Thermodynamics of Aqueous Systems with Industrial Applications

utes and from an initial base line i t takes about 15 minutes for the calorimeter to ... rent heat exchanger and goes to a sample injection valve whic...
0 downloads 0 Views 794KB Size
30 Flow Calorimetry of Aqueous Solutions at Temperatures up to 325° C R. H . WOOD and D. SMITH-MAGOWAN

Downloaded by COLUMBIA UNIV on May 29, 2014 | http://pubs.acs.org Publication Date: October 29, 1980 | doi: 10.1021/bk-1980-0133.ch030

University of Delaware, Newark, D E 19711

1) Need The fact that we are gathered together at a conference on "Thermodynamics on Aqueous Systems with Industrial Application" indicates the importance of thermodynamic data on aqueous solu­ tions. In particular, there is a great need for data on high temperature aqueous systems. Because of the experimental diffi­ culties, there are relatively few measurements on these systems and yet they are of very great industrial importance. As the temperature of water approaches the critical tempera­ ture, 374°C, it becomes a low dielectric constant solvent with the dielectric constant approaching one tenth its value at 25°C. This is about the same dielectric constant as 1,1 dichloroethane at 25°C. Because of this large change in solvent properties there are corresponding very large changes in the properties of electrolytes dissolved in water. The few data available indicate(1-4) that the heat capacities of dilute aqueous solution be­ come very large and negative as the temperature approaches the critical temperature and the data presented below will show that the relative apparent molal enthalpy, L , becomes very large and positive at higher temperatures. These very large changes in thermodynamic properties make it very difficult to predict high temperature properties of solutions from low temperature measure­ ments and increase the need for accurate measurements. Φ

2)

Information

Obtained

C a l o r i m e t r i c m e a s u r e m e n t s , when combined w i t h t h e n o r m a l l y a v a i l a b l e room t e m p e r a t u r e t h e r m o d y n a m i c p r o p e r t i e s , g i v e v a l u e s f o r f r e e e n e r g y , e n t h a l p y , h e a t c a p a c i t y and even volume a t h i g h temperatures. We have been a c t i v e l y d e v e l o p i n g two t y p e s o f c a l o r i m e t e r s w h i c h w i l l o p e r a t e a t e l e v a t e d t e m p e r a t u r e s and p r e s s u r e s . One t y p e i s a h e a t o f m i x i n g c a l o r i m e t e r t o measure e n t h a l p i e s o f d i l u t i o n i n order to obtain d i f f e r e n c e s i n p a r t i a l molal enthalpy 0-8412-0569-8/80/47-133-569$05.00/0 © 1980 American Chemical Society

In Thermodynamics of Aqueous Systems with Industrial Applications; Newman, S., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1980.

570

T H E R M O D Y N A M I C S OF AQUEOUS SYSTEMS W I T H INDUSTRIAL

APPLICATIONS

or heat c o n t e n t s :

This property simply considered i s the f i r s t temperature d e r i v a ­ t i v e o f t h e f r e e e n e r g y o r a c t i v i t y and c a n be u s e d t o o b t a i n o s ­ m o t i c c o e f f i c i e n t s and a c t i v i t y c o e f f i c i e n t s by t h e r e l a t i o n s h i p s : T Φ(ϋΙ,Ι) - 4>(m,T ) = {mV2vR}/

Downloaded by COLUMBIA UNIV on May 29, 2014 | http://pubs.acs.org Publication Date: October 29, 1980 | doi: 10.1021/bk-1980-0133.ch030

2

3L (-£)d(i)

2

and m £ny(m,T) = [(m,T)-l] + / ((m' ,T)-1 Jd^nm ο

1

where ï i s a r e f e r e n c e t e m p e r a t u r e . We have a l s o d e v e l o p e d a h e a t c a p a c i t y c a l o r i m e t e r f o r these extreme c o n d i t i o n s . The h e a t c a p a c i t y i s t h e s e c o n d t e m p e r a t u r e d e r i v a t i v e o f t h e f r e e e n e r g y and c a n be u s e d t o c a l c u l a t e t h e t e m p e r a t u r e d e p e n d ence o f e q u i l i b r i a by t h e r e l a t i o n s h i p :

AGiLPi . ΔβίΙ,Ρΐ

+

Δ

Η

(

ΐ

>

ρ

)

[

| . V,

+

/

ζ

(

Δ

£

ρ

d T 1 1 )

d (

|

( )

S i m i l a r l y the temperature dependencies o f the r e l a t i v e apparent m o l a l h e a t c o n t e n t c a n be d e t e r m i n e d f r o m t h e h e a t c a p a c i t y b y : 1

1

V" ' ^

88

111

V »*)

/ (^(m,T)

+

2

- C °(0,T))dT p

These c a l o r i m e t e r s c a n be used t o d e t e r m i n e t h e s e t h e r m a l p r o p e r t i e s t h r o u g h o u t a w i d e r a n g e o f p r e s s u r e s . The p r e s s u r e dependence c a n be used t o c a l c u l a t e v o l u m e t r i c p r o p e r t i e s by means o f t h e r e l a t i o n s h i p s : τ

Φ - "(1τ> τ

+v

ρ

Φ* =- 4) T

3 P

3)

Τ

3Γ Ρ

Advantages In a f l o w c a l o r i m e t e r t h e t h e r m o d y n a m i c p r o p e r t i e s a r e mea-

In Thermodynamics of Aqueous Systems with Industrial Applications; Newman, S., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1980.

Downloaded by COLUMBIA UNIV on May 29, 2014 | http://pubs.acs.org Publication Date: October 29, 1980 | doi: 10.1021/bk-1980-0133.ch030

30.

WOOD AND SMITH-MAGOWAN

Calorimetry of Aqueous Solutions

571

sured i n a f l o w i n g stream contained i n a small diameter t u b i n g . F l o w c a l o r i m e t r i c t e c h n i q u e s have been u s e d f o r many y e a r s a t room t e m p e r a t u r e b e c a u s e o f t h e i r s p e e d a n d c o n v e n i e n c e ^ : ^ ' . For o p e r a t i o n s a t h i g h temperatures o r w i t h a h i g h vapor p r e s s u r e s o l v e n t , t h e advantages o f u s i n g f l o w c a l o r i m e t r i c techniques a r e overwhelming. I n t h e f i r s t p l a c e t h e r e i s no v a p o r s p a c e s o t h e r e i s no n e c e s s i t y f o r c o r r e c t i o n s f o r t h e change i n t h e v a p o r space c o m p o s i t i o n . Because o f t h e s m a l l d i a m e t e r t u b i n g u s e d , r e l a t i v e l y t h i n w a l l e d t u b i n g i s s t r o n g enough t o c o n t a i n t h e h i g h p r e s s u r e s and a s a r e s u l t t h e c a l o r i m e t e r c a n be c o n s t r u c t e d f o r very r a p i d thermal response. A t h i r d advantage i s t h a t e x ­ p e r i m e n t s c a n be r u n c o n s e c u t i v e l y w i t h o u t c o o l i n g a n d r e l o a d i n g the c a l o r i m e t e r . A l l t h a t i s n e c e s s a r y i s t o s t a r t pumping i n t o t h e c a l o r i m e t e r f r o m room t e m p e r a t u r e t h e f l u i d s f o r t h e n e x t measurement. I n t h e f o l l o w i n g s e c t i o n we w i l l show t h a t t h e s e a d v a n t a g e s o f f l o w c a l o r i m e t r i c t e c h n i q u e s c a n be r e a l i z e d i n p r a c t i c e f o r measurements on h i g h t e m p e r a t u r e aqueous s o l u t i o n s by d i s c u s s i n g t h e o p e r a t i o n o f s e v e r a l i n s t r u m e n t s t h a t have been constructed i n our laboratory. 4)

Measurements

o f Δ^Η

The f i r s t a t t e m p t i n o u r l a b o r a t o r y t o a p p l y f l o w t e c h n i q u e s t o h i g h t e m p e r a t u r e o p e r a t i o n was t h e c o n s t r u c t i o n by D r . E . E . Messikomer o f a f l o w , h e a t - o f - m i x i n g calorimeter(12). Unfortu­ n a t e l y , because t h e t h e r m o p i l e s used i n t h i s i n s t r u m e n t d i d n o t work above 100°C t h e i n s t r u m e n t was l i m i t e d t o t h i s t e m p e r a t u r e . H o w e v e r , t h e r e s u l t s were e n c o u r a g i n g b e c a u s e t h e y showed t h a t v e r y r a p i d and a c c u r a t e t h e r m o d y n a m i c d a t a c o u l d be o b t a i n e d a n d t h a t t h e o p e r a t i o n o f t h e c a l o r i m e t e r was as e a s y a t 100°C a s i t was a t room t e m p e r a t u r e . Because o f t h e encouraging r e s u l t s o b t a i n e d w i t h t h e f i r s t c a l o r i m e t e r , D r . James M a y r a t h b u i l d a new v e r s i o n w h i c h was s u c ­ c e s s f u l l y o p e r a t e d up t o A schematic o f t h i s c a l o r i ­ m e t e r i s g i v e n i n f i g u r e 1. B a s i c a l l y i t i s a h e a t - f l o w c a l o r i ­ m e t e r i n w h i c h t h e two l i q u i d s t o be m i x e d a r e pumped a t room temperature i n t o a counter c u r r e n t heat exchanger, a f t e r which t h e y a r e e q u i l i b r a t e d w i t h an aluminum c a l o r i m e t r i c b l o c k . Next t h e two l i q u i d s a r e m i x e d , a n d t h e h e a t g e n e r a t e d by t h e m i x i n g p r o c e s s i s e x t r a c t e d f r o m t h e f l o w i n g s t r e a m by a s e r i e s o f t h e r ­ m o p i l e s w h i c h c a n measure t h e h e a t e x t r a c t e d . Using several heat e x t r a c t o r s g u a r a n t e e d t h a t most o f t h e h e a t g e n e r a t e d i s m e a s u r e d by t h e t h e r m o p i l e s a n d t h e sum o f t h e v o l t a g e on t h e t h e r m o p i l e s i s t h e n a measure o f t h e r a t e o f h e a t p r o d u c t i o n . A d i a g r a m o f a t y p i c a l r u n i s g i v e n i n f i g u r e 2 w h i c h shows t h e power g e n e r a t e d by m i x i n g o f magnesium c h l o r i d e w i t h w a t e r a t 200°C. I n t h i s c a l o r i m e t e r a h e a t o f d i l u t i o n t a k e s 30 m i n ­ u t e s a n d f r o m an i n i t i a l b a s e l i n e i t t a k e s a b o u t 15 m i n u t e s f o r the c a l o r i m e t e r t o reach a steady s t a t e . The s e n s i t i v i t y o f t h i s c a l o r i m e t e r was e q u i v a l e n t t o b e i n g a b l e t o d e t e c t a 2 X 1 0 ~ K

200°c(LU.

4

In Thermodynamics of Aqueous Systems with Industrial Applications; Newman, S., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1980.

Downloaded by COLUMBIA UNIV on May 29, 2014 | http://pubs.acs.org Publication Date: October 29, 1980 | doi: 10.1021/bk-1980-0133.ch030

572

T H E R M O D Y N A M I C S OF AQUEOUS SYSTEMS W I T H INDUSTRIAL

APPLICATIONS

Figure 1. Flow heat of mixing calorimeter: (a and b) solutions to be mixed; (c) calorimetric block; (d) thermopiles for detecting heatflow;(e) exit for mixture

In Thermodynamics of Aqueous Systems with Industrial Applications; Newman, S., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1980.

30.

WOOD AND SMITH-MAGOWAN

Downloaded by COLUMBIA UNIV on May 29, 2014 | http://pubs.acs.org Publication Date: October 29, 1980 | doi: 10.1021/bk-1980-0133.ch030

τ

0

10

1

20

573

Calorimetry of Aqueous Solutions

1

30 T/mln

1

40

ι

SO

Γ

60

Figure 2. Results of an enthalpy of dilution run on aqueous MgCl at 473 Κ (thermopile voltage vs. time—maximum 1.23 zt 0.002; Q = 1.129 watts; Δ Τ = 12.8 K) 2

In Thermodynamics of Aqueous Systems with Industrial Applications; Newman, S., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1980.

574

T H E R M O D Y N A M I C S OF AQUEOUS SYSTEMS W I T H INDUSTRIAL

APPLICATIONS

t e m p e r a t u r e r i s e on m i x i n g t h e c a l o r i m e t r i c f l u i d s . Some t y p i c a l r e s u l t s f r o m t h i s c a l o r i m e t e r a r e shown i n f i g u r e s 3 and 4 . It s h o u l d be n o t e d t h a t t h e h e a t o f d i l u t i o n o f magnesium c h l o r i d e a t 200°C i s 40 kJ m o l " and t h a t t h i s i s c l o s e t o t h e h e a t o f r e a c t i o n o f H w i t h OH*" a t room t e m p e r a t u r e . Thus, the heat e f ­ f e c t s i n w a t e r a t 200°C a r e e x t r e m e l y l a r g e and c h a n g i n g r a p i d l y with temperature. This i s a f u r t h e r reminder o f the d i f f i c u l t y o f p r e d i c t i n g t h e p r o p e r t i e s o f h i g h t e m p e r a t u r e aqueous s o l u t i o n s f r o m t h e i r p r o p e r t i e s a t room t e m p e r a t u r e s . 1

+

Downloaded by COLUMBIA UNIV on May 29, 2014 | http://pubs.acs.org Publication Date: October 29, 1980 | doi: 10.1021/bk-1980-0133.ch030

5)

Heat C a p a c i t y

Measurements

The s u c c e s s o f t h e m i x i n g c a l o r i m e t e r s f u r t h e r e n c o u r a g e d us to c o n s t r u c t a f l o w , heat-capacity c a l o r i m e t e r using the basic design p r i n c i p a l s o f Patrick Picker et A schematic d i a ­ gram o f o u r h e a t c a p a c i t y c a l o r i m e t e r i s g i v e n i n f i g u r e 5 . The o p e r a t i o n o f t h e i n s t r u m e n t i s as f o l l o w s : W a t e r i s pumped w i t h a h i g h p r e s s u r e l i q u i d c h r o m a t o g r a p h y pump t h r o u g h a 1.5 mm o u t ­ s i d e d i a m e t e r h a s t a l l o y t u b e t h r o u g h a h e a t e x c h a n g e r and o n t o a c o p p e r c a l o r i m e t r i c b l o c k where i t i s e q u i l i b r a t e d a t t h e r e f e r ­ ence t e m p e r a t u r e . The f l u i d i n t h e t u b e i s t h e n h e a t e d a b o u t 2 ° Κ and t h e r e s u l t i n g t e m p e r a t u r e r i s e d e t e c t e d by a t h e r m i s t o r . The stream then l e a v e s t h e c a l o r i m e t r i c b l o c k through t h e c o u n t e r c u r ­ r e n t h e a t e x c h a n g e r and goes t o a s a m p l e i n j e c t i o n v a l v e w h i c h a l l o w s a s a m p l e l o o p ( c o n t a i n i n g 10 ml o f t h e s o l u t i o n t o be measured) t o be i n t e r j e c t e d i n t o t h e f l o w s t r e a m . The s t r e a m t h e n goes t h r o u g h a. s e c o n d c o u n t e r c u r r e n t h e a t e x c h a n g e r and i n t o an i d e n t i c a l Q l o r i m e t r i c u n i t w i t h h e a t e r and t h e r m i s t o r t o detect the temperature r i s e . A f t e r l e a v i n g the block through the counter c u r r e n t heat exchanger the s o l u t i o n e x i t s the system t h r o u g h a back p r e s s u r e r e g u l a t o r . I n o p e r a t i o n t h e pump and h e a t e r s a r e t u r n e d on w i t h w a t e r f l o w i n g t h r o u g h b o t h c a l o r i m e t r i c u n i t s and a w h e a t s t o n e b r i d g e c o n t a i n i n g t h e two t h e r m i s t o r s i n o p p o s i t e arms i s b a l a n c e d . A f t e r a steady s t a t e i s reached the s a m p l e l o o p v a l v e i s opened and t h e s a m p l e s o l u t i o n f l o w s t h r o u g h the second c a l o r i m e t r i c u n i t . When t h e sample h i t s t h e h e a t e r and t h e r m i s t o r on t h e s e c o n d u n i t t h e r e i s a change i n h e a t c a p a ­ c i t y and a c o n s e q u e n t change i n t e m p e r a t u r e . The h e a t e r on t h i s u n i t i s a d j u s t e d t o r e b a l a n c e t h e t h e r m i s t o r b r i d g e and t h u s t o keep t h e t e m p e r a t u r e r i s e e x a c t l y t h e same. The r a t i o o f t h e power a p p l i e d t o t h e h e a t e r w i t h w a t e r f l o w i n g and w i t h t h e sam­ p l e f l o w i n g i s then the r a t i o o f t h e v o l u m e t r i c heat c a p a c i t i e s o f t h e two s o l u t i o n s . The r a t i o o f t h e mass f l o w s t h r o u g h t h e c a l o r i m e t r i c u n i t s i n t h e two c a s e s i s j u s t t h e r a t i o o f t h e d e n ­ s i t i e s o f w a t e r and o f t h e s o l u t i o n t o be measured a t t h e t e m p e r a ­ t u r e o f t h e sample l o o p . T h i s c a n be e a s i l y shown u s i n g t h e a s s u m p t i o n s t h a t 1) a t c o n s t a n t c o m p o s i t i o n , t h e mass f l o w i s i n ­ d e p e n d e n t o f t e m p e r a t u r e 2) a t c o n s t a n t t e m p e r a t u r e , t h e v o l u m e ­ t r i c f l o w i s i n d e p e n d e n t o f t h e c o m p o s i t i o n and 3) t h e h e a t and volume o f m i x i n g a t t h e i n t e r f a c e between t h e two s o l u t i o n s p r o -

alW»

In Thermodynamics of Aqueous Systems with Industrial Applications; Newman, S., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1980.

Calorimetry of Aqueous Solutions

Downloaded by COLUMBIA UNIV on May 29, 2014 | http://pubs.acs.org Publication Date: October 29, 1980 | doi: 10.1021/bk-1980-0133.ch030

WOOD AND SMITH-MAGOWAN

Figure 3.

Apparent molal enthalpy of aqueous NaCl as a function of molality and temperature

In Thermodynamics of Aqueous Systems with Industrial Applications; Newman, S., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1980.

T H E R M O D Y N A M I C S OF AQUEOUS SYSTEMS W I T H INDUSTRIAL

APPLICATIONS

Downloaded by COLUMBIA UNIV on May 29, 2014 | http://pubs.acs.org Publication Date: October 29, 1980 | doi: 10.1021/bk-1980-0133.ch030

576

In Thermodynamics of Aqueous Systems with Industrial Applications; Newman, S., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1980.

30.

WOOD AND SMITH-MAGOWAN

Calorimetry of Aqueous Solutions

Downloaded by COLUMBIA UNIV on May 29, 2014 | http://pubs.acs.org Publication Date: October 29, 1980 | doi: 10.1021/bk-1980-0133.ch030

SAMPLE

LOOP

BACK . PRESSURE REGULATOR PUMP

VACUUM CHAMBER

ADIABATIC SHEILD THERMISTOR

HEATER

Figure 5.

Schematic of flow, heat-capacity calorimeter

In Thermodynamics of Aqueous Systems with Industrial Applications; Newman, S., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1980.

577

578

T H E R M O D Y N A M I C S OF AQUEOUS SYSTEMS W I T H INDUSTRIAL

APPLICATIONS

d u c e s a n e g l i g i b l e change i n v o l u m e . Experience with the Picker i n s t r u m e n t has shown t h a t t h i s l a t t e r a s s u m p t i o n i s q u i t e a c c u r ­ ate. The r e s u l t i n g e q u a t i o n f o r t h e h e a t c a p a c i t i e s o f t h e two solutions is P

S,2 P'

1

2

.

l

p

1

Λ

.

Where P. and P a r e t h e powers i n t h e h e a t e r w i t h s o l u t i o n s 1 and 2 f l o w i n g and p-| and p a r e t h e d e n s i t i e s o f t h e s o l u t i o n s a t t h e temperature o f t h e sample l o o p . The r e s u l t i n g i n s t r u m e n t has a r e s p o n s e t i m e f o r changes o f e l e c t r i c a l power i n p u t o f 50 s e c o n d s f o r 99% r e s p o n s e , a s e n s i ­ t i v i t y t o a change i n power o f a b o u t 0 . 0 0 5 % and a p r o v e n c a p a b i l i ­ t y o f o p e r a t i n g w i t h t h i s s e n s i t i v i t y up t o t e m p e r a t u r e s as h i g h as 325°C. The r e s u l t s o f some measurements on s o d i u m c h l o r i d e s o l u ­ t i o n s a r e g i v e n i n f i g u r e 6 . The d i f f i c u l t y o f p r e d i c t i n g p r o ­ p e r t i e s o f s o l u t i o n s a t h i g h t e m p e r a t u r e s i s e m p h a s i z e d by t h e s e results. A t l o w c o n c e n t r a t i o n s t h e r e i s a v e r y l a r g e change i n h e a t c a p a c i t y as t e m p e r a t u r e i n c r e a s e s w h i c h i s n o t p r e s e n t a t higher concentrations. Indeed, the heat c a p a c i t y d i f f e r e n c e s a t 25°C seems a l m o s t n e g l i g i b l e compared w i t h t h e changes f o u n d w i t h c h a n g i n g t e m p e r a t u r e a t l o w m o l a l i t y and w i t h c h a n g i n g m o l a l i t y at high temperature. I t i s d i f f i c u l t t o compare t h e s e r e s u l t s w i t h t h e p r e v i o u s r e s u l t s o f o t h e r a u t h o r s s i n c e we c h o s e t o make measurements a l o n g an i s o b a r w h i c h was a c c e s s i b l e a t a l l t e m p e r a t u r e s . This a l l o w s c o n v e n i e n t d a t a r e d u c t i o n . O t h e r a u t h o r s have g e n e r a l l y measured a l o n g t h e s a t u r a t e d w a t e r v a p o r p r e s s u r e c u r v e w i t h c o n ­ sequent c o m p l i c a t i o n s i n data r e d u c t i o n . While a t p r e s e n t , o n l y t h i s one i s o b a r has been s y s t e m a t i c a l l y i n v e s t i g a t e d , a few measurements o f t h e p r e s s u r e dependence a t 320K and 572K have been made. These r e s u l t s show t h a t a t a l l t e m p e r a t u r e s t h e p r e s ­ s u r e dependence o f t h e h e a t c a p a c i t y i s a p p r e c i a b l e and needs t o be more f u l l y e v a l u a t e d , s i n c e t h e p r e s e n t body o f v o l u m e t r i c d a t a i s n o t s u f f i c i e n t l y p r e c i s e t o make t h e s e c o r r e c t i o n s a c ­ curately. In f a c t , o u r v e r y l i m i t e d r e s u l t s a t d i f f e r e n t p r e s ­ s u r e s s u g g e s t t h a t t h e p r e c i s i o n o f t h i s p r o c e d u r e may be s u f f i ­ c i e n t t o supplant volumetric determinations a t high temperature and p r e s s u r e s . 2

Downloaded by COLUMBIA UNIV on May 29, 2014 | http://pubs.acs.org Publication Date: October 29, 1980 | doi: 10.1021/bk-1980-0133.ch030

2

6)

Conclusion

These p r e l i m i n a r y r e s u l t s show t h a t t h e p r o m i s e o f f l o w c a l ­ o r i m e t r i c t e c h n i q u e s f o r i n v e s t i g a t i n g t h e thermodynamic p r o p e r ­ t i e s o f h i g h t e m p e r a t u r e aqueous s o l u t i o n s has been r e a l i z e d . A l t h o u g h t h e r e a r e many e x p e r i m e n t a l d i f f i c u l t i e s i n a d a p t i n g

In Thermodynamics of Aqueous Systems with Industrial Applications; Newman, S., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1980.

WOOD AND SMITH-MAGOWAN

Calorimetry of Aqueous Solutions

579

Downloaded by COLUMBIA UNIV on May 29, 2014 | http://pubs.acs.org Publication Date: October 29, 1980 | doi: 10.1021/bk-1980-0133.ch030

T/K

1 Figure 6.

Apparent molal heat capacity of aqueous NaCl at 177 bars as a function of molality and temperature

In Thermodynamics of Aqueous Systems with Industrial Applications; Newman, S., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1980.

580

THERMODYNAMICS OF AQUEOUS SYSTEMS WITH INDUSTRIAL APPLICATIONS

these t e c h n i q u e s t o high temperature o p e r a t i o n , these problems have now been s o l v e d and we have a r a p i d and s e n s i t i v e m e a s u r i n g instrument. As a r e s u l t we c a n now g e t down t o t h e b u s i n e s s o f e x p l o r i n g aqueous s o l u t i o n c h e m i s t r y a t t e m p e r a t u r e s up t o 325°C.

Downloaded by COLUMBIA UNIV on May 29, 2014 | http://pubs.acs.org Publication Date: October 29, 1980 | doi: 10.1021/bk-1980-0133.ch030

Literature Cited

1. a) Gardner, W.L.; Mitchell, R.E.; Cobble, J.W. J. Phys. Chem., 1969, 73, 2025. b) Cobble, J.W. and Murray, Jr., R.C. Discussions Faraday Soc., 1977, 64. 2. C-Τ. Liu and W.T. Lindsay. J. Soln. Chem., 1972, 1, 45. 3. Likke, S. and Bromley, L.A. J. Chem. Eng. Data, 1973, 18, 189. 4. Puchkov, L.V.; Styazhkin, P.S.; Fedorova, M.K. J. Applied Chem. (Russ.), 1976, 49, 1268. 5. Monk, P. and Wadsö, I. Acta Chem. Scand. 1968, 22, 1842. 6. Picker, P.; Jolicoeur, C.; Desnoyers, J.E. J. Chem. Thermo­ dynamics, 1969, 1, 469. 7. Gill, S.J. and Chen, Y.-J. Rev. Sci. Instruments, 1972, 43, 774. 8. Picker, P.; Fortier, J.-L.; Philip, P.R; Desnoyers, J.E. J. Chem. Thermodyn., 1971, 3, 631. 9. Elliot, K.; Wormald, C.J. J. Chem. Thermodynamics, 1976, 8, 881. 10. Messikomer, E.E.; Wood, R.H. J. Chem. Thermodynamics, 1975, 7, 119. 11. Mayrath, J.E., "A Flow Microenthalpimetric Survey of Electro­ lyte Solution Thermodynamic Properties from 373K to 473K" Ph.D. Dissertation, University of Delaware, June, 1979. RECEIVED

January 30, 1980.

In Thermodynamics of Aqueous Systems with Industrial Applications; Newman, S., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1980.