Chapter 6
Synthesis of Chiral Pyrrolidines from Carbohydrates
Downloaded by MONASH UNIV on May 21, 2013 | http://pubs.acs.org Publication Date: December 30, 1989 | doi: 10.1021/bk-1989-0386.ch006
J. Grant Buchanan, Alan R. Edgar, Brian D. Hewitt, Veerappa B. Jigajinni, Gurdial Singh, and Richard H. Wightman Department of Chemistry, Heriot-Watt University, Riccarton, Edinburgh EH14 4AS, United Kingdom We have extended our work on a new synthesis of the anti protozoal antibiotic anisomycin to the necine bases of the pyrrolizidine alkaloids, in particular retronecine and crotanecine. The key intermediate, (2R,3S,4R)-2-(alkoxy carbonylmethyl)-3,4—isopropylidenedioxypyrrolidine, has been prepared by three distinct routes from D-ribose and D-erythrose, using reactions of high stereoselectivity. A new approach to anisomycin from D-erythrose using Wittig methodology is outlined. We were f i r s t a t t r a c t e d t o c h i r a l p y r r o l i d i n e s by the p o s s i b i l i t y o f a p p l y i n g methods used i n C - n u c l e o s i d e s y n t h e s i s (1) t o the s y n t h e s i s of the a n t i p r o t o z o a l a n t i b i o t i c a n i s o m y c i n (1) from D - r i b o s e ( 2 ) . The approach, w h i c h d i f f e r s from o t h e r r e c e n t syntheses ( 3 , 4 , 5 ) , i s o u t l i n e d i n Scheme 1. Three p o i n t s may be n o t e d : ( i ) i n the Grignard a d d i t i o n to 2,3-0-isopropylidene-D-ribose (2) the D - a l l o c o n f i g u r a t i o n i n (3) i s i n accordance w i t h the F e l k i n - A n h model (6) and i s t o be expected from our e a r l i e r work (1) ; ( i i ) methanes u l f o n y l a t i o n o f the oxime (4) serves not o n l y t o dehydrate the oxime but t o i n t r o d u c e a l e a v i n g group f o r r i n g c l o s u r e a t the next step; ( i i i ) the i n t r a m o l e c u l a r d i s p l a c e m e n t t o form the p y r r o l i d i n e r i n g [(5) ( 6 ) ] proceeds c l e a n l y and w i t h complete i n v e r s i o n o f c o n f i g u r a t i o n 03,5,2) . The Geissman-Waiss l a c t o n e (7) (8) i s a well-known p r e c u r s o r o f (+)- r e t r o n e c i n e (j8) ( 8 - 1 1 ) , one o f the most common n e c i n e bases d e r i v e d from the p y r r o l i z i d i n e a l k a l o i d s . We envisaged t h a t t h e p y r r o l i d i n e e s t e r (9) c o u l d be c o n v e r t e d i n t o the l a c t o n e ( 7 ) , r e p r e s e n t i n g a f o r m a l s y n t h e s i s o f ( + ) - r e t r o n e c i n e (8) (12). I n a d d i t i o n , (9) s h o u l d be capable o f t r a n s f o r m a t i o n i n t o the r e l a t e d n e c i n e base c r o t a n e c i n e (10) ( 1 3 ) . Scheme 2 i l l u s t r a t e s a s y n t h e s i s o f the b e n z y l o x y c a r b o n y l d e r i v a t i v e (11) o f the e s t e r (9a) u s i n g c h e m i s t r y analogous t o t h a t f o r a n i s o m y c i n (Scheme 1 ) . I n the f o r m a t i o n o f the D - a l l o - t r i o l ( 1 2 ) , NOTE: This chapter is dedicated to Professor Luis F. Leloir on the occasion of his 80th birthday.
c
0097-6156/89/0386-0107$06.00/0 1989 American Chemical Society
In Trends in Synthetic Carbohydrate Chemistry; Horton, D., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
108
TRENDS IN SYNTHETIC CARBOHYDRATE CHEMISTRY
ÇH Ar
ÇH Ar
2
Downloaded by MONASH UNIV on May 21, 2013 | http://pubs.acs.org Publication Date: December 30, 1989 | doi: 10.1021/bk-1989-0386.ch006
Η0
Me
H
OH
Ί
qJ) *Me
Ç
CH Ar
2
HÇ0H
0 H
HÇ0H CH 0H
2
...
HCOMs
c
HCNOH 4
H
V
6
zl
H
5
vjjj
M
OAc
Reagents:
4
{J
Me ~ ^N.
6
5
H
Q Me
Ar = p-MeOC H -
N
2
OAc
Ms = MeS0 -
A l l = CH :CHCH -
2
2
i , ArCH MgCl-THF; 2
i i i , MsCl-C H N; 5
5
v i , A110H-HC10 ; 4
i i , NaI0
iv, LiAlH^;
2
4>
Bzl = PhCH 2
then H0NH C1-C H N; 3
5
5
v, HBr-HOAc, then KOH;
v i i , BzlCl, then Ac^O-C^N;
+
v i i i , PdC-H , then PdC-H . 2
Scheme 1
In Trends in Synthetic Carbohydrate Chemistry; Horton, D., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
6. BUCHANAN ET AL.
Synthesis of Chiral PyrrolidinesfromCarbohydrates
Downloaded by MONASH UNIV on May 21, 2013 | http://pubs.acs.org Publication Date: December 30, 1989 | doi: 10.1021/bk-1989-0386.ch006
d i a l l y l z i n c , formed from the G r i g n a r d r e a g e n t i n s i t u gave h i g h e r s t e r e o s e l e c t i v i t y compared to the G r i g n a r d r e a g e n t i t s e l f ( 1 4 ) . The y i e l d of the f i n a l o x i d a t i o n s t e p was poor and o t h e r avenues to e s t e r s (9) were e x p l o r e d . The f i r s t of these used the W i t t i g r e a c t i o n as an important s t e p , as o u t l i n e d i n Scheme 3.
(10) R = OH
(9a) R = Me (9b) R = E t
2 , 3 - 0 - I s o p r o p y l i d e n e - p - e r y t h r o s e (13) (15), o b t a i n e d e i t h e r by a c e t o n a t i o n of D-erythrose""(16) or by p e r i o d a t e o x i d a t i o n of 3,4-0isopropylidene-£-arabinose (15,17), r e a c t e d w i t h ethoxycarbonylmethyl e n e t r i p h e n y l p h o s p h o r a n e i n r e f l u x i n g benzene (18) to g i v e the Ea l k e n e (14) as the major p r o d u c t (56%) t o g e t h e r w i t h the Z-alkene (15) (21%). As expected (18-20) the a l k e n e s (14) and (157 r e a d i l y c y c l i z e d to t e t r a h y d r o f u r a n s (16) under v e r y m i l d b a s i c c o n d i t i o n s . I n i t i a l l y the 3 anomer of (16)'was f a v o r e d [86% from (14) and 100% from (15,)]; at e q u i l i b r i u m the α anomer p r e p o n d e r a t e d (82%) (19). Our i n t e n t i o n was to c o n v e r t the a l c o h o l s (14) and (15) i n t o the c o r r e s p o n d i n g amines and then to e f f e c t c y c l i z a t i o n to the p y r r o l i d i n e (9b). In the event, t h i s o b j e c t i v e was a c h i e v e d more e a s i l y and w i t h complete s t e r e o s e l e c t i v i t y . Treatment of the a l c o h o l (14) w i t h t r i f l u o r o m e t h y l s u l f o n i c a n h y d r i d e ( t r i f l i c anhydride) a t -78°C a f f o r d e d the e s t e r (17) which c o u l d be i s o l a t e d and c h a r a c t e r i z e d . We knew from p r e v i o u s e x p e r i e n c e (2) t h a t s u l f o n y l e s t e r s v i c i n a l t o an i s o p r o p y l i d e n e a c e t a l are r e l a t i v e l y s t a b l e . The t r i f l a t e (17) r e a c t e d c l e a n l y w i t h p o t a s s i u m a z i d e and 18-crown-6 i n d i c h l o r o m e t h a n e a t room temperature. The c r y s t a l l i n e p r o d u c t ^ [68% o v e r a l l from ( 1 4 ) ] was n o t the a z i d e (18) but the i s o m e r i c Δ - t r i a z o l i n e ( 1 9 ) . C l e a r l y the i n i t i a l l y formed a z i d e (18) had undergone i n t r a m o l e c u l a r 1 , 3 - c y c l o a d d i t i o n to the double bond of the u n s a t u r a t e d e s t e r (21-24). The s t e r e o c h e m i s t r y of the t r i a z o l i n e ( l g ) , determined by p r o t o n nmr s p e c t r o s c o p y , showed t h a t the r e a c t i o n was s t e r e o s p e c i f i c . There a r e s e v e r a l known examples of t h i s r e a c t i o n (24), i n c l u d i n g one i n the c a r b o h y d r a t e s e r i e s ( 2 5 ) . When the t r i a z o l i n e was t r e a t e d w i t h sodium e t h o x i d e (26) the d i a z o e s t e r (20) was r a p i d l y formed by r i n g - o p e n i n g and was i s o l a t e d i n 85% y i e l d . H y d r o g e n o l y s i s of the d i a z o group of (20) gave the r e q u i r e d p y r r o l i d i n e e s t e r (9b) ( 9 0 % ) . The Z-alkene (15) was s u b j e c t e d to the same sequence (Scheme 4 ) . The t r i f l a t e (21) was e a s i l y o b t a i n e d , but i n t h i s case r e a c t i o n w i t h a z i d e i o n gave d i r e c t l y the d i a z o e s t e r (22) . M o l e c u l a r models show t h a t the t r i a z o l i n e c o r r e s p o n d i n g to (19) has s e v e r e s t e r i c i n t e r a c t i o n s (27) and i s more a c c e s s i b l e t o d e p r o t o n a t i o n ( c f . réf. 23). S t e r e o c h e m i c a l and m e c h a n i s t i c a s p e c t s of the a z i d e c y c l o a d d i t i o n s
In Trends in Synthetic Carbohydrate Chemistry; Horton, D., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
109
110
TRENDS IN SYNTHETIC CARBOHYDRATE CHEMISTRY
i 2 CH H
/
/
f 2 - HCOH
?
HCOH
—
I
90%
H C 0
Hçcr
C M e
2
/
CH
iii
H
2
HCOMs
V
M
H t 0 *
M
98% e
H
K e M
2
Hco' CN
HC:N0H
HÇOH
CH n 2 CH 9
H
CH1 1
S 2 CH
L M e
:
CH 0H 2
CO.Bzl
C0 Bzl o
Downloaded by MONASH UNIV on May 21, 2013 | http://pubs.acs.org Publication Date: December 30, 1989 | doi: 10.1021/bk-1989-0386.ch006
70%
C0 Me 2
V
°X° Me
Reagents:
Me
Me
i, All^n;
11
Me
~
i i , NalO^,, then HON^Cl-C^N;
i i i , MsCl-C H N; 5
iv, LiAlH^, then BzlOCOCl;
5
v, NaIO.-ΚΜηΟ,, then CH_N . 4 4 2 2 0
Scheme 2
C0 Et o
l L
°v?
H
H
σ
C
• 2- isomer 15
^
i
ÇΗ
9
1
Ο Λ
v . "·'· ϊίΐ**» Μ
M
Χ
CH R
e
2
13
(— 14
17 R = oTf
_ ,V
C
R=0H
Ci8
R= N
V^CH C0 Et 2
Ô J
3
M
e
A
2
β - V M
e
*
16
68%,
y Me
Reagents:
ÇJN
85% Me
1
i
Me
9
2
Me
20
0
H
%
M
e
X
co Et 2
M e
n
u
9b
i , Ph P=CHC0 Et-C H , 80 C; i i , NaOEt-EtOH; 3
2
6
6
i i i , Tf 0-C H N-CH C1 , - 78°C; 7 ~ 2
5
5
2 2
2 2
iv, KN -18 crown 63
CH C1 , RT; v, PdC-H 2
2
2
Scheme 3
In Trends in Synthetic Carbohydrate Chemistry; Horton, D., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
Downloaded by MONASH UNIV on May 21, 2013 | http://pubs.acs.org Publication Date: December 30, 1989 | doi: 10.1021/bk-1989-0386.ch006
6.
BUCHANAN ET AL.
Synthesis ofChiral Pyrrolidines from Carbohydrates 111
are discussed i n a f u l l paper (Buchanan, J.G.; Edgar, A.R. : Hewitt, B.D. J . Chem. S o c , Perkin Trans. 1, i n press). Hydrogenolysis of (22) gave the 3-ester (23). A further route to the α-ester (9b) emerged when (22) was heated i n b o i l i n g toluene to give the expected vinylogous urethane (24) (28). When (24) was treated with sodium cyanoborohydride under acidic conditions reduction occurred at the 3-face to give ester (9b). This reduction played a part i n another synthesis of (9a) which i s now described (Scheme 5). 2,3-O-Isopropylidene-D-erythrose (13) was converted, v i a the oxime, into the cyanomethanesulfonate (25). In a Blaise reaction (29), the zinc enolate derived from methyl bromoacetate reacted with (25) to give the enamino esters (26). Cyclization was effected with l,8-diazabicyclo[5.4.0]undec-7-ene (DBU) and the product ( 2 J ) reduced with cyanoborohydride. The resulting pyrrolidine α-ester (9a) was i d e n t i f i e d by reaction with benzyl chloroformate to give the amide (11), whose structure had been rigorously assigned. The amide (11.) > prepared by this method, was used for the subsequent transformations. The conversion of (11) into the Geissman-Waiss lactone i s shown in Scheme 6. Acidic hydrolysis of the isopropylidene group was accompanied by lactone ring formation to give (28) i n 82% y i e l d . Deoxygenation by the Barton procedure (30) afforded the lactone (29) (90%) which was e a s i l y deprotected to give the Geissman-Waiss lactone as the hydrochloride (7), constituting a formal synthesis of (+)-retronecine (8)(£-10). The ester (9a) contains the necessary oxygen f u n c t i o n a l i t y , of the correct stereochemistry, for a synthesis of crotanecine (10) (Scheme 7). A l k y l a t i o n of the p y r r o l i d i n e ring nitrogen was achieved using ethyl bromoacetate, producing the diester (30) i n 85% y i e l d . Attempts to induce Dieckmann c y c l i z a t i o n of diester (30) d i r e c t l y under several conditions f a i l e d , so i t was converted by acidic hydro l y s i s , into the lactone (31). Protection of the hydroxyl group i n (31) was effected as the t e r t r b u t y l d i m e t h y l s i l y l ether (32). When treated i n toluene at room temperature with potassium ethoxide (32) underwent the Dieckmann condensation. The intermediate ketoester (33) was reduced with borohydride and the r e s u l t i n g diastereomeric mixture acetylated to give the diacetates (34) i n 40% y i e l d . Elim ination of acetic acid from (34) (DBU) afforded the unsaturated ester (35) (70%). The ester group i n (35) has been reduced, by means of diisobutylaluminium hydride, to give the protected crotanecine (36)» but we have experienced great d i f f i c u l t y i n i s o l a t i n g crotanecine i n substance after fluoride ion deprotection. (Buchanan, J.G.; J i g a j i n n i , V.B.; Singh, G.; Wightman, R.H. J . Chem. Soc., Perkin Trans 1, i n press). At this stage i n our work, Benn and his colleagues (31) described a synthesis of crotanecine from (2S,4R)-4-hydroxyproline (37) i n which the s i l y l ether (32) i s an intermediate. The sub sequent reactions are similar to our own projected synthesis, involving both (33) and (34). We have also investigated an alternative route to anisomycin (I) from 2,3-O-isopropylidene-D-erythrose (13) using a Wittig reaction as the f i r s t step. It was argued that p-nitrophenylmethylenetriphenylphosphorane (38) (32) would be an ideal reagent for construction of the carbon skeleton of anisomycin (Scheme 8). I t was envisaged that the p-nitro group i n the alkene products Ε(39) and (40)3 would enable
In Trends in Synthetic Carbohydrate Chemistry; Horton, D., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
TRENDS IN SYNTHETIC CARBOHYDRATE CHEMISTRY
E
,
¥ S „ HC0'
C M e
2
A
CH R 2
R= OH
15
Downloaded by MONASH UNIV on May 21, 2013 | http://pubs.acs.org Publication Date: December 30, 1989 | doi: 10.1021/bk-1989-0386.ch006
^21
if Me
R= OTf
J
ii
Me
Me
Me
ν
70%
I
66%
»
Me
Me
23
Reagents:
Λ.
Me
Me
22
24
i , Tf 0-C H N--CH Cl ,-78°C; 2
5
5
2
CH C1 , RT; 2
i i , KN -18 crown 6-
2
3
i i i , PdC-H ;
2
iv, PhMe, 110°C;
2
+
v, NaBH^CN, EtOH, H . Scheme 4
C0 Me 2
13 «
idL f°YMe
«i
H
— ~
HCO>
M e
2
f°^CMe - H C 0 ' 2 H
C
25
/
η °X° 9a /\ ~ Me Me
Reagents.
M
°X° / \ Me
Me
i , HONl^Cl-C^N, RT;
e
26
27
i i , MsCl(12 equiv.)-C H N-23 C; 5
i i i , Zn, BrCH C0 Me (5 equiv.)-THF, reflux; 2
2
(3 equiv.)-CH Cl , RT; 2
2
5
iv, DBU
v, NaBH^N, MeOH, HC1;
v i , BzlOCOCl-Et N-CH Cl . 3
2
2
Scheme 5
In Trends in Synthetic Carbohydrate Chemistry; Horton, D., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
Synthesis of Chiral PyrrolidinesfromCarbohydrates
BUCHANAN ET AL.
C N
°2
B z l
.
< ^
2
I f
Reagents:
i , 80% aq. CF C0 H, RT; 3
2
i i , 1,1 -thiocarbonyl--
diimidazole-C^N-THF, r e f l u x , (2.2 equiv.)-C H , r e f l u x ; 6
i i i , Bu^SnH
i v . PdC-H
6
2
Downloaded by MONASH UNIV on May 21, 2013 | http://pubs.acs.org Publication Date: December 30, 1989 | doi: 10.1021/bk-1989-0386.ch006
Scheme 6
^C0 Ef 2
r
9a
Vr-CQ-Me 85% f — J *-CQJ
85%
0 0
2S
H O
Me
2
\n\
^ Me
C0 Et
31
HO O ^ o 30
iii I 7 0 % Bu
/^4-CO H
Me Si0 2
Η
(
2
"VN
2
,C0 Et 2
H
37
32
"I
HO
μ r
HO
0 H
H
Ç°2 * E 1
R0 36 R = B u ^ M e S i 7
. AcO
υ
C 0
9 " E t
Bu'Me Si0-
Si Ο Me
OAc
2
70%
9
Reagents:
33
10 R = H
;
i , BrCH^O^t-NEt^-THF; iii,
i i , 80% aq. TFA, RT;
t-BuMe SiCl-imidazole-DMF; 2
RT, then HOAc; C H N; 5
5
i v , KOEt-PhMe,
v, NaBH^-EtOH, then Ac 02
v i , DBU-CH C1 , RT; 2
2
v i i , DIBAL-
hexane-CH Cl , -78°C. 2
2
Scheme 7
In Trends in Synthetic Carbohydrate Chemistry; Horton, D., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
114
TRENDS IN SYNTHETIC CARBOHYDRATE CHEMISTRY
Downloaded by MONASH UNIV on May 21, 2013 | http://pubs.acs.org Publication Date: December 30, 1989 | doi: 10.1021/bk-1989-0386.ch006
H
1
0
°χ°
OAc Arcu H N0
13
Ç /i
2
• LU
ï&
—
CH r
H
£-
'HJ 7o9 % 70
/
U
C H
\iv.vii
A
HÇ0'
51%
i s o m e r
~
2
iv v
°X°
2
C M e
Π
2 3
«
Me Me
N
A
Ν
Me
Reagents:
+
CH 0H?i
23 ~
PhJ "3
\»
2
M e
πι
M E
*
Y
i ,
Me
~
80 C;
t-BuOH;
i i , NaOMe-MeOH;
i v , Tf 0-C H N-CH Cl , -78°C; 2
5
5
v, KN ~18 crown 6-CH Cl , RT; 3
v i i , NH
3
i i i , KOt-Bu-
2
2
2
2
v i , CH C1 2
2>
RT;
( l i q u i d ) - C H C l , RT. 2
2
Scheme 8
In Trends in Synthetic Carbohydrate Chemistry; Horton, D., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
Downloaded by MONASH UNIV on May 21, 2013 | http://pubs.acs.org Publication Date: December 30, 1989 | doi: 10.1021/bk-1989-0386.ch006
6.
BUCHANAN ET AL.
Synthesis ofChiral PyrrolidinesfromCarbohydrates 115
conjugate addition to take place (33) and permit the formation of a pyrrolidine ring. Reaction of (38) with (13) i n b o i l i n g benzene gave mainly the Z-isomer (39) (65%) together with some E-isomer (40) (5%). When each was treated with sodium methoxide i n methanol ring closure to the tetrahydrofurans (41,) occurred, but much more slowly than i n the analogous esters (14) and (15) (Scheme 3). The 3-isomer of (4^) was the sole product from (39) and the major product (5:1) from (40). The two isomers of (41) could be equilibrated using potassium tert-butoxide to give a mixture favouring the α-isomer (3:1), i n agreement with the ester series (19). When the t r i f l a t e of the Z-alkene (39) was treated with azide ion, the corresponding azide (42) could be isolated i n 79% y i e l d . Clearly the 1,3-cycloaddition occurs less readily than i n the ester series (Schemes 3,4). Attempts to convert the azide (42) into the Δ - t r i a z o l i n e (43) were unsatisfactory. When (42) was heated i n benzene solution the a z i r i d i n e (44) was the major product (51%). The structure was determined by Dr K.J. McCullough by X-ray c r y s t a l lography. At room temperature, dissolved i n dichloromethane, the azide (42) decomposed slowly (~50% after 7 days) to give low y i e l d s of a z i r i d i n e (44) and t r i a z o l i n e (43). The t r i f l a t e of (39) has been converted into the pyrrolidine (