97
-35.40
-35.32
→
F2OH
+
CH3CH2CH2OJ
-33.25
-33.65
-30.81
-35.54
-35.79
-33.2
-33.4
-30.9
-35.5
-35.5
CH3CH2CH2OH
Average
21 ACS Paragon Plus Environment
The Journal of Physical Chemistry
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48
F3OOH
+
F3OOH
+
F3OOH
+
F3OOH System → CH4 → CH3CH3 CH3CH2CH3
→
Method Average
-33.3
RO–H Bond Dissociation Energy
69.0
+
F3OOJ
+
F3OOJ
+
+
F3OH
+
F3OH
+
-25.79
-25.26
-25.92
-24.59
-24.75
F
+
CH3CH2OOH
-26.49
-25.85
-26.05
-24.82
-25.01
F
+
CH3CH2CH2OOH
-26.21
-25.60
-25.18
-24.42
-24.70
Average
-26.2
-25.6
-25.7
-24.6
+
-25.9
CH3OOJ
9.45
+ +
F3OJ
+
9.53
10.62
10.42
10.63
+
CH3CH2OOJ
9.59
9.59
10.60
10.66
10.81
CH3CH2CH2OOJ
9.42
9.46
10.33
10.54
10.65
9.5
9.5
10.5
10.5
10.7
Method Average
9.5
ROO–H Bond Dissociation Energy
86.3
87.3
87.4
RO–OH Bond Dissociation Energy
19.0
20.3
16.8
F3OH System → CH4 → CH3CH3
F
+
F
→
F
10.6
CH3OH
-47.01
-46.44
-46.62
-44.88
-45.18
+
CH3CH2OH
-47.32
-46.64
-46.67
-45.03
-45.35
+
CH3CH2CH2OH
-46.97
-46.22
-45.80
-44.85
-45.22
-47.1
-46.4
-46.4
-44.9
-45.3
Method Average
F3OJ
-24.8 -24.7
+
Average
F3OJ
66.8
CH3OOH
F3OOJ System → F3OOH CH3OOH → F3OOH CH3CH2OOH CH3CH2CH2OOH → F3OOH
CH3CH2CH3
71.3
+
Average
F3OH
-35.5
F
Method Average F3OOJ
Page 22 of 51
-46.8
-45.1
F3OJ System → CH3OH → CH3CH2OH
F3OH
+
CH3OJ
-14.70
-14.82
-13.39
-16.83
-16.72
F3OH
+
CH3CH2OJ
-14.49
-14.00
-13.38
-16.72
-16.55
→
F3OH
+
CH3CH2CH2OJ
-14.63
-14.78
-13.22
-16.86
-17.02
-14.6
-14.5
-13.3
-16.8
-16.8
CH3CH2CH2OH
Average Method Average
-14.6
RO–H Bond Dissociation Energy
82.6
22 ACS Paragon Plus Environment
-16.8 83.9
80.4
Page 23 of 51
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48
The Journal of Physical Chemistry
Table 3: Isodesmic Work Reactions, Calculated ∆Hf °298, and Bond Dissociation Energies for Substituted 2-Methylfuran Hydroperoxide and Hydroxyl Species. See Figure 1 for nomenclature. ∆H°f 298 (kcal mol-1) Isodesmic Work Reactions
2MF5OOH
+
2MF5OOH
+
2MF5OOH
+
2MF5OOH System → CH4 2MF → CH3CH3 2MF CH3CH2CH3
→
2MF
B3LYP 6-31G(d,p)
6-311G(2d,2p)
6-31G(d,p)
+
2MF5OOJ
+
2MF5OOJ
+
2MF5OOJ System → 2MF5OOH CH3OOH → 2MF5OOH CH3CH2OOH CH3CH2CH2OOH
→
2MF5OOH
+
2MF5OH
+
2MF5OH
+
CH3OOH
-41.82
-41.14
-39.95
-39.83
-39.71
CH3CH2OOH
-42.52
-41.74
-40.08
-40.06
-39.97
+
CH3CH2CH2OOH
-42.24
-41.49
-39.20
-39.66
-39.66
Average
-42.2
-41.5
-39.7
-39.9
-39.8
-41.8
CH3OOJ
-1.85
-1.85
-3.03
-1.04
-1.13
+
CH3CH2OOJ
-1.70
-1.79
-3.05
-0.81
-0.95
+
CH3CH2CH2OOJ
-1.88
-1.92
-3.31
-0.93
-1.11
-1.9
-3.1
-0.9
-1.8
2MF5OJ
+
2MF5OJ
+
-1.8
ROO–H Bond Dissociation Energy
90.1
88.8
90.9
RO–OH Bond Dissociation Energy
3.1
5.4
1.0
2MF5OH System → CH4 2MF → CH3CH3 2MF → CH3CH2CH3 2MF
2MF5OJ System → CH3OH 2MF5OH → CH3CH2OH 2MF5OH CH3CH2CH2OH
→
-1.1
Method Average
2MF5OH
-1.0
+
CH3OH
-61.58
-61.07
-61.96
-59.72
-60.11
+
CH3CH2OH
-61.89
-61.27
-62.01
-59.86
-60.27
+
CH3CH2CH2OH
-61.54
-60.84
-61.14
-59.68
-60.15
-61.7
-61.1
-61.7
-59.8
-60.2
Method Average +
-39.8
+
Average
2MF5OJ
CBS-APNO
+
Average
2MF5OH
CBS-QB3
+
Method Average 2MF5OOJ
M06-2X/
-61.4
-60.0
+
CH3OJ
-45.56
-46.09
-43.39
-47.73
-47.62
+
CH3CH2OJ
-45.34
-45.27
-43.38
-47.63
-47.45
+
CH3CH2CH2OJ
-45.49
-46.06
-43.22
-47.77
-47.92
-45.5
-45.8
-43.3
-47.7
-47.7
Average
23 ACS Paragon Plus Environment
The Journal of Physical Chemistry
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48
2MF4OOH
+
2MF4OOH
+
2MF4OOH
+
Method Average
-45.6
RO–H Bond Dissociation Energy
66.4
2MF4OOH System → CH4 2MF → CH3CH3 2MF CH3CH2CH3
→
2MF
+
2MF4OOJ
+
2MF4OOJ
+
2MF4OOJ System → 2MF4OOH CH3OOH → 2MF4OOH CH3CH2OOH CH3CH2CH2OOH
→
2MF4OOH
+
2MF4OH
+
2MF4OH
+
-35.56
-36.17
-34.95
-35.15
+
CH3CH2OOH
-36.80
-36.15
-36.30
-35.18
-35.42
+
CH3CH2CH2OOH
-36.51
-35.90
-35.43
-34.78
-35.10
Average
-36.5
-35.9
-36.0
-35.0
+
CH3OOJ
-36.2 -1.45
+ +
2MF4OJ
+
+
-0.51
-0.10
CH3CH2OOJ
-1.31
-1.32
-0.12
-0.27
0.08
+
CH3CH2CH2OOJ
-1.48
-1.45
-0.39
-0.40
-0.08
-1.4
-1.4
-0.2
-0.4
0.0
ROO–H Bond Dissociation Energy
85.8
87.0
87.0
RO–OH Bond Dissociation Energy
17.6
19.0
15.3
+
CH3OH
-57.22
2MF4OH
-56.66
-56.96
-55.14
-55.45
CH3CH2OH
-57.53
-56.87
-57.01
-55.28
-55.61
+
CH3CH2CH2OH
-57.18
-56.44
-56.14
-55.10
-55.49
-57.3
-56.7
-56.7
-55.2
-55.5
-57.0
-55.3
+
CH3OJ
-26.43
-26.63
-25.01
-28.70
-28.58
+
CH3CH2OJ
-26.21
-25.81
-25.00
-28.59
-28.40
+
CH3CH2CH2OJ
-26.36
-26.60
-24.84
-28.73
-28.87
-26.3
-26.3
-24.9
-28.7
-28.6
Method Average
-26.3
RO–H Bond Dissociation Energy
81.1
2MF3OOH System → CH4 2MF
-0.2
+
Average
2MF3OOH
-0.10
-1.4
2MF4OJ System → CH3OH 2MF4OH → CH3CH2OH 2MF4OH →
-1.38
Method Average
2MF4OH System → CH4 2MF → CH3CH3 2MF → CH3CH2CH3 2MF
CH3CH2CH2OH
-35.2 -35.1
+
Method Average
2MF4OJ
64.4
-36.09
Average
2MF4OJ
68.7
CH3OOH
Average
2MF4OH
-47.7
+
Method Average 2MF4OOJ
Page 24 of 51
+
CH3OOH
-36.92
24 ACS Paragon Plus Environment
-28.6 82.5 -36.42
-35.75
78.8 -35.81
-35.59
Page 25 of 51
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48
The Journal of Physical Chemistry
2MF3OOH
+
CH3CH3
→
2MF
+
CH3CH2OOH
-37.62
-37.02
-35.88
-36.04
-35.86
2MF3OOH
+
CH3CH2CH3
→
2MF
+
CH3CH2CH2OOH
-37.34
-36.76
-35.01
-35.64
-35.54
Average
-37.3
-36.7
-35.5
-35.8
-35.7
Method Average 2MF3OOJ
+
2MF3OOJ
+
2MF3OOJ
+
2MF3OOJ System → 2MF3OOH CH3OOH → 2MF3OOH CH3CH2OOH CH3CH2CH2OOH
→
2MF3OOH
+
2MF3OH
+
2MF3OH
+
+
CH3OOJ
-1.70
-1.59
-1.84
-0.74
-0.61
CH3CH2OOJ
-1.55
-1.53
-1.87
-0.50
-0.44
+
CH3CH2CH2OOJ
-1.73
-1.66
-2.13
-0.63
-0.59
-1.7
-1.6
-1.9
-0.6
-0.5
Method Average
-1.6
ROO–H Bond Dissociation Energy
86.2
85.9
87.3
RO–OH Bond Dissociation Energy
16.4
17.4
14.6
2MF3OH System → CH4 2MF → CH3CH3 2MF → CH3CH2CH3 2MF
+
CH3OH
-56.74
2MF3OJ
+
2MF3OJ
+
2MF3OJ System → CH3OH 2MF3OH → CH3CH2OH 2MF3OH CH3CH2CH2OH
→
2MF3OH
+
2MF2OOH
+
2MF2OOH
+
CH3CH2CH3
→
-55.01
-57.05
-57.03
-56.61
-55.77
-55.17
-56.70
-56.60
-55.74
-55.58
-55.05
-56.8
-56.8
-56.3
-55.7
-55.1
-56.8
-55.4
+
CH3OJ
-28.57
-28.28
-27.27
-29.73
-30.36
+
CH3CH2OJ
-28.35
-27.46
-27.26
-29.62
-30.18
+
CH3CH2CH2OJ
-28.50
-28.25
-27.11
-29.77
-30.65
-28.5
-28.0
-27.2
-29.7
-30.4
Method Average
-28.2 79.2
2MF
-55.62
CH3CH2OH
RO–H Bond Dissociation Energy 2MF2OOH System → CH4 2MF → CH3CH3 2MF
-56.56
CH3CH2CH2OH
Average
2MF2OOH
-56.82
+
Method Average +
-0.6
+
Average
2MF3OJ
-35.7
+
Average
2MF3OH
-37.0
+
CH3OOH
-35.08
-30.1 80.3 -35.11
-35.73
77.4 -35.67
-35.52
+
CH3CH2OOH
-35.78
-35.70
-35.86
-35.90
-35.79
+
CH3CH2CH2OOH
-35.50
-35.45
-34.98
-35.50
-35.47
Average
-35.5
-35.4
-35.5
-35.7
-35.6
Method Average
25 ACS Paragon Plus Environment
-35.4
-35.6
The Journal of Physical Chemistry
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48
2MF2OOJ
+
2MF2OOJ
+
2MF2OOJ
+
2MF2OOJ System → 2MF2OOH CH3OOH → 2MF2OOH CH3CH2OOH CH3CH2CH2OOH
→
2MF2OOH
+
CH3OOJ
-0.95
-0.83
0.06
-0.61
-0.54
+
CH3CH2OOJ
-0.80
-0.77
0.03
-0.37
-0.37
+
CH3CH2CH2OOJ
-0.98
-0.90
-0.23
-0.50
-0.53
-0.9
-0.8
0.0
-0.5
-0.5
Average
2MF2OH
+
2MF2OH
+
2MF2OH
+
Method Average
-0.9
ROO–H Bond Dissociation Energy
86.9
87.7
87.3
RO–OH Bond Dissociation Energy
45.7
46.0
46.7
2MF2OH System → CH4 2MF → CH3CH3 2MF → CH3CH2CH3 2MF
+
CH3OH
-52.65
2MF2OJ
+
2MF2OJ
+
2MF2OJ System → CH3OH 2MF2OH → CH3CH2OH 2MF2OH CH3CH2CH2OH
→
2MF2OH
-52.51
-52.97
-52.72
-52.53
CH3CH2OH
-52.97
-52.72
-53.02
-52.87
-52.69
+
CH3CH2CH2OH
-52.61
-52.29
-52.15
-52.68
-52.57
-52.7
-52.5
-52.7
-52.8
-52.6
Method Average +
-0.5
+
Average
2MF2OJ
Page 26 of 51
-52.6
-52.7
+
CH3OJ
1.11
0.87
1.43
1.97
2.35
+
CH3CH2OJ
1.32
1.69
1.44
2.07
2.52
+
CH3CH2CH2OJ
1.18
0.90
1.60
1.93
2.05
1.2
1.2
1.5
2.0
2.3
Average Method Average RO–H Bond Dissociation Energy
26 ACS Paragon Plus Environment
1.2 106.0
2.1 106.3
106.9
Page 27 of 51
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48
The Journal of Physical Chemistry
Table 4: Isodesmic Work Reactions, Calculated ∆Hf °298, and Bond Dissociation Energies for Substituted 3-Methylfuran Hydroperoxide and Hydroxyl Species. See Figure 1 for nomenclature. ∆H°f 298 (kcal mol-1) Isodesmic Work Reactions
3MF5OOH
+
3MF5OOH
+
3MF5OOH
+
3MF5OOH System → CH4 3MF → CH3CH3 3MF CH3CH2CH3
→
3MF
B3LYP 6-31G(d,p)
6-311G(2d,2p)
6-31G(d,p)
+
3MF5OOJ
+
3MF5OOJ
+
3MF5OOJ System → 3MF5OOH CH3OOH → 3MF5OOH CH3CH2OOH CH3CH2CH2OOH
→
3MF5OOH
+
3MF5OH
+
3MF5OH
+
CH3OOH
-38.82
-38.15
-37.22
-37.07
-36.96
CH3CH2OOH
-39.52
-38.75
-37.35
-37.30
-37.23
+
CH3CH2CH2OOH
-39.24
-38.50
-36.48
-36.90
-36.91
Average
-39.2
-38.5
-37.0
-37.1
-37.0
-38.8
CH3OOJ
0.85
0.78
0.46
1.58
1.46
+
CH3CH2OOJ
1.00
0.84
0.43
1.81
1.63
+
CH3CH2CH2OOJ
0.82
0.71
0.17
1.69
1.47
0.8
0.4
1.7
0.9
3MF5OJ
+
3MF5OJ
+
0.8
ROO–H Bond Dissociation Energy
90.0
89.5
90.8
RO–OH Bond Dissociation Energy
4.4
7.5
2.1
3MF5OH System → CH4 3MF → CH3CH3 3MF → CH3CH2CH3 3MF
3MF5OJ System → 3MF5OH CH3OH → 3MF5OH CH3CH2OH CH3CH2CH2OH
→
1.5
Method Average
3MF5OH
1.6
+
CH3OH
-59.48
-59.09
-60.46
-57.70
-58.09
+
CH3CH2OH
-59.79
-59.29
-60.50
-57.84
-58.26
+
CH3CH2CH2OH
-59.44
-58.87
-59.64
-57.66
-58.13
-59.6
-59.1
-60.2
-57.7
-58.2
Method Average +
-37.1
+
Average
3MF5OJ
CBS-APNO
+
Average
3MF5OH
CBS-QB3
+
Method Average 3MF5OOJ
M06-2X/
-59.3
-57.9
+
CH3OJ
-41.50
-41.92
-38.51
-43.85
-43.78
+
CH3CH2OJ
-41.29
-41.10
-38.50
-43.75
-43.60
+
CH3CH2CH2OJ
-41.43
-41.89
-38.34
-43.89
-44.07
-41.4
-41.6
-38.4
-43.8
-43.8
Average
27 ACS Paragon Plus Environment
The Journal of Physical Chemistry
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48
3MF4OOH
+
3MF4OOH
+
3MF4OOH
+
Method Average
-41.5
RO–H Bond Dissociation Energy
68.5
3MF4OOH System → CH4 3MF → CH3CH3 3MF CH3CH2CH3
→
3MF
+
3MF4OOJ
+
3MF4OOJ
+
3MF4OOJ System → 3MF4OOH CH3OOH → 3MF4OOH CH3CH2OOH CH3CH2CH2OOH
→
3MF4OOH
+
3MF4OH
+
3MF4OH
+
-33.48
-33.53
-33.18
-33.01
+
CH3CH2OOH
-34.64
-34.08
-33.66
-33.41
-33.28
+
CH3CH2CH2OOH
-34.36
-33.82
-32.78
-33.01
-32.96
Average
-34.3
-33.8
-33.3
-33.2
+
CH3OOJ
-34.1 1.55
+ +
3MF4OJ
+
+
2.80
2.47
+
CH3CH2OOJ
1.70
1.83
1.75
3.03
2.64
CH3CH2CH2OOJ
1.52
1.70
1.49
2.91
2.48
1.6
1.8
1.7
2.9
2.5
ROO–H Bond Dissociation Energy
86.9
86.9
88.0
RO–OH Bond Dissociation Energy
18.2
19.8
16.0
+
3MF4OH
-54.77
-54.25
-54.76
-52.92
-53.19
+
CH3CH2OH
-55.08
-54.45
-54.81
-53.07
-53.36
+
CH3CH2CH2OH
-54.73
-54.02
-53.94
-52.88
-53.23
-54.9
-54.2
-54.5
-53.0
-53.3
-54.5
-53.1
+
CH3OJ
-23.86
-24.12
-22.34
-25.95
-26.00
+
CH3CH2OJ
-23.64
-23.30
-22.33
-25.85
-25.82
+
CH3CH2CH2OJ
-23.79
-24.09
-22.17
-25.99
-26.29
-23.8
-23.8
-22.3
-25.9
-26.0
Method Average
-23.8
RO–H Bond Dissociation Energy
81.4
3MF3OOH System → CH4 3MF
2.7
CH3OH
Average
3MF3OOH
1.78
1.7
3MF4OJ System → 3MF4OH CH3OH → 3MF4OH CH3CH2OH →
1.77
Method Average
3MF4OH System → CH4 3MF → CH3CH3 3MF → CH3CH2CH3 3MF
CH3CH2CH2OH
-33.1 -33.1
+
Method Average
3MF4OJ
66.2
-33.94
Average
3MF4OJ
71.6
CH3OOH
Average
3MF4OH
-43.8
+
Method Average 3MF4OOJ
Page 28 of 51
+
CH3OOH
-33.24
28 ACS Paragon Plus Environment
-26.0 82.9 -33.42
-34.21
79.2 -34.29
-34.20
Page 29 of 51
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48
The Journal of Physical Chemistry
3MF3OOH
+
CH3CH3
→
3MF
+
CH3CH2OOH
-33.94
-34.02
-34.34
-34.52
-34.47
3MF3OOH
+
CH3CH2CH3
→
3MF
+
CH3CH2CH2OOH
-33.66
-33.76
-33.47
-34.12
-34.15
Average
-33.6
-33.7
-34.0
-34.3
-34.3
Method Average 3MF3OOJ
+
3MF3OOJ
+
3MF3OOJ
+
3MF3OOJ System → 3MF3OOH CH3OOH → 3MF3OOH CH3CH2OOH CH3CH2CH2OOH
→
3MF3OOH
+
3MF3OH
+
3MF3OH
+
CH3OOJ
0.08
0.26
0.84
0.71
0.95
+
CH3CH2OOJ
0.23
0.33
0.82
0.95
1.13
+
CH3CH2CH2OOJ
0.05
0.19
0.56
0.82
0.97
0.1
0.3
0.7
0.8
1.0
Method Average
0.2
ROO–H Bond Dissociation Energy
86.6
87.1
87.3
RO–OH Bond Dissociation Energy
46.0
45.9
46.8
3MF3OH System → CH4 3MF → CH3CH3 3MF → CH3CH2CH3 3MF
+
-50.88
-51.03
-51.22
-51.04
-50.90
+
CH3CH2OH
-51.19
-51.23
-51.27
-51.18
-51.06
+
CH3CH2CH2OH
-50.84
-50.80
-50.40
-51.00
-50.94
-51.0
-51.0
-51.0
-51.1
-51.0
Method Average +
3MF3OJ
+
3MF3OJ
+
3MF3OJ System → 3MF3OH CH3OH → 3MF3OH CH3CH2OH CH3CH2CH2OH
→
3MF3OH
-51.0
CH3OJ
2.61
2.71
2.70
3.46
3.74
+
CH3CH2OJ
2.82
3.54
2.71
3.56
3.91
+
CH3CH2CH2OJ
2.67
2.75
2.86
3.42
3.44
2.7
3.0
2.8
3.5
3.7
Method Average
2.8
RO–H Bond Dissociation Energy 3MF2OOH
+
3MF2OOH
+
3MF2OOH
+
CH3CH2CH3
→
3MF
-51.0
+
Average
3MF2OOH System → CH4 3MF → CH3CH3 3MF
0.9
CH3OH
Average
3MF3OJ
-34.3
+
Average
3MF3OH
-33.7
+
CH3OOH
3.6
106.0 -39.67
105.9 -39.10
-37.85
106.7 -38.09
-37.79
+
CH3CH2OOH
-40.37
-39.69
-37.98
-38.32
-38.06
+
CH3CH2CH2OOH
-40.09
-39.44
-37.10
-37.92
-37.75
Average
-40.0
-39.4
-37.6
-38.1
-37.9
Method Average
29 ACS Paragon Plus Environment
-39.7
-38.0
The Journal of Physical Chemistry
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48
3MF2OOJ
+
3MF2OOJ
+
3MF2OOJ
+
3MF2OOJ System → 3MF2OOH CH3OOH → 3MF2OOH CH3CH2OOH CH3CH2CH2OOH
→
3MF2OOH
+
CH3OOJ
1.23
1.26
-0.22
1.56
3.01
+
CH3CH2OOJ
1.38
1.33
-0.24
1.79
3.18
+
CH3CH2CH2OOJ
1.20
1.19
-0.50
1.67
3.03
1.3
1.3
-0.3
1.7
3.1
Average
3MF2OH
+
3MF2OH
+
3MF2OH
+
Method Average
1.3
ROO–H Bond Dissociation Energy
91.4
89.8
92.5
RO–OH Bond Dissociation Energy
3.4
6.0
1.1
3MF2OH System → CH4 3MF → CH3CH3 3MF → CH3CH2CH3 3MF
+
-58.65
-58.27
-59.86
-57.24
-57.51
+
CH3CH2OH
-58.96
-58.48
-59.91
-57.39
-57.68
+
CH3CH2CH2OH
-58.61
-58.05
-59.04
-57.21
-57.55
-58.7
-58.3
-59.6
-57.3
-57.6
Method Average +
3MF2OJ
+
3MF2OJ
+
3MF2OJ System → 3MF2OH CH3OH → 3MF2OH CH3CH2OH CH3CH2CH2OH
→
3MF2OH
2.4
CH3OH
Average
3MF2OJ
Page 30 of 51
-58.5
-57.4
+
CH3OJ
-43.15
-44.19
-40.92
-45.78
-45.80
+
CH3CH2OJ
-42.93
-43.37
-40.91
-45.68
-45.62
+
CH3CH2CH2OJ
-43.08
-44.16
-40.75
-45.82
-46.09
-43.1
-43.9
-40.9
-45.8
-45.8
Average Method Average
-43.5
RO–H Bond Dissociation Energy
66.0
30 ACS Paragon Plus Environment
-45.8 68.7
63.7
Page 31 of 51
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48
The Journal of Physical Chemistry
Table 5: Isodesmic Work Reactions, Calculated ∆Hf °298, and Bond Dissociation Energies for Substituted 2-Methoxyfuran Hydroperoxide and Hydroxyl Species. See Figure 1 for nomenclature. ∆H°f 298 (kcal mol-1) Isodesmic Work Reactions
B3LYP 6-31G(d,p)
2MeOF5OOH System → CH4 2MeOF
M06-2X/
6-311G(2d,2p)
CBS-QB3
CBS-APNO
6-31G(d,p)
2MeOF5OOH
+
+
CH3OOH
-69.41
-68.79
-66.80
-66.65
-66.61
2MeOF5OOH
+
CH3CH3
→
2MeOF
+
CH3CH2OOH
-70.11
-69.39
-66.93
-66.87
-66.88
2MeOF5OOH
+
CH3CH2CH3
→
2MeOF
+
CH3CH2CH2OOH
-69.83
-69.13
-66.05
-66.48
-66.56
Average
-69.8
-69.1
-66.6
-66.7
-66.7
Method Average 2MeOF5OOJ
+
2MeOF5OOJ
+
2MeOF5OOJ
+
2MeOF5OH
+
2MeOF5OH
+
2MeOF5OH
+
2MeOF5OOJ System → 2MeOF5OOH CH3OOH → 2MeOF5OOH CH3CH2OOH CH3CH2CH2OOH
→
2MeOF5OOH
→
+
CH3OOJ
-27.81
-27.81
-28.49
-26.81
-27.14
+
CH3CH2OOJ
-27.67
-27.75
-28.52
-26.58
-26.97
+
CH3CH2CH2OOJ
-27.84
-27.88
-28.78
-26.70
-27.13
Average
-27.8
-27.8
-28.6
-26.7
ROO–H Bond Dissociation Energy
91.0
90.2
91.9
RO–OH Bond Dissociation Energy
-1.7
1.2
-2.3
2MeOF
2MeOF5OJ
+
CH3CH2OH
→
2MeOF5OJ
+
CH3CH2CH2OH
→
-26.9
+
CH3OH
-87.00
-86.45
-87.43
-85.47
-85.61
+
CH3CH2OH
-87.32
-86.65
-87.48
-85.61
-85.77
+
CH3CH2CH2OH
-86.97
-86.23
-86.61
-85.43
-85.65
-87.1
-86.4
-87.2
-85.5
-85.7
Method Average 2MeOF5OJ System → 2MeOF5OH CH3OH
+
-27.1
-27.8
Average
2MeOF5OJ
-66.7
Method Average
2MeOF5OH System → CH4 2MeOF → CH3CH3 2MeOF CH3CH2CH3
-69.4
-86.8
-85.6
+
CH3OJ
-77.10
-77.91
-74.43
-77.81
-77.94
2MeOF5OH
+
CH3CH2OJ
-76.88
-77.09
-74.42
-77.71
-77.77
2MeOF5OH
+
CH3CH2CH2OJ
-77.03
-77.88
-74.26
-77.85
-78.24
-77.0
-77.6
-74.4
-77.8
-78.0
Average
31 ACS Paragon Plus Environment
The Journal of Physical Chemistry
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48
2MeOF4OOH
+
2MeOF4OOH
+
2MeOF4OOH
+
Method Average
-77.3
RO–H Bond Dissociation Energy
60.4
2MeOF4OOH System → CH4 2MeOF → CH3CH3 2MeOF CH3CH2CH3
→
Page 32 of 51
2MeOF
63.3
59.8
+
CH3OOH
-63.16
-62.65
-63.24
-62.01
-62.21
+
CH3CH2OOH
-63.86
-63.25
-63.37
-62.24
-62.48
+
CH3CH2CH2OOH
-63.58
-62.99
-62.49
-61.84
-62.16
Average
-63.5
-63.0
-63.0
-62.0
Method Average 2MeOF4OOJ System → 2MeOF4OOH CH3OOH
-77.9
+
CH3OOJ
-63.2 -28.86
-62.3 -62.2
2MeOF4OOJ
+
-28.85
-27.31
-27.58
-27.31
2MeOF4OOJ
+
CH3CH2OOH
→
2MeOF4OOH
+
CH3CH2OOJ
-28.72
-28.79
-27.33
-27.34
-27.14
2MeOF4OOJ
+
CH3CH2CH2OOH
→
2MeOF4OOH
+
CH3CH2CH2OOJ
-28.90
-28.92
-27.60
-27.46
-27.30
Average
-28.8
-28.9
-27.4
-27.5
-27.2
Method Average
-28.8
ROO–H Bond Dissociation Energy
85.4
86.8
86.9
RO–OH Bond Dissociation Energy
15.3
17.0
13.0
2MeOF4OH System → CH4 2MeOF
+
CH3OH
2MeOF4OH
+
2MeOF4OH
+
CH3CH3
→
2MeOF
+
CH3CH2OH
-84.76
-84.11
-84.19
-82.46
-82.80
2MeOF4OH
+
CH3CH2CH3
→
2MeOF
+
CH3CH2CH2OH
-84.41
-83.69
-83.33
-82.28
-82.67
-84.5
-83.9
-83.9
-82.4
-82.7
Average
-84.45
-27.4
Method Average 2MeOF4OJ System → 2MeOF4OH CH3OH
-83.91
-84.15
-82.32
-84.2
-82.63
-82.5
2MeOF4OJ
+
+
CH3OJ
-55.77
-56.08
-54.14
-58.02
-58.12
2MeOF4OJ
+
CH3CH2OH
→
2MeOF4OH
+
CH3CH2OJ
-55.55
-55.26
-54.13
-57.91
-57.95
2MeOF4OJ
+
CH3CH2CH2OH
→
2MeOF4OH
+
CH3CH2CH2OJ
-55.70
-56.05
-53.97
-58.06
-58.42
-55.7
-55.8
-54.1
-58.0
-58.2
Average
2MeOF3OOH
+
Method Average
-55.7
RO–H Bond Dissociation Energy
78.9
2MeOF3OOH System → CH4 2MeOF
+
CH3OOH
-63.77
32 ACS Paragon Plus Environment
-58.1 80.6 -63.25
-62.13
76.5 -61.82
-61.44
Page 33 of 51
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48
The Journal of Physical Chemistry
2MeOF3OOH
+
CH3CH3
→
2MeOF
+
CH3CH2OOH
-64.47
-63.84
-62.26
-62.05
-61.71
2MeOF3OOH
+
CH3CH2CH3
→
2MeOF
+
CH3CH2CH2OOH
-64.19
-63.59
-61.38
-61.65
-61.40
Average
-64.1
-63.6
-61.9
-61.8
-61.5
Method Average 2MeOF3OOJ System → 2MeOF3OOH CH3OOH
-63.9
-61.7
2MeOF3OOJ
+
+
CH3OOJ
-25.75
-25.63
-25.79
-24.72
-24.78
2MeOF3OOJ
+
CH3CH2OOH
→
2MeOF3OOH
+
CH3CH2OOJ
-25.61
-25.57
-25.82
-24.48
-24.61
2MeOF3OOJ
+
CH3CH2CH2OOH
→
2MeOF3OOH
+
CH3CH2CH2OOJ
-25.78
-25.70
-26.08
-24.61
-24.77
Average
-25.7
-25.6
-25.9
-24.6
-24.7
Method Average
-25.7
ROO–H Bond Dissociation Energy
88.1
87.9
89.1
RO–OH Bond Dissociation Energy
12.3
13.1
10.7
2MeOF3OH System → CH4 2MeOF
+
CH3OH
2MeOF3OH
+
2MeOF3OH
+
CH3CH3
→
2MeOF
+
CH3CH2OH
-82.79
-82.18
-81.67
-80.98
-80.63
2MeOF3OH
+
CH3CH2CH3
→
2MeOF
+
CH3CH2CH2OH
-82.44
-81.75
-80.81
-80.79
-80.51
-82.6
-82.0
-81.4
-80.9
-80.5
Average
-82.48
-24.7
Method Average 2MeOF3OJ
+
2MeOF3OJ
+
2MeOF3OJ
+
2MeOF3OJ System → 2MeOF3OH CH3OH → 2MeOF3OH CH3CH2OH CH3CH2CH2OH
→
2MeOF3OH
-81.97
-82.3 -58.59
-57.53
-59.65
-60.07
+
CH3CH2OJ
-58.02
-57.77
-57.52
-59.54
-59.90
+
CH3CH2CH2OJ
-58.17
-58.56
-57.36
-59.68
-60.37
-58.1
-58.3
-57.5
-59.6
-60.1
-58.2 74.6
2MeOF2OOH System → CH4 2MeOF
+
+
CH3CH3
→
2MeOF
2MeOF2OOH
+
CH3CH2CH3
→
2MeOF
-80.7
-58.24
Method Average
2MeOF2OOH
-80.47
CH3OJ
RO–H Bond Dissociation Energy +
-80.83
+
Average
2MeOF2OOH
-81.63
-59.9 75.3
72.9
CH3OOH
-70.90
-70.42
-72.17
-71.01
-70.61
+
CH3CH2OOH
-71.60
-71.02
-72.30
-71.24
-70.88
+
CH3CH2CH2OOH
-71.32
-70.76
-71.42
-70.84
-70.57
Average
-71.3
-70.7
-72.0
-71.0
-70.7
Method Average
33 ACS Paragon Plus Environment
-71.0
-70.9
The Journal of Physical Chemistry
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48
2MeOF2OOJ System → 2MeOF2OOH CH3OOH
Page 34 of 51
2MeOF2OOJ
+
+
CH3OOJ
-31.98
-32.34
-30.97
-32.67
-32.12
2MeOF2OOJ
+
CH3CH2OOH
→
2MeOF2OOH
+
CH3CH2OOJ
-31.83
-32.28
-31.00
-32.43
-31.95
2MeOF2OOJ
+
CH3CH2CH2OOH
→
2MeOF2OOH
+
CH3CH2CH2OOJ
-32.01
-32.41
-31.26
-32.55
-32.11
Average
-31.9
-32.3
-31.1
-32.6
-32.1
Method Average
-32.1
ROO–H Bond Dissociation Energy
90.8
91.9
90.7
RO–OH Bond Dissociation Energy
44.4
45.8
45.4
2MeOF2OH System → CH4 2MeOF
+
CH3OH
2MeOF2OH
+
2MeOF2OH
+
CH3CH3
→
2MeOF
+
CH3CH2OH
-89.67
-89.29
-89.90
-88.73
-88.49
2MeOF2OH
+
CH3CH2CH3
→
2MeOF
+
CH3CH2CH2OH
-89.32
-88.87
-89.04
-88.54
-88.37
-89.4
-89.1
-89.6
-88.6
-88.4
Average
-89.35
-32.3
Method Average 2MeOF2OJ
+
2MeOF2OJ
+
2MeOF2OJ
+
2MeOF2OJ System → 2MeOF2OH CH3OH → 2MeOF2OH CH3CH2OH CH3CH2CH2OH
→
2MeOF2OH
-89.09
-89.86
-88.58
-89.3
-88.33
-88.5
+
CH3OJ
-35.22
-35.78
-34.04
-34.14
-34.55
+
CH3CH2OJ
-35.01
-34.96
-34.03
-34.03
-34.38
+
CH3CH2CH2OJ
-35.15
-35.75
-33.87
-34.18
-34.85
-35.1
-35.5
-34.0
-34.1
-34.6
Average Method Average
-35.3
RO–H Bond Dissociation Energy
105.3
34 ACS Paragon Plus Environment
-34.4 106.6
106.3
Page 35 of 51
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48
The Journal of Physical Chemistry
Table 6: Isodesmic Work Reactions, Calculated ∆Hf °298, and Bond Dissociation Energies for Substituted 3-Methoxyfuran Hydroperoxide and Hydroxyl Species. See Figure 1 for nomenclature. ∆H°f 298 (kcal mol-1) Isodesmic Work Reactions
B3LYP 6-31G(d,p)
3MeOF5OOH System → CH4 3MeOF
M06-2X/
6-311G(2d,2p)
CBS-QB3
CBS-APNO
6-31G(d,p)
3MeOF5OOH
+
+
CH3OOH
-64.22
-63.61
-62.68
-62.55
-62.44
3MeOF5OOH
+
CH3CH3
→
3MeOF
+
CH3CH2OOH
-64.92
-64.21
-62.81
-62.78
-62.71
3MeOF5OOH
+
CH3CH2CH3
→
3MeOF
+
CH3CH2CH2OOH
-64.64
-63.95
-61.94
-62.38
-62.39
Average
-64.6
-63.9
-62.5
-62.6
-62.5
Method Average 3MeOF5OOJ
+
3MeOF5OOJ
+
3MeOF5OOJ
+
3MeOF5OH
+
3MeOF5OH
+
3MeOF5OH
+
-64.3
-62.5
3MeOF5OOJ System → 3MeOF5OOH CH3OOH → 3MeOF5OOH CH3CH2OOH
+
CH3OOJ
-24.81
-24.93
-24.92
-23.81
-24.06
+
CH3CH2OOJ
-24.67
-24.87
-24.94
-23.58
-23.89
→
+
CH3CH2CH2OOJ
-24.85
-25.00
-25.20
-23.70
-24.04
Average
-24.8
-24.9
-25.0
-23.7
CH3CH2CH2OOH
3MeOF5OOH
-24.9
ROO–H Bond Dissociation Energy
89.8
89.6
90.8
RO–OH Bond Dissociation Energy
2.4
5.2
0.3
3MeOF5OH System → CH4 3MeOF → CH3CH3 3MeOF CH3CH2CH3
→
3MeOF
CH3OH
-85.44
-85.09
-85.83
-83.61
-84.07
+
CH3CH2OH
-85.75
-85.29
-85.87
-83.76
-84.23
+
CH3CH2CH2OH
-85.40
-84.86
-85.01
-83.58
-84.11
-85.5
-85.1
-85.6
-83.6
-84.1
Method Average 3MeOF5OJ System → CH3OH 3MeOF5OH
+
3MeOF5OJ
+
CH3CH2OH
→
3MeOF5OJ
+
CH3CH2CH2OH
→
-23.8
+
Average
3MeOF5OJ
-24.0
Method Average
-85.3
-83.9
+
CH3OJ
-68.94
-69.48
-66.34
-71.13
-71.17
3MeOF5OH
+
CH3CH2OJ
-68.72
-68.65
-66.33
-71.03
-71.00
3MeOF5OH
+
CH3CH2CH2OJ
-68.87
-69.44
-66.17
-71.17
-71.47
-68.8
-69.2
-66.3
-71.1
-71.2
Average
35 ACS Paragon Plus Environment
The Journal of Physical Chemistry
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48
3MeOF4OOH
+
3MeOF4OOH
+
3MeOF4OOH
+
Method Average
-69.0
RO–H Bond Dissociation Energy
67.0
3MeOF4OOH System → CH4 3MeOF → CH3CH3 3MeOF CH3CH2CH3
→
Page 36 of 51
3MeOF
69.7
64.8
+
CH3OOH
-58.60
-57.94
-58.19
-57.72
-57.47
+
CH3CH2OOH
-59.30
-58.54
-58.32
-57.95
-57.74
+
CH3CH2CH2OOH
-59.02
-58.28
-57.45
-57.55
-57.42
Average
-59.0
-58.3
-58.0
-57.7
Method Average 3MeOF4OOJ System → 3MeOF4OOH CH3OOH
-71.2
+
CH3OOJ
-58.6 -21.28
-57.5 -57.6
3MeOF4OOJ
+
-21.31
-20.66
-20.11
-20.63
3MeOF4OOJ
+
CH3CH2OOH
→
3MeOF4OOH
+
CH3CH2OOJ
-21.14
-21.25
-20.68
-19.87
-20.46
3MeOF4OOJ
+
CH3CH2CH2OOH
→
3MeOF4OOH
+
CH3CH2CH2OOJ
-21.31
-21.38
-20.95
-19.99
-20.62
Average
-21.2
-21.3
-20.8
-20.0
-20.6
Method Average
-21.3
ROO–H Bond Dissociation Energy
88.5
89.0
89.5
RO–OH Bond Dissociation Energy
19.5
21.1
17.5
3MeOF4OH System → CH4 3MeOF
+
CH3OH
3MeOF4OH
+
3MeOF4OH
+
CH3CH3
→
3MeOF
+
CH3CH2OH
-80.49
-79.78
-79.93
-78.62
-78.79
3MeOF4OH
+
CH3CH2CH3
→
3MeOF
+
CH3CH2CH2OH
-80.14
-79.36
-79.07
-78.44
-78.67
-80.3
-79.6
-79.6
-78.5
-78.7
Average
-80.18
-20.3
Method Average 3MeOF4OJ System → CH3OH 3MeOF4OH
-79.58
-79.89
-78.48
-79.9
-78.63
-78.6
3MeOF4OJ
+
+
CH3OJ
-47.15
-47.38
-45.54
-48.96
-49.09
3MeOF4OJ
+
CH3CH2OH
→
3MeOF4OH
+
CH3CH2OJ
-46.94
-46.56
-45.53
-48.86
-48.91
3MeOF4OJ
+
CH3CH2CH2OH
→
3MeOF4OH
+
CH3CH2CH2OJ
-47.08
-47.35
-45.37
-49.00
-49.38
-47.1
-47.1
-45.5
-48.9
-49.1
Average
3MeOF3OOH
+
Method Average
-47.1
RO–H Bond Dissociation Energy
83.6
3MeOF3OOH System → CH4 3MeOF
+
CH3OOH
-67.06
36 ACS Paragon Plus Environment
-49.0 85.2 -66.87
-68.46
81.7 -67.51
-67.41
Page 37 of 51
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48
The Journal of Physical Chemistry
3MeOF3OOH
+
CH3CH3
→
3MeOF
+
CH3CH2OOH
-67.76
-67.46
-68.58
-67.74
-67.68
3MeOF3OOH
+
CH3CH2CH3
→
3MeOF
+
CH3CH2CH2OOH
-67.48
-67.21
-67.71
-67.34
-67.36
Average
-67.4
-67.2
-68.2
-67.5
-67.5
Method Average 3MeOF3OOJ System → 3MeOF3OOH CH3OOH
-67.3
-67.5
3MeOF3OOJ
+
+
CH3OOJ
-29.17
-29.16
-28.43
-28.53
-28.63
3MeOF3OOJ
+
CH3CH2OOH
→
3MeOF3OOH
+
CH3CH2OOJ
-29.02
-29.10
-28.45
-28.30
-28.46
3MeOF3OOJ
+
CH3CH2CH2OOH
→
3MeOF3OOH
+
CH3CH2CH2OOJ
-29.20
-29.23
-28.71
-28.42
-28.61
Average
-29.1
-29.2
-28.5
-28.4
-28.6
Method Average
-29.1
ROO–H Bond Dissociation Energy
90.5
91.1
91.1
RO–OH Bond Dissociation Energy
44.9
45.9
45.5
3MeOF3OH System → CH4 3MeOF
+
CH3OH
3MeOF3OH
+
3MeOF3OH
+
CH3CH3
→
3MeOF
+
CH3CH2OH
-86.11
-85.75
-86.94
-85.52
-85.45
3MeOF3OH
+
CH3CH2CH3
→
3MeOF
+
CH3CH2CH2OH
-85.76
-85.32
-86.08
-85.33
-85.32
-85.9
-85.5
-86.6
-85.4
-85.4
Average
-85.80
-28.5
Method Average 3MeOF3OJ
+
3MeOF3OJ
+
3MeOF3OJ
+
-85.54
-86.90
-85.37
-85.7
-85.28
-85.4
3MeOF3OJ System → CH3OH 3MeOF3OH → CH3CH2OH 3MeOF3OH
+
CH3OJ
-31.53
-31.93
-30.56
-31.26
-30.52
+
CH3CH2OJ
-31.31
-31.10
-30.55
-31.16
-30.34
→
+
CH3CH2CH2OJ
-31.46
-31.89
-30.39
-31.30
-30.81
-31.4
-31.6
-30.5
-31.2
-30.6
CH3CH2CH2OH
3MeOF3OH
Average Method Average
-31.5
RO–H Bond Dissociation Energy
105.9
3MeOF2OOH System → CH4 3MeOF
3MeOF2OOH
+
3MeOF2OOH
+
CH3CH3
→
3MeOF
3MeOF2OOH
+
CH3CH2CH3
→
3MeOF
+
-30.9 107.0
106.6
CH3OOH
-66.05
-65.68
-63.11
-63.25
-62.83
+
CH3CH2OOH
-66.75
-66.27
-63.24
-63.48
-63.10
+
CH3CH2CH2OOH
-66.47
-66.02
-62.36
-63.08
-62.78
Average
-66.4
-66.0
-62.9
-63.3
-62.9
Method Average
37 ACS Paragon Plus Environment
-66.2
-63.1
The Journal of Physical Chemistry
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48
3MeOF2OOJ System → 3MeOF2OOH CH3OOH
Page 38 of 51
3MeOF2OOJ
+
+
CH3OOJ
-20.92
-20.84
-21.98
-20.93
-21.30
3MeOF2OOJ
+
CH3CH2OOH
→
3MeOF2OOH
+
CH3CH2OOJ
-20.78
-20.77
-22.00
-20.69
-21.13
3MeOF2OOJ
+
CH3CH2CH2OOH
→
3MeOF2OOH
+
CH3CH2CH2OOJ
-20.95
-20.91
-22.26
-20.82
-21.28
Average
-20.9
-20.8
-22.1
-20.8
-21.2
Method Average
-20.9
ROO–H Bond Dissociation Energy
94.3
93.1
94.2
RO–OH Bond Dissociation Energy
0.9
2.9
-0.8
3MeOF2OH System → CH4 3MeOF
+
CH3OH
3MeOF2OH
+
3MeOF2OH
+
CH3CH3
→
3MeOF
+
CH3CH2OH
-81.47
-80.91
-81.47
-80.10
-80.10
3MeOF2OH
+
CH3CH2CH3
→
3MeOF
+
CH3CH2CH2OH
-81.12
-80.48
-80.61
-79.92
-79.98
-81.2
-80.7
-81.2
-80.0
-80.0
Average
-81.16
-21.0
Method Average 3MeOF2OJ
+
3MeOF2OJ
+
3MeOF2OJ
+
-80.70
-81.43
-79.96
-81.0
-79.94
-80.0
3MeOF2OJ System → CH3OH 3MeOF2OH → CH3CH2OH 3MeOF2OH
+
CH3OJ
-70.95
-71.50
-69.15
-72.66
-72.86
+
CH3CH2OJ
-70.73
-70.67
-69.14
-72.55
-72.69
→
+
CH3CH2CH2OJ
-70.88
-71.46
-68.98
-72.69
-73.16
-70.9
-71.2
-69.1
-72.6
-72.9
CH3CH2CH2OH
3MeOF2OH
Average Method Average
-71.0
RO–H Bond Dissociation Energy
61.1
38 ACS Paragon Plus Environment
-72.8 63.0
59.3
Page 39 of 51
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48
The Journal of Physical Chemistry
Table 7: Recommended ∆Hf °298 a and Bond Dissociation Energiesa in kcal/mol for Substituted Furan, Methylfuran, and Methoxyfuran Species. Species F2OOH F2OOJ F2OH F2OJ F3OOH F3OOJ F3OH F3OJ 2MF5OOH 2MF5OOJ 2MF5OH 2MF5OJ 2MF4OOH 2MF4OOJ 2MF4OH 2MF4OJ 2MF3OOH 2MF3OOJ 2MF3OH 2MF3OJ 2MF2OOH 2MF2OOJ 2MF2OH 2MF2OJ 3MF5OOH 3MF5OOJ 3MF5OH 3MF5OJ 3MF4OOH 3MF4OOJ
∆H°f 298 -29.3 ± 0.7 9.6 ± 1.3 -50.2 ± 0.6 -35.5 ± 1.5 -24.7 ± 0.7 10.6 ± 1.3 -45.1 ± 0.6 -16.8 ± 1.5 -39.8 ± 0.8 -1.0 ± 1.4 -60.0 ± 0.7 -47.7 ± 1.6 -35.1 ± 0.8 -0.2 ± 1.4 -55.3 ± 0.7 -28.6 ± 1.6 -35.7 ± 0.8 -0.6 ± 1.4 -55.4 ± 0.7 -30.1 ± 1.6 -35.6 ± 0.8 -0.5 ± 1.4 -52.7 ± 0.7 2.1 ± 1.6 -37.1 ± 0.8 1.6 ± 1.4 -57.9 ± 0.7 -43.8 ± 1.6 -33.1 ± 0.8 2.7 ± 1.4
ROO—H BDE
RO—OH BDE
90.9 ± 1.3
2.7 ± 1.5
RO—H BDE
R—OOH BDEb
R—OOJ BDEb
R—OH BDEb
R—OJ BDEb
92.2 ± 1.5 50.6 ± 1.5 119.3 ± 1.5
66.8 ± 1.5
155.3 ± 1.5 87.4 ± 1.3
87.7 ± 1.5
16.8 ± 1.5
49.7 ± 1.5 114.3 ± 1.5
80.4 ± 1.5
136.7 ± 1.5 90.9 ± 1.4
91.5 ± 1.6
1.0 ± 1.6
50.0 ± 1.6 117.9 ± 1.6
64.4 ± 1.6
156.3 ± 1.6 87.0 ± 1.4
86.8 ± 1.6
15.3 ± 1.6
49.2 ± 1.6 113.2 ± 1.6
78.8 ± 1.6
137.2 ± 1.6 87.3 ± 1.4
87.6 ± 1.6
14.6 ± 1.6
49.8 ± 1.6 113.5 ± 1.6
77.4 ± 1.6
138.8 ± 1.6 87.3 ± 1.4
53.1 ± 1.6
46.7 ± 1.6
15.3 ± 1.6 76.4 ± 1.6
106.9 ± 1.6
72.2 ± 1.6 90.8 ± 1.4
91.2 ± 1.6
2.1 ± 1.6
49.8 ± 1.6 118.2 ± 1.6
66.2 ± 1.6
154.8 ± 1.6 88.0 ± 1.4
87.5 ± 1.6
16.0 ± 1.6
49.0 ± 1.6 39 ACS Paragon Plus Environment
The Journal of Physical Chemistry
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48
Species 3MF4OH 3MF4OJ 3MF3OOH 3MF3OOJ 3MF3OH 3MF3OJ 3MF2OOH 3MF2OOJ 3MF2OH 3MF2OJ 2MeOF5OOH 2MeOF5OOJ 2MeOF5OH 2MeOF5OJ 2MeOF4OOH 2MeOF4OOJ 2MeOF4OH 2MeOF4OJ 2MeOF3OOH 2MeOF3OOJ 2MeOF3OH 2MeOF3OJ 2MeOF2OOH 2MeOF2OOJ 2MeOF2OH 2MeOF2OJ 3MeOF5OOH 3MeOF5OOJ 3MeOF5OH 3MeOF5OJ 3MeOF4OOH 3MeOF4OOJ
∆H°f 298 -53.1 ± 0.7 -26.0 ± 1.6 -34.3 ± 0.8 0.9 ± 1.4 -51.0 ± 0.7 3.6 ± 1.6 -38.0 ± 0.8 2.4 ± 1.4 -57.4 ± 0.7 -45.8 ± 1.6 -66.7 ± 1.6 -26.9 ± 2.3 -85.6 ± 1.3 -77.9 ± 2.3 -62.2 ± 1.6 -27.4 ± 2.3 -82.5 ± 1.3 -58.1 ± 2.3 -61.7 ± 1.6 -24.7 ± 2.3 -80.7 ± 1.3 -59.9 ± 2.3 -70.9 ± 1.6 -32.3 ± 2.3 -88.5 ± 1.3 -34.4 ± 2.3 -62.5 ± 1.6 -23.8 ± 2.3 -83.9 ± 1.3 -71.2 ± 2.3 -57.6 ± 1.6 -20.3 ± 2.3
ROO—H BDE
RO—OH BDE
RO—H BDE
R—OOH BDEb
Page 40 of 51
R—OOJ BDEb
R—OH BDEb
R—OJ BDEb
113.7 ± 1.6
79.2 ± 1.6
137.2 ± 1.6 87.3 ± 1.4
58.6 ± 1.6
46.8 ± 1.6
20.7 ± 1.6 81.5 ± 1.6
106.7 ± 1.6
77.6 ± 1.6 92.5 ± 1.4
92.6 ± 1.6
1.1 ± 1.6
49.5 ± 1.6 118.2 ± 1.6
63.7 ± 1.6
157.3 ± 1.6 91.9 ± 2.3
93.1 ± 2.3
-2.3 ± 2.3
50.6 ± 2.3 118.2 ± 2.3
59.8 ± 2.3
161.2 ± 2.3 86.9 ± 2.3
87.0 ± 2.3
13.0 ± 2.3
49.5 ± 2.3 113.5 ± 2.3
76.5 ± 2.3
139.8 ± 2.3 89.1 ± 2.3
87.7 ± 2.3
10.7 ± 2.3
48.0 ± 2.3 112.9 ± 2.3
72.9 ± 2.3
142.8 ± 2.3 90.7 ± 2.3
75.2 ± 2.3
45.4 ± 2.3
34.0 ± 2.3 99.1 ± 2.3
106.3 ± 2.3
95.6 ± 2.3 90.8 ± 2.3
91.1 ± 2.3
0.3 ± 2.3
49.7 ± 2.3 118.7 ± 2.3
64.8 ± 2.3
156.6 ± 2.3 89.5 ± 2.3
88.2 ± 2.3
17.5 ± 2.3
48.1 ± 2.3 40 ACS Paragon Plus Environment
Page 41 of 51
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48
The Journal of Physical Chemistry
RO—OH BDE ROO—H BDE Species ∆H°f 298 3MeOF4OH -78.6 ± 1.3 3MeOF4OJ -49.0 ± 2.3 3MeOF3OOH -67.5 ± 1.6 91.1 ± 2.3 45.5 ± 2.3 3MeOF3OOJ -28.5 ± 2.3 3MeOF3OH -85.4 ± 1.3 3MeOF3OJ -30.9 ± 2.3 3MeOF2OOH -63.1 ± 1.6 94.2 ± 2.3 -0.8 ± 2.3 3MeOF2OOJ -21.0 ± 2.3 3MeOF2OH -80.0 ± 1.3 3MeOF2OJ -72.8 ± 2.3 a From the average of the CBS-QB3 and CBS-APNO methods
RO—H BDE
R—OOH BDEb
R—OOJ BDEb
R—OH BDEb
R—OJ BDEb
115.3 ± 2.3
81.7 ± 2.3
136.4 ± 2.3 74.8 ± 2.3 33.1 ± 2.3 98.8 ± 2.3
106.6 ± 2.3
95.0 ± 2.3 93.1 ± 2.3 48.4 ± 2.3 59.3 ± 2.3
116.2 ± 2.3 159.7 ± 2.3
b
Calculated from Furan, Methlyfuran, and Methoxyfuran radicals from References 28 and 48 and small radical species in Table 1. Uncertainties are assigned as the maximum uncertainty for the substituted Furans, Methylfurans, and Methoxyfurans radicals of 1.5, 1.6, and 2.3 kcal/mol respectively.
41 ACS Paragon Plus Environment
The Journal of Physical Chemistry
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48
Page 42 of 51
Table 8: Summary of Bond Dissociation Energies for Different Attachment Locations on Substituted Furan, Methylfuran, and Methoxyfuran Species. RO—H BDE (kcal/mol)
Parent Species
—OH Attached to Ring at Position 2 or 5a
3 or 4a
Furan Methylfuranb
66.8 80.4 63.7 77.4 64.4 78.8 66.2 79.2 b Methoxyfuran 59.3 72.9 59.8 76.5 64.8 81.7 a According to numbering in Figure 1
—OH Attached to Methyl/ Methoxy at Position 2a
3a
106.9
106.7
106.3
106.6
ROO—H BDE (kcal/mol) —OOH Attached to —OOH Attached to Methyl/ Ring at Position Methoxy at Position a a a 2 or 5 3 or 4 2 3a 90.9 90.8 90.9 92.5 90.8 91.9 94.2
87.4 87.0 87.3 88.0 86.9 89.1 89.5
87.3
87.3
90.7
91.1
b
Values are listed in increasing order
42 ACS Paragon Plus Environment
RO—OH BDE (kcal/mol) —OOH Attached to —OOH Attached to Methyl/ Ring at Position Methoxy at Position a a a 2 or 5 3 or 4 2 3a 2.7 1.0 1.1 2.1 -2.3 -0.8 0.3
16.8 14.6 15.3 16.0 10.7 13.0 17.5
46.7
46.8
45.4
45.5
Page 43 of 51
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
The Journal of Physical Chemistry
Table 8: (Continued)
Parent Species
R—OOH BDE —OOH —OOH Attached to Attached to Methyl/Methoxy Ring at Position at Position
R—OOJ BDE —OOJ —OOJ Attached to Attached to Methyl/Methoxy Ring at Position at Position
2 or 5a
2 or 5a
3 or 4a
50.6 49.5 49.8 50.0 48.4 49.7 50.6
49.7 49.0 49.2 49.8 48.0 48.1 49.5
3 or 4a
2a
Furan Methylfuranb
92.2 87.7 91.2 86.8 91.5 87.5 92.6 87.6 b Methoxyfuran 91.1 87.0 93.1 87.7 93.1 88.2 a According to numbering in Figure 1 b
3a
53.1
58.6
75.2
74.8
2a
3a
15.3
20.7
34.0
33.1
Values are listed in increasing order
R—OH BDE
Parent Species
—OH Attached to Ring at Position 2 or 5a
Furan Methylfuranb
3 or 4a
119.3 114.3 117.9 113.2 118.2 113.5 118.2 113.7 b Methoxyfuran 116.2 112.9 118.2 113.5 118.7 115.3 a According to numbering in Figure 1 b Values are listed in increasing order
R—OJ BDE
—OH Attached to Methyl/Methoxy at Position 2a
3a
76.4
81.5
99.1
98.8
—OJ Attached to Ring at Position 2 or 5a
3 or 4a
155.3 154.8 156.3 157.3 156.6 159.7 161.2
136.7 137.2 137.2 138.8 136.4 139.8 142.8
43 ACS Paragon Plus Environment
—OJ Attached to Methyl/Methoxy at Position 2a
3a
72.2
77.6
95.6
95.0
The Journal of Physical Chemistry
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48
Page 44 of 51
Table 9: Calculated Entropy (S°298) and Heat Capacities (Cp(T)) for Substituted Furan, Methylfuran, and Methoxyfuran Species. Species F2OOH F2OOJ F2OH F2OJ F3OOH F3OOJ F3OH F3OJ 2MF5OOH 2MF5OOJ 2MF5OH 2MF5OJ 2MF4OOH 2MF4OOJ 2MF4OH 2MF4OJ 2MF3OOH 2MF3OOJ 2MF3OH 2MF3OJ 2MF2OOH 2MF2OOJ 2MF2OH 2MF2OJ 3MF5OOH
S°298
Cp°(T) (cal mol-1 K-1)
(cal mol-1 K-1)
300 K
400 K
500 K
600 K
800 K
1000 K
1500 K
80.11 77.83 73.07 69.68 83.62 78.14 73.36 69.79 88.80 86.36 81.75 78.38 93.85 86.81 81.38 78.36 93.64 86.79 82.59 78.62 90.07 87.78 82.96 81.60 88.37
24.48 23.11 21.13 18.63 24.13 22.49 20.52 18.69 30.02 28.50 26.59 24.03 29.22 28.07 25.81 24.38 30.11 28.67 25.56 23.96 28.95 26.42 25.03 24.38 30.11
30.46 28.78 26.25 23.94 29.95 28.27 25.84 23.97 36.99 35.17 32.67 30.34 35.97 34.84 32.21 30.61 36.86 35.18 31.89 30.23 36.43 33.69 31.87 30.71 37.00
35.37 33.31 30.52 28.21 34.77 32.94 30.24 28.24 42.98 40.84 38.02 35.72 41.84 40.59 37.73 35.94 42.63 40.73 37.44 35.63 42.80 39.83 37.69 36.20 42.94
39.20 36.77 33.92 31.54 38.57 36.51 33.73 31.57 47.83 45.39 42.47 40.10 46.66 45.20 42.28 40.28 47.32 45.21 42.04 40.04 47.91 44.73 42.38 40.64 47.78
44.57 41.51 38.85 36.23 43.99 41.39 38.74 36.27 54.97 51.96 49.20 46.58 53.79 51.85 49.10 46.71 54.25 51.75 48.93 46.56 55.32 51.78 49.27 47.13 54.92
48.15 44.59 42.24 39.34 47.65 44.53 42.17 39.38 59.92 56.42 53.98 51.09 58.76 56.35 53.92 51.17 59.08 56.24 53.81 51.08 60.38 56.53 54.07 51.57 59.88
53.36 48.92 47.32 43.80 53.04 48.90 47.29 43.81 67.28 62.89 61.25 57.71 66.16 62.86 61.21 57.75 66.28 62.77 61.16 57.72 67.80 63.38 61.29 58.02 67.26
44 ACS Paragon Plus Environment
Page 45 of 51
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48
The Journal of Physical Chemistry
Species 3MF5OOJ 3MF5OH 3MF5OJ 3MF4OOH 3MF4OOJ 3MF4OH 3MF4OJ 3MF3OOH 3MF3OOJ 3MF3OH 3MF3OJ 3MF2OOH 3MF2OOJ 3MF2OH 3MF2OJ 2MeOF5OOH 2MeOF5OOJ 2MeOF5OH 2MeOF5OJ 2MeOF4OOH 2MeOF4OOJ 2MeOF4OH 2MeOF4OJ 2MeOF3OOH 2MeOF3OOJ 2MeOF3OH 2MeOF3OJ
S°298
Cp°(T) (cal mol-1 K-1)
(cal mol-1 K-1)
300 K
400 K
500 K
600 K
800 K
1000 K
1500 K
86.45 81.43 78.59 92.09 87.34 81.80 78.72 89.07 90.69 82.11 81.73 88.46 87.09 82.07 78.58 96.39 91.75 90.95 83.80 100.41 91.80 89.72 85.44 95.31 92.78 84.54 83.84
28.70 27.02 23.82 29.87 28.02 26.13 23.88 28.71 26.98 26.62 24.01 30.17 27.63 26.11 23.56 34.50 31.46 29.63 27.60 33.97 32.51 30.46 29.87 35.94 31.47 30.68 27.02
35.32 33.03 30.21 36.70 34.60 32.27 30.18 36.47 33.82 32.91 30.53 37.10 34.44 32.33 29.99 41.72 38.53 36.08 34.25 40.87 39.13 36.76 36.16 43.27 38.19 37.54 33.76
40.92 38.28 35.62 42.59 40.24 37.68 35.56 43.02 39.66 38.32 36.07 43.04 40.19 37.76 35.44 47.77 44.51 41.74 39.94 46.82 44.85 42.25 41.35 48.98 44.06 43.16 39.57
45.41 42.66 40.01 47.42 44.81 42.19 39.96 48.28 44.35 42.78 40.54 47.87 44.81 42.26 39.88 52.66 49.35 46.43 44.59 51.71 49.53 46.82 45.56 53.50 48.91 47.74 44.33
51.92 49.30 46.52 54.57 51.47 49.01 46.49 55.90 51.16 49.45 47.06 54.98 51.51 49.06 46.45 59.82 56.43 53.49 51.48 59.02 56.48 53.73 51.82 60.18 56.06 54.63 51.35
56.37 54.04 51.04 59.57 56.04 53.84 51.02 61.11 55.79 54.16 51.51 59.92 56.08 53.88 51.00 64.79 61.27 58.48 56.26 64.13 61.27 58.62 56.21 64.92 60.98 59.52 56.18
62.86 61.26 57.69 67.06 62.68 61.17 57.68 68.82 62.53 61.33 57.99 67.28 62.72 61.20 57.68 72.19 68.28 65.98 63.25 71.80 68.25 66.04 62.72 72.15 68.10 66.97 63.21
45 ACS Paragon Plus Environment
The Journal of Physical Chemistry
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48
Species 2MeOF2OOH 2MeOF2OOJ 2MeOF2OH 2MeOF2OJ 3MeOF5OOH 3MeOF5OOJ 3MeOF5OH 3MeOF5OJ 3MeOF4OOH 3MeOF4OOJ 3MeOF4OH 3MeOF4OJ 3MeOF3OOH 3MeOF3OOJ 3MeOF3OH 3MeOF3OJ 3MeOF2OOH 3MeOF2OOJ 3MeOF2OH 3MeOF2OJ
S°298
Page 46 of 51
Cp°(T) (cal mol-1 K-1)
(cal mol-1 K-1)
300 K
400 K
500 K
600 K
800 K
1000 K
1500 K
93.53 90.29 85.84 83.22 94.86 93.28 88.09 84.96 91.54 93.90 83.63 86.48 96.76 94.88 85.88 85.84 94.56 91.47 90.07 82.90
32.34 29.99 28.71 26.98 35.62 34.43 33.02 29.47 33.50 35.03 30.46 28.04 34.76 30.87 29.12 27.78 35.26 32.78 29.69 27.46
40.18 38.02 36.23 34.58 42.47 40.98 39.07 36.26 41.19 41.19 37.79 34.82 42.82 37.91 36.47 34.80 43.29 39.48 36.06 34.12
46.91 44.73 42.52 40.88 48.25 46.38 44.06 41.73 47.64 46.23 43.69 40.48 49.11 44.03 42.69 40.72 49.70 45.14 41.78 39.85
52.34 50.05 47.59 45.86 52.97 50.72 48.19 46.04 52.86 50.36 48.36 45.03 53.95 49.01 47.72 45.46 54.58 49.77 46.56 44.53
60.23 57.64 55.01 52.99 59.99 57.06 54.55 52.27 60.53 56.59 55.19 51.66 60.89 56.24 55.09 52.33 61.34 56.64 53.70 51.47
65.63 62.72 60.14 57.77 64.89 61.43 59.16 56.57 65.83 61.00 59.96 56.20 65.70 61.14 60.20 56.99 65.88 61.38 58.70 56.27
73.56 69.97 67.79 64.61 72.24 67.85 66.28 62.91 73.67 67.58 67.20 62.79 73.01 68.19 67.81 63.70 72.69 68.31 66.16 63.26
46 ACS Paragon Plus Environment
Page 47 of 51
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48
The Journal of Physical Chemistry
Table 10: Literature and Calculated Group Additivity and Bond Dissociation Energies for Substituted Furan, Methylfuran, and Methoxyfuran Species.
Species
a
∆H°f 298
S°298
(kcal mol-1)
(cal mol-1 K-1)
CF/H CF/Ca CF/H/Oa CF/C/Oa CF/O/Oa CF/Oa C/CF/H3a O/CF2a O/CF/Ca C/H3/Ob
6.19 8.67 5.59 5.32 11.30 16.08 -10.71 -32.01 -32.00 -10.00
12.19 5.43 12.85 5.83 5.63 4.37 17.62 15.12 -4.59 30.41
C/CF/H2/OOH C/CF/H2/OH C/O/H2/OOH C/O/H2/OH CF/F2OH CF/F3OH CF/2MF3OH CF/2MF4OH CF/2MF5OH CF/3MF2OH CF/3MF4OH CF/3MF5OH CF/2MeOF3OH
-27.61 -44.51 -36.55 -54.30 -36.20 -30.46 -29.78 -29.68 -34.98 -35.13 -30.23 -35.63 -29.77
29.88 24.23 40.68 32.77 20.70 20.35 21.16 19.95 18.80 21.04 20.11 20.40 15.12
Cp°(T) (cal mol-1 K-1) 300 K
400 K
500 K
Known Groups 2.50 3.39 4.16 4.79 5.86 6.85 1.36 2.20 2.89 3.64 4.71 5.65 2.62 2.97 3.22 3.89 4.45 4.82 3.28 4.07 4.93 7.74 9.68 11.27 2.57 3.00 3.28 6.19 7.84 9.40 Groups Developed in This Study 11.09 13.10 14.82 8.08 9.04 9.91 14.20 16.72 18.86 9.56 11.58 13.46 7.00 7.60 8.00 7.56 8.37 9.03 7.04 7.84 8.54 7.29 8.16 8.83 6.93 7.43 7.85 6.44 7.13 7.66 7.60 8.26 8.85 7.35 7.83 8.18 7.70 8.46 8.94 47 ACS Paragon Plus Environment
600 K
800 K
1000 K
1500 K
4.78 7.70 3.42 6.43 3.39 5.08 5.74 12.52 3.43 10.79
5.70 9.00 4.17 7.56 3.61 5.42 7.16 14.25 3.55 13.03
6.31 9.85 4.72 8.34 3.76 5.57 8.30 15.42 3.53 14.77
7.23 11.21 5.34 9.38 3.80 5.81 10.01 17.46 3.27 17.58
16.21 10.69 20.66 15.17 8.40 9.59 9.15 9.39 8.22 8.10 9.39 8.50 9.41
18.27 12.03 23.44 17.93 9.00 10.45 10.09 10.26 8.83 8.78 10.26 9.02 10.32
19.69 13.06 25.51 20.01 9.50 11.00 10.72 10.83 9.30 9.28 10.83 9.44 11.01
21.70 14.70 28.89 23.41 10.10 11.92 11.74 11.79 9.94 9.95 11.81 10.01 12.29
The Journal of Physical Chemistry
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48
Species
∆H°f 298
S°298
(kcal mol-1)
(cal mol-1 K-1)
CF/2MeOF4OH CF/2MeOF5OH CF/3MeOF2OH CF/3MeOF4OH CF/3MeOF5OH CF/F2OOH CF/F3OOH CF/2MF3OOH CF/2MF4OOH CF/2MF5OOH CF/3MF2OOH CF/3MF4OOH CF/3MF5OOH CF/2MeOF3OOH CF/2MeOF4OOH CF/2MeOF5OOH CF/3MeOF2OOH CF/3MeOF4OOH CF/3MeOF5OOH
-31.57 -35.27 -33.85 -31.85 -37.75 -15.30 -10.06 -10.08 -9.48 -14.78 -15.73 -10.23 -14.83 -10.77 -11.27 -16.37 -16.95 -10.85 -16.35
F2OJ F3OJ 2MF2OJ 2MF3OJ 2MF4OJ 2MF5OJ 3MF2OJ 3MF3OJ
66.8 80.4 106.9 77.4 78.8 64.4 63.7 106.7
Page 48 of 51
Cp°(T) (cal mol-1 K-1) 300 K
400 K
500 K
600 K
800 K
1000 K
1500 K
20.29 7.48 7.68 8.03 8.49 22.19 5.51 5.81 6.25 6.74 21.90 5.44 5.50 5.96 6.54 14.81 7.35 8.42 9.14 9.70 19.93 8.77 8.51 8.24 8.17 26.40 10.38 11.80 12.89 13.70 29.23 11.17 12.48 13.56 14.43 30.84 11.59 12.81 13.73 14.43 31.04 10.70 11.92 12.94 13.77 26.65 10.36 11.75 12.81 13.58 26.05 10.50 11.90 12.94 13.71 29.02 11.34 12.69 13.76 14.62 25.97 10.44 11.80 12.84 13.62 24.50 12.96 14.19 14.76 15.17 29.61 10.99 11.79 12.60 13.38 26.24 10.38 11.45 12.28 12.97 25.01 11.01 12.73 13.88 14.56 21.33 10.39 11.82 13.09 14.20 25.32 11.37 11.91 12.43 12.95 Bond Dissociation Groups Developed in This Study -3.37 -2.47 -2.32 -2.27 -2.37 -3.57 -1.83 -1.88 -2.00 -2.15 -0.81 -1.44 -1.69 -1.84 -1.98 -3.97 -1.60 -1.65 -1.81 -2.00 -3.02 -1.43 -1.59 -1.80 -2.00 -1.19 -2.56 -2.33 -2.30 -2.37 -3.48 -2.55 -2.34 -2.32 -2.38 -0.93 -1.82 -1.84 -1.90 -1.99
9.42 7.65 7.58 10.60 8.43 14.75 15.70 15.41 14.95 14.60 14.70 15.82 14.64 15.87 14.71 13.98 15.22 15.94 13.87
10.11 8.38 8.38 11.23 8.84 15.39 16.48 15.99 15.67 15.24 15.32 16.56 15.28 16.41 15.62 14.69 15.56 17.10 14.57
11.36 9.41 9.47 12.40 9.59 16.10 17.67 16.86 16.74 15.97 16.03 17.70 16.01 17.47 17.12 15.62 16.00 18.87 15.55
-2.59 -2.48 -2.28 -2.37 -2.39 -2.62 -2.61 -2.26
-2.92 -2.80 -2.59 -2.72 -2.74 -2.90 -2.88 -2.57
-3.56 -3.48 -3.32 -3.45 -3.46 -3.54 -3.52 -3.29
48 ACS Paragon Plus Environment
Page 49 of 51
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48
The Journal of Physical Chemistry
Species 3MF4OJ 3MF5OJ 2MeOF2OJ 2MeOF3OJ 2MeOF4OJ 2MeOF5OJ 3MeOF2OJ 3MeOF3OJ 3MeOF4OJ 3MeOF5OJ F2OOJ F3OOJ 2MF2OOJ 2MF3OOJ 2MF4OOJ 2MF5OOJ 3MF2OOJ 3MF3OOJ 3MF4OOJ 3MF5OOJ 2MeOF2OOJ 2MeOF3OOJ 2MeOF4OOJ 2MeOF5OOJ 3MeOF2OOJ 3MeOF3OOJ 3MeOF4OOJ 3MeOF5OOJ
∆H°f 298
S°298
(kcal mol-1)
(cal mol-1 K-1)
300 K
400 K
500 K
600 K
800 K
1000 K
1500 K
79.2 66.2 106.3 72.9 76.5 59.8 59.3 106.6 81.7 64.8 90.9 87.4 87.3 87.3 87.0 90.9 92.5 87.3 88.0 90.8 90.7 89.1 86.9 91.9 94.2 91.1 89.5 90.8
-3.08 -2.84 -2.94 -0.70 -4.28 -7.16 -7.17 0.28 2.85 -3.14 -0.92 -4.10 -0.28 -5.47 -5.65 -1.06 0.01 2.36 -3.36 -0.55 -3.78 -1.14 -7.23 -3.25 -1.72 1.42 3.74 -0.21
-2.25 -3.19 -1.87 -3.66 -0.59 -2.03 -2.22 -1.20 -2.42 -3.55 -1.38 -1.64 -2.41 -1.45 -1.15 -1.52 -2.54 -1.86 -1.85 -1.41 -3.50 -4.48 -1.46 -3.04 -2.49 -2.74 1.53 -1.19
-2.09 -2.82 -1.62 -3.77 -0.59 -1.83 -1.94 -1.70 -2.96 -2.81 -1.69 -1.67 -2.78 -1.68 -1.13 -1.83 -2.66 -2.61 -2.10 -1.68 -3.33 -5.09 -1.74 -3.19 -3.82 -3.74 0.00 -1.49
-2.12 -2.67 -1.56 -3.59 -0.91 -1.80 -1.94 -2.06 -3.21 -2.33 -2.06 -1.83 -3.11 -1.91 -1.25 -2.14 -2.84 -3.22 -2.35 -2.02 -3.11 -4.92 -1.97 -3.27 -4.56 -4.14 -1.41 -1.87
-2.23 -2.65 -1.63 -3.41 -1.27 -1.84 -2.02 -2.36 -3.34 -2.16 -2.43 -2.06 -3.40 -2.11 -1.46 -2.45 -3.06 -3.70 -2.61 -2.37 -2.93 -4.59 -2.18 -3.31 -4.81 -4.30 -2.50 -2.25
-2.52 -2.78 -1.92 -3.28 -1.91 -2.01 -2.23 -2.86 -3.53 -2.28 -3.06 -2.60 -3.88 -2.49 -1.94 -3.01 -3.47 -4.40 -3.10 -2.99 -2.78 -4.12 -2.54 -3.39 -4.70 -4.46 -3.94 -2.92
-2.82 -3.00 -2.29 -3.35 -2.42 -2.22 -2.43 -3.29 -3.77 -2.60 -3.56 -3.13 -4.26 -2.84 -2.41 -3.50 -3.84 -4.92 -3.54 -3.51 -2.84 -3.94 -2.86 -3.52 -4.50 -4.64 -4.83 -3.46
-3.50 -3.58 -3.13 -3.76 -3.32 -2.74 -2.89 -4.16 -4.41 -3.37 -4.44 -4.13 -4.96 -3.50 -3.30 -4.39 -4.56 -5.75 -4.38 -4.40 -3.26 -4.05 -3.55 -3.91 -4.38 -5.16 -6.08 -4.38
Cp°(T) (cal mol-1 K-1)
49 ACS Paragon Plus Environment
The Journal of Physical Chemistry
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48
Species a b
∆H°f 298
S°298
(kcal mol-1)
(cal mol-1 K-1)
Page 50 of 51
Cp°(T) (cal mol-1 K-1) 300 K
400 K
500 K
Reference 27. Reference 61.
50 ACS Paragon Plus Environment
600 K
800 K
1000 K
1500 K
Page 51 of 51
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48
The Journal of Physical Chemistry
TOC Graphic
51
ACS Paragon Plus Environment