13 Throwing Power as Related to Material Properties with Analysis by Digital Computer Simulation
Downloaded by UNIV LAVAL on July 15, 2014 | http://pubs.acs.org Publication Date: June 1, 1973 | doi: 10.1021/ba-1973-0119.ch013
A. E . GILCHRIST and D . O. SHUSTER Glidden-Durkee, Division S C M Corp., Dwight P. Joyce Research Center, Strongsville, Ohio 44136
Electrodeposition
is a process that can be defined by known
electrochemical laws and inherent properties of the material deposited.
Throwing power is that characteristic of the ma
terial being deposited that promotes uniform deposited film thickness, at varying cathode-to-anode distances on the same deposition electrode.
Process variables such as deposition
voltage, time, electrode areas and spacing, and tank size can not be used as material properties. Electrical equivalent cir cuits and mathematical relations were developed to represent circuit actions derived.
Such relations were combined as a
digital computer program. Results of such computer calcula tions were tested by actual laboratory
electrodeposition
operations, and the results were compared.
These compari
sons show that electrodeposition throwing power is a char acteristic of the deposition material and is not governed by application process variables.
" e l e c t r o d e p o s i t i o n as a m e t h o d of a p p l y i n g p a i n t to a c o n d u c t i v e object ^
w a s p a t e n t e d b y D a v e y ( 1 ) i n 1919. Successful l a b o r a t o r y scale a p
p l i c a t i o n of coatings o n the i n s i d e of t i n p l a t e cans, after f a b r i c a t i o n , w a s c a r r i e d o u t i n the 1930's ( 2 ) . C o m m e r c i a l e x p l o i t a t i o n of this c o a t i n g t e c h n i q u e has o n l y a p p e a r e d , h o w e v e r , i n the past 10 years ( 3 ) . A c o m prehensive d e s c r i p t i o n of the process, p a i n t c o m p o s i t i o n s , a n d q u a n t i t a t i v e aspects of t h e e l e c t r i c a l efficiency of t h e e l e c t r o d e p o s i t i o n m e t h o d of a p p l y i n g p a i n t a p p e a r e d i n 1966 (4).
S i n c e then, a d d i t i o n a l details, s u c h
as the use of electrodialysis to c o n t r o l b a t h c o m p o s i t i o n ( 5 ) , resinous c o a t i n g materials (6, 7 ) , a n d the requirements f o r m a i n t a i n i n g the b a t h 191 In Electrodeposition of Coatings; Brewer, G.; Advances in Chemistry; American Chemical Society: Washington, DC, 1973.
192
ELECTRODEPOSITION
c o m p o s i t i o n i n a c o n t i n u o u s e l e c t r o d e p o s i t i o n process
OF
(8)
COATINGS
have
been
issued. T h e r e is almost u n a n i m o u s agreement
that the d e p o s i t i o n process
obeys F a r a d a y ' s l a w (4, 9, 10, 11)—i.e., the w e i g h t of deposit f o r m e d is p r o p o r t i o n a l to the n u m b e r of c o u l o m b s of e l e c t r i c i t y passed. (12),
Voltage
resin c o n c e n t r a t i o n , b a t h t e m p e r a t u r e , c u r r e n t density, a n d several
substrates (10)
d o not influence the c o u l o m b i c y i e l d significantly. H o w
ever, the c o u l o m b i c y i e l d does v a r y i n v e r s e l y w i t h the degree of n e u t r a l i z a t i o n of the r e s i n (10, 11,
13).
Since e l e c t r o d e p o s i t i o n obeys F a r a d a y ' s l a w , e l e c t r o l y s i s — n o t
elec
t r o p h o r e s i s — i s the process g o v e r n i n g the d e p o s i t i o n . O h m ' s l a w c a n be Downloaded by UNIV LAVAL on July 15, 2014 | http://pubs.acs.org Publication Date: June 1, 1973 | doi: 10.1021/ba-1973-0119.ch013
a p p l i e d to the system to d e t e r m i n e the a m o u n t of current f l o w i n g a n d voltage losses i n the resistive elements c o m p r i s i n g the system (9, 10, 13).
12,
I n contrast to e l e c t r o p l a t i n g , the specific c o n d u c t i v i t y of t y p i c a l
electrocoatings at o p e r a t i n g solids a n d temperatures, 5 0 0 - 4 0 0 0 m i c r o m h o / c m , is so large that the b a t h resistance m u s t be i n c l u d e d i n a n analysis of t h e e l e c t r i c a l c i r c u i t i n v o l v e d (9, 13).
A m o r e d r a m a t i c a n d significant
difference f r o m e l e c t r o p l a t i n g , h o w e v e r , is the e l e c t r i c a l i n s u l a t i n g p r o p erty of the d e p o s i t e d
film.
It is the h i g h specific resistance of the elec-
t r o d e p o s i t e d film w h i c h makes possible the u n i f o r m coverage of i r r e g u l a r l y s h a p e d objects a n d t h e c o a t i n g of the i n s i d e of s u c h restrictive areas as r o c k e r panels o n a u t o m o b i l e bodies.
T h i s p r o p e r t y of electro-
c o a t i n g is c a l l e d t h r o w i n g p o w e r a l t h o u g h u n i f o r m thickness c o v e r i n g p o w e r w o u l d be a m o r e accurate t e r m f o r a p i g m e n t e d p a i n t
film.
M u c h w o r k has b e e n d o n e o n the influence of the various reactions o c c u r r i n g at the
anode a n d at the
cathode
o n the
electrodeposition
process. I n a n o d i c d e p o s i t i o n it has b e e n d e m o n s t r a t e d that 1 0 0 % of the current
flowing
at the c a t h o d e c a n be a c c o u n t e d for b y the electrolysis
of w a t e r to generate h y d r o g e n gas (14).
T w o c o m p e t i n g reactions at the
a n o d e are p r o p o s e d . T h e electrolysis of w a t e r at the anode w i l l generate o x y g e n gas a n d h y d r o g e n ions. R e s i n w i l l p r e c i p i t a t e o n the anode as a result of the l o w e r p H because of the increased c o n c e n t r a t i o n of
the
h y d r o g e n ions. A l t e r n a t e l y , it is p r o p o s e d that m e t a l ions generated b y o x i d a t i o n of the anode substrate or m e t a l pretreatment react to p r e c i p i t a t e the resin. T a w n a n d B e r r y (10),
o f t e n falsely a c c u s e d of s u p p o r t i n g the
role of m e t a l l i c ions, a c t u a l l y present m u c h d a t a w h i c h s u p p o r t the a c i d c o a g u l a t i o n theory.
T h e y d e m o n s t r a t e d s u c h e v i d e n c e as the fact that
the i r o n content of films o n m i l d steel e l e c t r o d e p o s i t e d panels w a s n o greater t h a n o n panels d i p p e d into the same resins. T h e a m o u n t of i r o n f o u n d i n the e l e c t r o d e p o s i t e d film w a s o n l y a s m a l l f r a c t i o n of that w h i c h w o u l d be r e q u i r e d b y the s t o i c h i o m e t r y of the m e t a l i o n - p r e c i p i t a t i o n m e c h a n i s m or that r e q u i r e d to account for the o x i d a t i o n reactions
oc
c u r r i n g at the anode b a s e d o n F a r a d a y ' s l a w . P r e c i p i t a t e d resin b y a d d i -
In Electrodeposition of Coatings; Brewer, G.; Advances in Chemistry; American Chemical Society: Washington, DC, 1973.
13.
GILCHRIST AND SHUSTER
Throwing
193
Power
t i o n of ferrous sulfate w a s i n s o l u b l e i n o r g a n i c solvents s u c h as m e t h a n o l a n d acetone whereas the e l e c t r o d e p o s i t e d r e s i n , w h i c h w i l l also redissolve i n t h e b a t h w h e n d e p o s i t i o n is t e r m i n a t e d , w a s s o l u b l e i n t h e o r g a n i c solvents.
I n d e p e n d e n t l y , i t has b e e n p o i n t e d o u t that t h e clear film o b
t a i n e d w h e n a n u n p i g m e n t e d resin is d e p o s i t e d o n a n i r o n a n o d e is f u r t h e r e v i d e n c e that t h e r o l e o f i r o n ions is i n c o n s e q u e n t i a l ( 1 5 ) . It has also b e e n o b s e r v e d that e l e c t r o d e p o s i t i o n c a n b e o b t a i n e d o n s u c h inert sur faces as p l a t i n u m a n d c a r b o n
(16).
Recent
studies of d e p o s i t i o n over
i r o n a n d p l a t i n u m (17) demonstrate the d o m i n a n c e of the a c i d p r e c i p i t a t i o n m e c h a n i s m d u r i n g t h e first t w o m i n u t e s o r so o f d e p o s i t i o n , a t i m e s p a n most often f o u n d i n c o m m e r c i a l p r a c t i c e .
Downloaded by UNIV LAVAL on July 15, 2014 | http://pubs.acs.org Publication Date: June 1, 1973 | doi: 10.1021/ba-1973-0119.ch013
W e t o n w e t d e p o s i t i o n o f a w h i t e p a i n t after a b l a c k , o r v i c e - v e r s a , was f o u n d to y i e l d g r a y films (10).
T h i s e x a m p l e of t h e fact that t h e
d e p o s i t i o n l a y e r b u i l d s u p at t h e d e p o s i t - s u b s t r a t e interface rather t h a n at t h e d e p o s i t - b a t h interface has b e e n successfully d e m o n s t r a t e d b y a p a t e n t e d process
(18).
I n this process
t h e c o r r o s i o n resistance
of a n
electrocoated object is i m p r o v e d b y i m m e r s i n g t h e w e t c o a t e d object i n a s o l u t i o n c o n t a i n i n g m e t a l - t r e a t i n g oxyanions a n d e l e c t r o d e p o s i t i n g t h e m u n d e r the p a i n t film. W e h a v e d e p o s i t e d r e d p a i n t after b l a c k p a i n t a n d vice-versa.
Since t h e r e d p i g m e n t particles a r e m u c h larger t h a n t h e
b l a c k , there is m o r e surface d i s c o l o r a t i o n o f a n i n i t i a l b l a c k c o a t i n g w h e n r e d is f o r c e d t h r o u g h i t o n subsequent e l e c t r o c o a t i n g t h a n i n t h e reverse situation.
I n either case, h o w e v e r , m i c r o s c o p i c e x a m i n a t i o n of a cross-
section t h r o u g h t h e layers o f c o a t i n g c l e a r l y shows that t h e p i g m e n t e d system w h i c h w a s d e p o s i t e d second is f o u n d b e t w e e n
the pigmented
m a t e r i a l w h i c h is d e p o s i t e d first a n d t h e c o n d u c t i n g substrate. Experimental L a b o r a t o r y measurements o f t h r o w i n g p o w e r h a v e b e e n most n o t e d for t h e i r v a r i e t y o f test apparatus (10,13,19).
T h e r e is one e x a m p l e o f a
p r a c t i c a l a p p l i c a t i o n of t h r o w i n g p o w e r testing (20), a. t h e o r e t i c a l analysis (11), a s u m m a r y of t h e r e l a t i o n s h i p s b e t w e e n m a t e r i a l properties, d e p o sition parameters, a n d t h r o w (13), a n d a p r o p o s e d r e l a t i o n s h i p b e t w e e n t h r o w i n g p o w e r a n d voltage, b a t h specific resistance a n d c o u l o m b i c y i e l d (11).
A l m o s t u n i v e r s a l l y t h r o w i n g p o w e r is r e c o r d e d as inches o f some
thing.
T h i s n u m b e r suffers because the basis f o r t h e m e a s u r e m e n t has
not b e e n d e f i n e d , just as a specific resistance o r specific c o n d u c t i v i t y as a n u m b e r is meaningless unless t h e t e m p e r a t u r e at w h i c h t h e measure m e n t w a s t a k e n is also r e c o r d e d . I n order f o r a t h r o w i n g p o w e r measure m e n t to have a n y r e a l significance, t h e film thickness d e v e l o p e d o n a reference anode m u s t also b e r e c o r d e d
(19).
O u r p u r p o s e i n this i n v e s t i g a t i o n w a s t w o f o l d .
First, w e w a n t e d to
i d e n t i f y t h e m a t e r i a l properties o f electrocoatings w h i c h i n f l u e n c e d t h r o w -
In Electrodeposition of Coatings; Brewer, G.; Advances in Chemistry; American Chemical Society: Washington, DC, 1973.
194
ELECTRODEPOSITION
OF
COATINGS
i n g p o w e r . T h r o w i n g p o w e r is a f u n c t i o n or a n i n d e x of d e p o s i t e d
film
thickness u n i f o r m i t y . It is n o t a f u n c t i o n of total a m o u n t of film d e p o s i t e d n o r the d e p o s i t i o n c o n d i t i o n s s u c h as voltage a n d t i m e . E l e c t r o d e p o s i t i o n f o l l o w s F a r a d a y ' s l a w : one g r a m e q u i v a l e n t w e i g h t of matter is c h e m i c a l l y a l t e r e d at e a c h electrode f o r 96,501 i n t e r n a t i o n a l c o u l o m b s of electricity passed t h r o u g h the electrolyte. T h e current passed c a n be d e r i v e d f r o m O h m ' s l a w : voltage equals the p r o d u c t of flowing
a n d c i r c u i t resistance i n ohms.
amperes
W h e n c i r c u i t resistance is c o n
stant, changes i n voltage c a n o n l y p r o d u c e changes i n amperes.
When
c o m b i n e d w i t h t i m e variations this p r o d u c e s o n l y changes i n t o t a l q u a n t i t y of m a t e r i a l d e p o s i t e d — n o t its d i s t r i b u t i o n or l o c a t i o n . T h e o n l y factor Downloaded by UNIV LAVAL on July 15, 2014 | http://pubs.acs.org Publication Date: June 1, 1973 | doi: 10.1021/ba-1973-0119.ch013
i n f l u e n c e d b y the e l e c t r o d e p o s i t i o n m a t e r i a l is the c i r c u i t resistance, w h i c h is a c o m b i n a t i o n of resistances of b a t h s o l u t i o n a n d d e p o s i t e d film m a terial.
If t h r o w i n g p o w e r is a n inherent p r o p e r t y of a p a r t i c u l a r elec
t r o c o a t i n g f o r m u l a t i o n , s u c h o p e r a t i n g variables as voltage a n d d e p o s i t i o n t i m e are not parameters w h i c h d e t e r m i n e t h r o w i n g p o w e r . S e c o n d l y , w e w a n t e d a m a t h e m a t i c a l d e s c r i p t i o n of the f o r m a t i o n of a c o a t i n g layer i n a restrictive c h a n n e l of definable geometry.
If w e
c o u l d d e v e l o p this m a t h e m a t i c a l d e s c r i p t i o n , w e c o u l d use a c o m p u t e r to p e r f o r m the t h r o w i n g p o w e r experiment, b a s e d u p o n a n i n p u t set of relevant m a t e r i a l properties, p h y s i c a l d i m e n s i o n s of the test set u p , a n d o p e r a t i n g c o n d i t i o n s . Success i n step t w o of o u r objectives w o u l d enable us to d e v e l o p a q u a n t i t a t i v e r e l a t i o n s h i p b e t w e e n the relevant m a t e r i a l properties a n d t h r o w i n g p o w e r . T h e most i m p o r t a n t relevant properties are c u r r e n t r e q u i r e d f o r d e p o s i t i o n , ( c o u l o m b s / g r a m ), specific resistance of b a t h s o l u t i o n , a n d w e t d e p o s i t e d film specific reistance.
Differences
b e t w e e n l a b o r a t o r y e x p e r i m e n t a n d c o m p u t e r s i m u l a t i o n c o u l d b e ana l y z e d to p r o v i d e a n even better u n d e r s t a n d i n g of the t h r o w i n g p o w e r p r o b l e m a n d thus l e a d to p r a c t i c a l a p p l i c a t i o n s .
Apparatus Electrocoating
s o l u t i o n specific resistance measurements
f o r m e d i n the m a n n e r established for electrolytes.
are
per
T h e Y e l l o w Springs
Instrument C o . m o d e l 31 c o n d u c t i v i t y b r i d g e , w i t h an a u x i l i a r y d e c a d e c a p a c i t o r v a r i a b l e f r o m 0.01 to 1.0 m f d has p r o v e d to be u s e f u l f o r this measurement.
F o r r o u t i n e use i n the l a b o r a t o r y a c o n d u c t i v i t y c e l l was
f a b r i c a t e d w i t h p o l i s h e d stainless steel electrodes h e l d r i g i d l y i n p o s i t i o n i n a m a c h i n e d b l o c k of P l e x i g l a s . T h i s c e l l is c a l i b r a t e d w i t h K C 1 s o l u tions i n the s t a n d a r d m a n n e r .
It is r u g g e d , easily c l e a n e d , a n d m o r e
efficient to use t h a n p l a t i n i z e d p l a t i n u m electrodes w h i c h r a p i d l y b e c o m e surface c o n t a m i n a t e d w i t h p i g m e n t , thus r e q u i r i n g f r e q u e n t c l e a n i n g a n d r e p l a t i n i z i n g i n o r d e r to m a i n t a i n a c c u r a c y of measurement.
W i t h pol-
In Electrodeposition of Coatings; Brewer, G.; Advances in Chemistry; American Chemical Society: Washington, DC, 1973.
13.
GILCHRIST AND SHUSTER
195
Throwing Power
i s h e d stainless steel electrodes 1000 H z is m a n d a t o r y t o p r e v e n t p o l a r i z a t i o n rather t h a n 60 H z c o m m o n l y u s e d w i t h p l a t i n i z e d electrodes. L a b o r a t o r y evaluations o f t h e d e p o s i t i o n p r o p e r t i e s , d e p o s i t e d specific resistance a n d e l e c t r i c a l efficiency c i p r o c a l ) , are c a r r i e d o u t as d e s c r i b e d
film
( coulombs/gram or the re
p r e v i o u s l y (4).
Current-time
curves a r e r e c o r d e d b y a Sargent r e c o r d e r m o d e l S R t y p e o r a H e a t h k i t model E U W - 2 0 .
C o u l o m b s o f e l e c t r i c i t y passed are m e a s u r e d either b y
a d i s c integrator m o u n t e d o n t h e Sargent r e c o r d e r o r b y a S e l f - O r g a n i z i n g System, I n c . m o d e l S I 100 e l e c t r o n i c integrator.
N e t coating weight
d e p o s i t e d is d e t e r m i n e d b y w e i g h i n g t h e 4 - s q i n c h panels, before a n d after c o a t i n g , o n a l a b o r a t o r y a n a l y t i c a l b a l a n c e s u c h as a M e t t l e r t y p e H 5
Downloaded by UNIV LAVAL on July 15, 2014 | http://pubs.acs.org Publication Date: June 1, 1973 | doi: 10.1021/ba-1973-0119.ch013
(160 grams c a p a c i t y ) . 36 cm
c
; / / / / / / /
**|
>///////////////////////{
/ /
A /
/////////////At////////.
/ / / / / /
/
// /
-•13.0 k ! cm I Figure 1. Plexiglas throwing power tank (top view; 0.4 scale). C, cathode; A , reference anode; TP, throwing power section. Base, 17 X 39 cm. Laboratory
t h r o w i n g p o w e r experiments
are performed w i t h the
test apparatus s h o w n i n F i g u r e 1. T h e t a n k is 10 c m d e e p a n d is filled w i t h 9 c m of bath.
F o u r - s q i n c h ( 10 X 10 c m ) panels are u s e d f o r t h e
c a t h o d e a n d t h e reference anode.
I n t h e t h r o w i n g p o w e r section a n y
surface u p to a 4 X 12 i n c h ( 1 0 X 3 0 c m ) p a n e l m a y b e u s e d .
When
m u l t i p l e sectional panels are p l a c e d i n the t h r o w i n g p o w e r slot, a sequence shunt s w i t c h is u s e d to g i v e c u r r e n t readings at discrete t i m e intervals so that a c u r r e n t - t i m e c u r v e m a y b e t r a c e d f o r each segment f r o m t h e points r e c o r d e d .
Results T h r o w i n g p o w e r measurements
are d i s p l a y e d b y t h e m e t h o d s h o w n
i n F i g u r e 2. F i l m thickness at several points a l o n g t h e t h r o w i n g p o w e r
In Electrodeposition of Coatings; Brewer, G.; Advances in Chemistry; American Chemical Society: Washington, DC, 1973.
Downloaded by UNIV LAVAL on July 15, 2014 | http://pubs.acs.org Publication Date: June 1, 1973 | doi: 10.1021/ba-1973-0119.ch013
196
ELECTRODEPOSITION
10
20
O F COATINGS
30
Distance from Cathode End Figure 2.
Method of displaying throwing power
p a n e l is m e a s u r e d w i t h a P e r m a s c o p e h a v i n g t h e electronic c i r c u i t a n d m e a s u r i n g h e a d a p p r o p r i a t e f o r t h e t y p e of substrate i n v o l v e d . Q u a l i t a t i v e effects of d e p o s i t e d film specific resistance a n d b a t h specific resistance o n t h r o w i n g p o w e r are i l l u s t r a t e d i n F i g u r e 2. T h e c o m m o n d e n o m i n a t o r for t h e three examples s h o w n is t h e same film thickness o n the reference a n o d e i n each experiment. F i l m resistance c a n b e v a r i e d essentially i n d e p e n d e n t l y of other e l e c t r o c o a t i n g properties b y a d d i n g a n o r g a n i c solvent
(250)
150
£ σ
Ο \
I00h
CO
£
jo 3 Ο
Ο
— · — —· *—— Χ — — Χ ο
· χ.
Λ
— ο — — ο
-Ο
50
0
50
100
150
Applied Voltage Figure 3. Coulombs/gram v s . voltage effect of level of pig ment loading (composition by weight). ·, 100% vehicle; X , 3 vehicle/l pigment; O , 2 vehicle/l pigment.
In Electrodeposition of Coatings; Brewer, G.; Advances in Chemistry; American Chemical Society: Washington, DC, 1973.
13.
GILCHRIST AND SHUSTER
197
Throwing Power
to t h e v e h i c l e before s o l u b i l i z a t i o n , thus a l t e r i n g the v i s c o s i t y o f the d e posited
film.
S u c h v i s c o s i t y changes o f d e p o s i t e d film, w h e t h e r b y t e m
p e r a t u r e o r b y solvent d i l u t i o n , alter t h e specific resistance o f t h e d e p o s i t e d m a t e r i a l . B a t h resistance c a n b e v a r i e d i n d e p e n d e n t l y o f other p r o p e r t i e s b y r e d u c i n g t h e m a t e r i a l to different solids levels. T h e r e l a t i o n s h i p b e t w e e n e l e c t r i c a l efficiency a n d v o l t a g e is s h o w n i n F i g u r e 3. A b o v e ca. 5 0 volts, t h e c o u l o m b s / g r a m is essentially c o n stant.
B e l o w 50 volts t h e curves c l i m b t o w a r d u n d e f i n e d values as t h e
voltage is r e d u c e d to t h e 5 - 1 0 v o l t range. A r e p l o t of t h e d a t a i n F i g u r e 3 is s h o w n i n F i g u r e 4. I t is, h o w e v e r , s t i l l i m p o s s i b l e t o extrapolate t h e
Downloaded by UNIV LAVAL on July 15, 2014 | http://pubs.acs.org Publication Date: June 1, 1973 | doi: 10.1021/ba-1973-0119.ch013
curves t o a zero v a l u e o f v o l t a g e a n d / o r m g / c o u l o m b .
0l 0
1
1
50
100
1—
150
Applied Voltage Figure 4.
Milligrams/coulomb vs. voltage (replot of Figure 3)
T o define t h e F a r a d a y b e h a v i o r o f electrocoatings at l o w voltages, p o l a r o g r a p h y experiments w e r e p e r f o r m e d . T h e c u r r e n t - v o l t a g e r e l a t i o n s h i p i n a t y p i c a l p o l a r o g r a p h y e x p e r i m e n t is s h o w n i n F i g u r e 5 . T h e p o r t i o n of this c u r v e i n the r e g i o n f r o m 0 - 5 volts is f o u n d i n almost a l l p h y s i c a l c h e m i s t r y texts i n t h e first c h a p t e r o n e l e c t r o c h e m i s t r y .
This
section o f t h e c u r v e shows the classic shape of t h e c u r r e n t - v o l t a g e c u r v e f o r a n electrolyte b e t w e e n inert electrodes (21,22).
T h e c u r v e as s h o w n
i n F i g u r e 5 w a s t a k e n d i r e c t l y f r o m t h e s t r i p c h a r t r e c o r d i n g trace o f a p r o g r a m m e d voltage d c p o w e r s u p p l y ( selected l i n e a r increase o f v o l t a g e w i t h t i m e ) f o r a c e l l i n w h i c h t w o c l e a n e d c o l d r o l l e d steel
electrodes
w e r e i n s e r t e d i n a P l e x i g l a s t a n k at a n electrode s e p a r a t i o n o f 5 c m . T h e surface area o n e a c h electrode exposed t o t h e b a t h w a s 2.5 X 5 c m o r 12.5 s q c m . A s i n d i c a t e d , the slope of the straight l i n e p o r t i o n of t h e c u r v e
In Electrodeposition of Coatings; Brewer, G.; Advances in Chemistry; American Chemical Society: Washington, DC, 1973.
198
ELECTRODEPOSITION
O F COATINGS
is t h e system resistance, w h i c h , f o r this experiment w a s c a l c u l a t e d f r o m the slope to b e 62.5 ohms. D e c o m p o s i t i o n voltages i n t h e range o f 1.7-2.2 volts c a n b e f o u n d i n literature o n electrolysis f o r electrolytes i n w h i c h
Downloaded by UNIV LAVAL on July 15, 2014 | http://pubs.acs.org Publication Date: June 1, 1973 | doi: 10.1021/ba-1973-0119.ch013
h y d r o g e n is e v o l v e d at the c a t h o d e a n d o x y g e n at the anode.
Voltage, volts Figure 5.
Decomposition voltage and minimum deposition voltage for an electrocoating material
T h e r e is a p p a r e n t l y o n l y o n e literature reference t o a t h r e s h o l d d e p o s i t i o n voltage o f a p a i n t (8) a l t h o u g h m i n i m u m c u r r e n t
densities
are m e n t i o n e d f r e q u e n t l y . T h e r e is a n e x a m p l e (16) i n w h i c h , f o r t w o materials, ( F i g u r e s 6 a n d 7 i n R e f . 8) t h e flow o f a finite a m o u n t of c u r r e n t ( a t 1.5 a n d 6 volts r e s p e c t i v e l y ) w i t h a y i e l d i n each case of 0 grams o f d e p o s i t e d d r y film w e i g h t occurs.
I
Re
Figure 6.
2
Re
3
Re Ν
Re
Electrical resistance circuit analyzed by a com puter
In Electrodeposition of Coatings; Brewer, G.; Advances in Chemistry; American Chemical Society: Washington, DC, 1973.
13.
GILCHRIST AND SHUSTER
199
Τ hr ο wing Power
Downloaded by UNIV LAVAL on July 15, 2014 | http://pubs.acs.org Publication Date: June 1, 1973 | doi: 10.1021/ba-1973-0119.ch013
Distance from Cathode End,cm Figure 7. Comparison of experimental results with computer simulation. X , ma terial A; O , material B; —, computer simulations. If t h e e x p e r i m e n t as i l l u s t r a t e d b y F i g u r e 5 is p e r f o r m e d at different electrode spacings, t h e m i n i m u m d e p o s i t i o n v o l t a g e ( M D V ) is a l i n e a r f u n c t i o n o f t h e distance b e t w e e n t h e electrodes, the b a t h resistance.
caused, o f course, b y
A p l o t o f m i n i m u m d e p o s i t i o n v o l t a g e vs. electrode
separation e x t r a p o l a t e d to 0 s e p a r a t i o n gives the t r u e m i n i m u m d e p o s i t i o n voltage. Since t h e r e l a t i o n s h i p is l i n e a r , o n l y t w o measurements, at 5 a n d 10 c m s e p a r a t i o n f o r e x a m p l e , are n e e d e d .
B y s u b t r a c t i n g t h e difference
b e t w e e n t h e M D V ' s at 5 a n d 10 c m f r o m t h e v a l u e at 5 c m , t h e M D V at zero separation is o b t a i n e d . D i g i t a l computer simulation of the experimental measurement of t h r o w i n g p o w e r w a s b a s e d o n the f o l l o w i n g assumptions. ( 1 ) A continuous, non-linear, time-dependent function c a n be treated as t h e s u m m a t i o n o f l i n e a r steps i f t h e size of e a c h d i f f e r e n t i a l t i m e i n t e r v a l is s m a l l e n o u g h . ( 2 ) T h e e l e c t r i c a l resistance o f a n e l e c t r o c o a t i n g b a t h c o n f i n e d b y a g i v e n g e o m e t r y c a n b e c a l c u l a t e d f r o m t h e specific resistance of t h e b a t h at t h e t e m p e r a t u r e of t h e e x p e r i m e n t , t h e d i m e n s i o n s of t h e c h a m b e r , a n d t h e area o f t h e electrodes. ( 3 ) T h e e l e c t r i c a l resistance of the d e p o s i t e d film is a l i n e a r f u n c t i o n of the film thickness a n d c a n b e c a l c u l a t e d b y m e a s u r i n g t h e area o f t h e e l e c t r o d e surface b e i n g c o a t e d a n d u s i n g t h e specific resistance o f t h e d e p o s i t e d film i n t h e w a y u s e d t o c a l c u l a t e t h e b a t h resistance. ( 4 ) T h e c u r r e n t flowing to a g i v e n area of the electrode b e i n g c o a t e d at a n y t i m e i n t e r v a l c a n b e d i v i d e d i n t o t h a t p o r t i o n w h i c h causes d e p o s i t i o n at t h e net c o u l o m b s / g r a m rate a p p r o a c h e d as a constant v a l u e (see F i g u r e 3 ) a n d t h e r e m a i n d e r o f t h e c u r r e n t w h i c h causes electrolysis b u t y i e l d s n o d e p o s i t i o n film. ( 5 ) T h e e x p e r i m e n t is p e r f o r m e d u n d e r i s o t h e r m a l c o n d i t i o n s o r u n d e r c o n d i t i o n s sufficiently close t o i s o t h e r m a l that t h e rate o f heat d i s s i p a t i o n is m u c h greater t h a n t h e rate of heat g e n e r a t i o n a n d does n o t i n t r o d u c e a t e m p e r a t u r e effect o n the film a n d b a t h resistance.
In Electrodeposition of Coatings; Brewer, G.; Advances in Chemistry; American Chemical Society: Washington, DC, 1973.
200
ELECTRODEPOSITION
O F
COATINGS
T h e e q u i v a l e n t e l e c t r i c a l resistance c i r c u i t w h i c h the c o m p u t e r c a l culates is s h o w n i n F i g u r e 6.
F o r a g i v e n geometry t h r o w i n g p o w e r
e x p e r i m e n t (see F i g u r e 1, f o r e x a m p l e ) the v a l u e f o r Re a n d Rs i n F i g u r e 6 c a n b e c a l c u l a t e d d i r e c t l y f r o m the specific resistance of the electro c o a t i n g b a t h at the t e m p e r a t u r e a n d solids u s e d f o r t h e e x p e r i m e n t . F o r a cross-section of ( 1 c m X 9 c m ) = 9 s q c m , Re is 1/9 o f the specific resist ance p e r centimeter of slot l e n g t h .
Since the distance f r o m t h e center
l i n e of the slot to the a n o d e surface is 0.5 c m , Rs is 1/2 of Re f o r a section of a n o d e area 1 c m w i d e a n d 9 c m h i g h . Rf is a v a r i a b l e resistance w h i c h is 0 f o r n o d e p o s i t e d film a n d is a l i n e a r f u n c t i o n of the film thickness. T h e d i g i t a l c o m p u t e r p e r f o r m s the f o l l o w i n g s e q u e n c e of calculations Downloaded by UNIV LAVAL on July 15, 2014 | http://pubs.acs.org Publication Date: June 1, 1973 | doi: 10.1021/ba-1973-0119.ch013
for each i n t e r v a l of t i m e selected a n d a c c u m u l a t e s the results of successive b u i l d u p s of d e p o s i t e d film o n t h e a n o d e segments A i , A , etc. 2
( 1 ) T h e resistance is c a l c u l a t e d at the n o d e points starting at p o i n t η a n d e n d i n g at p o i n t 1 w h i c h is the t o t a l resistance f o r the entire c i r c u i t d u r i n g the t i m e i n t e r v a l . ( 2 ) B y d i v i d i n g this resistance into the a p p l i e d voltage, the total c u r r e n t flowing t h r o u g h the c i r c u i t d u r i n g the t i m e i n t e r v a l is c a l c u l a t e d . ( 3 ) V o l t a g e d r o p a n d c u r r e n t flow f o r each Re a n d (Rs + calculated.
Rf) are
( 4 ) T h e p o r t i o n of the c u r r e n t flowing t h r o u g h e a c h element ( Rs + Rf) w h i c h results i n d e p o s i t i o n d u r i n g the t i m e i n t e r v a l is c a l c u l a t e d b y (Vs - MOV)/(Rs + Rf). ( 5 ) B a s e d o n t h e l a b o r a t o r y measurements of the net c o u l o m b s / g r a m of deposit, specific resistance of the d e p o s i t e d film, area of t h e anode segment, a n d specific g r a v i t y of the d e p o s i t e d film, t h e a m o u n t of film thickness a d d e d d u r i n g the i n t e r v a l a n d a n e w v a l u e f o r Rf b a s e d o n t h e n e w film thickness are c a l c u l a t e d . ( 6 ) T h e c o m p u t e r repeats the c y c l e of c a l c u l a t i o n s i n steps 1 - 5 f o r a specific n u m b e r of t i m e intervals o r u n t i l a selected film thickness is o b t a i n e d o n the first a n o d e segment, A i . T h e a c t u a l p r i n t o u t of i n f o r m a t i o n c a n b e m e r e l y a table of the anode segment n u m b e r a n d t h e film thickness d e v e l o p e d o n that segment after a g i v e n p e r i o d of t i m e . A l t e r nately, p r i n t o u t s at selected t i m e intervals of a n y of the d e s i r e d voltages, currents, or other v a r i a b l e s m a y b e o b t a i n e d .
Discussion It w a s necessary to establish w h e t h e r o r n o t the m o d e l chosen f o r the d i g i t a l c o m p u t e r s i m u l a t i o n w a s a g o o d one. A t y p i c a l e x a m p l e of t h e k i n d of agreement b e t w e e n the l a b o r a t o r y experiments a n d the c o m p u t e r s i m u l a t i o n is s h o w n b y F i g u r e 7 f o r t w o materials h a v i n g w i d e l y different t h r o w i n g p o w e r . A s F i g u r e 7 shows, the agreement b e t w e e n theory a n d e x p e r i m e n t is excellent.
O b v i o u s l y w e h a v e b e e n able to i d e n t i f y t h e
r e l e v a n t m a t e r i a l properties a n d their i n t e r r e l a t i o n s h i p s as t h e y relate to t h r o w i n g p o w e r . T h o s e properties a r e : specific resistance of t h e d e p o s i t e d
In Electrodeposition of Coatings; Brewer, G.; Advances in Chemistry; American Chemical Society: Washington, DC, 1973.
13.
GILCHRIST AND SHUSTER
201
Throwing Power
film a n d specific resistance o f t h e electrocoat b a t h at t h e t e m p e r a t u r e at the start o f t h e e x p e r i m e n t , d e c o m p o s i t i o n v o l t a g e o f t h e system f o r t h e electrodes e m p l o y e d , m i n i m u m d e p o s i t i o n voltage ( M D V ) f o r the system, net e l e c t r i c a l efficiency of d e p o s i t i o n ( c o u l o m b s / g r a m o r m g / c o u l o m b ) , a n d t h e specific g r a v i t y o f t h e d e p o s i t e d c o a t i n g .
V i s u a l evidence
that
voltage a n d t i m e are n o t parameters w h i c h i n f l u e n c e t h e t h r o w i n g p o w e r of e l e c t r o c o a t i n g is f o u n d i n F i g u r e 8. T h e r e is n o a r g u m e n t that i n creased voltage o r t i m e does g i v e m o r e "inches of t h r o w " f o r a g i v e n e l e c t r o c o a t i n g ; h o w e v e r a p r o p o r t i o n a l increase i n film thickness occurs on t h e reference a n o d e as w e l l .
T h e r e f o r e t h e t h r o w i n g p o w e r was. n o t
Downloaded by UNIV LAVAL on July 15, 2014 | http://pubs.acs.org Publication Date: June 1, 1973 | doi: 10.1021/ba-1973-0119.ch013
changed.
Distance from Cathode End Figure 8.
Effect of voltage or time on deposition
A n e x a m p l e o f the p r a c t i c a l use of t h e d i g i t a l c o m p u t e r s i m u l a t i o n to e v a l u a t e the c o n t r i b u t i o n of one o f t h e r e l e v a n t p r o p e r t i e s o f electrocoatings t o t h r o w i n g p o w e r is s h o w n i n F i g u r e 9. T h e c u r v a t u r e as i n d i -
Distance from Cathode End, cm Figure 9. Effect of minimum deposition voltage on throwing power. Digital com puter simulation for: MDV A — 4 volts, Β = 6 volts, C = 8 volts.
In Electrodeposition of Coatings; Brewer, G.; Advances in Chemistry; American Chemical Society: Washington, DC, 1973.
202
ELECTRODEPOSITION
cated
i n F i g u r e 9 is c o m p u t e r p r e d i c t e d .
O F COATINGS
W e h a v e f o u n d that the
m i n i m u m d e p o s i t i o n voltage o f a n e l e c t r o c o a t i n g d e p e n d s o n t h e a n o d e material.
Q u a l i t a t i v e l y t h e M D V increases
following manner: zinc phosphate
f o r steel substrates
i n the
(Bonderite 3 7 ) , cleaned cold rolled
steel, i r o n p h o s p h a t e ( B o n d e r i t e 1000), a n d u n t r e a t e d g a l v a n i z e d steel. C l e a n e d a l u m i n u m has a M D V h i g h e r t h a n a n y of t h e above
surfaces.
T h r o w i n g p o w e r f o r a g i v e n e l e c t r o c o a t i n g m a t e r i a l w a s s i m i l a r to that s h o w n i n F i g u r e 9 f o r z i n c phosphate, c l e a n g a l v a n i z e d a n d u n t r e a t e d a l u m i n u m substrates i n order o f i n c r e a s i n g m i n i m u m d e p o s i t i o n voltages. T h e most p r o n o u n c e d differences b e t w e e n l a b o r a t o r y e x p e r i m e n t a l d e t e r m i n a t i o n s of t h r o w i n g p o w e r a n d c o m p u t e r s i m u l a t i o n result f r o m Downloaded by UNIV LAVAL on July 15, 2014 | http://pubs.acs.org Publication Date: June 1, 1973 | doi: 10.1021/ba-1973-0119.ch013
heat d i s s i p a t i o n p r o b l e m s .
It w a s possible t o p r o v i d e either n o f o r c e d
c i r c u l a t i o n o r vigorous c i r c u l a t i o n i n t h e slot of t h e t h r o w i n g p o w e r tank ( F i g u r e 1 ) d u r i n g d e p o s i t i o n . I n F i g u r e 10 c u r v e A is o b t a i n e d w i t h v i g o r o u s a g i t a t i o n a n d c u r v e Β w i t h n o agitation. T o evaluate t h e heat d i s s i p a t i o n p r o b l e m further, a test s t r i p w a s c o a t e d i n s i d e a p i p e W h e n t h e cathode w a s p l a c e d at t h e b o t t o m e n d of t h e tube,
(20). results
Distance from Cathode End Figure 10. Effect of heat dissipation of film thickness distribution. A: cath ode at top of tube or vigorous circula tion in slot. B: cathode at bottom of tube or no circulation in slot. s i m i l a r to c u r v e Β i n F i g u r e 10 w e r e o b t a i n e d . W h e n t h e t h r o w i n g p o w e r t u b e w a s i n v e r t e d so that the cathode w a s at t h e t o p e n d , results s i m i l a r to c u r v e A , F i g u r e 10, w e r e o b t a i n e d .
W e have i n d e p e n d e n t l y deter
m i n e d the film specific resistance a n d t h e b a t h specific resistance over a t e m p e r a t u r e range f r o m 7 0 ° to 1 1 0 ° F . specific resistance
T h e t e m p e r a t u r e effect o n b a t h
is slight over this t e m p e r a t u r e
range; h o w e v e r the
effect o n t h e specific resistance o f t h e d e p o s i t e d film is severe.
Since the
d e p o s i t i o n occurs at the s u b s t r a t e - f i l m interface a n d t h e heat is generated at this p o i n t a n d must b e d i s s i p a t e d t h r o u g h the substrate a n d t h r o u g h
In Electrodeposition of Coatings; Brewer, G.; Advances in Chemistry; American Chemical Society: Washington, DC, 1973.
13.
GILCHRIST AND SHUSTER
Throwing Power
203
the d e p o s i t e d film l a y e r , t h e t e m p e r a t u r e effect o n t h e specific resistance of t h e d e p o s i t e d film m u s t b e t h e d o m i n a n t factor.
Summary E l e c t r o d e p o s i t i o n is a r e v e r s i b l e process, as are other s i m p l e elec trolysis reactions i n w a t e r s o l u t i o n . D e p o s i t i o n occurs at t h e e l e c t r o d e deposited
film
interface
i f t h e a p p l i e d v o l t a g e exceeds t h e m i n i m u m
d e p o s i t i o n v o l t a g e f o r t h e system. achieve
commercially acceptable
O p e r a t i n g c o n d i t i o n s necessary to
rates of c o a t i n g a p p l i c a t i o n are f a r
r e m o v e d f r o m e q u i l i b r i u m c o n d i t i o n s . It is possible t o s i m u l a t e the a c t u a l
Downloaded by UNIV LAVAL on July 15, 2014 | http://pubs.acs.org Publication Date: June 1, 1973 | doi: 10.1021/ba-1973-0119.ch013
d e p o s i t i o n of a n e l e c t r o c o a t i n g i n a c a v i t y of d e f i n e d g e o m e t r y b y a n electrical circuit w h i c h may be analyzed b y a digital computer. T h e major d e v i a t i o n s b e t w e e n t h e m o d e l system a n d t h e a c t u a l e x p e r i m e n t arise u n d e r c o n d i t i o n s s u c h that i s o t h e r m a l b e h a v i o r is n o l o n g e r v a l i d . A l t h o u g h t h e energy i n p u t p e r u n i t t i m e i n t e r v a l to e a c h segment of t h e system is easily c a l c u l a t e d , t h e rate a n d n a t u r e of t h e e n e r g y d i s s i p a t i o n are m u c h m o r e c o m p l e x p r o b l e m s .
Literature Cited 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21. 22.
Davey, W . P., U . S. Patent 1,294,627 (Feb. 18, 1919). Sumner, G. C., Trans. Faraday Soc. (1940) 36, 272. Phillips, G . , "Electropainting for the Seventies," London, 1969. Gilchrist, A. E., U . S. Patent 3,230,162 (Jan. 18, 1966). Gilchrist, A. E., U . S. Patent 3,304,250 (Feb. 14, 1967). Gilchrist, A. E., U . S. Patent 3,351,575 (Nov. 7, 1967). Gilchrist, A. E., U . S. Patent 3,351,675 (Nov. 7, 1967). Gilchrist, A. E., U . S. Patent 3,362,899 (Jan. 9, 1968). Finn, S. R . , Hasnip, J. Α., J. Oil Colour Chemists Assoc. (1965) 48, 1121. Tawn, A. R . H . , Berry, J. R., J. Oil Colour Chemists Assoc. (1965) 48, 790. Olsen, D. Α., Boardman, P. J., J. Electrochem. Soc. (1967) 114, 445. Brewer, G . E . F., Hamilton, C . C., Horsh, M . E . , J. Paint Technol. (1969) 41, 114. Hays, D. R . , White, C . S., J. Paint Technol. (1969) 41, 461. LeBras, L. R . , J. Paint Technol. (1966) 38, 85. Cooke, Β. Α., J. Paint Technol. (1970) 34, 12. Finn, S. R . , Mell, C . C., J. Oil Colour Chemists Assoc. (1964) 47, 219. Giboz, J. P., Lahaye, J., J. Paint Technol. (1970) 42, 371. Gilchrist, A. E . , U . S. Patent 3,290,235 (Dec. 6, 1966). Brewer, G . E . F., Horsch, M . E., Madarasz, M . F., J. Paint Technol. (1966) 38, 453. Brewer, G . E . F., Strosberg, G . G., Horsch, M . E., J. Paint Technol. (1967) 39, 551. Maron, S. H . , Prutton, C. F., "Principles of Physical Chemistry," pp. 573574, MacMillan, New York, 1958. Groening, Α. Α., Cady, H . P., J. Phys. Chem. (1926) 30, 1597.
RECEIVED May 28, 1971.
In Electrodeposition of Coatings; Brewer, G.; Advances in Chemistry; American Chemical Society: Washington, DC, 1973.