Chapter 8
Approaches to Deoxy Oligosaccharides of Antibiotics and Cytostatics by Stereoselective Glycosylations
Downloaded by MIT on May 21, 2013 | http://pubs.acs.org Publication Date: December 30, 1989 | doi: 10.1021/bk-1989-0386.ch008
Joachim Thiem Organisch-Chemisches Institut, Westfälische Wilhelms-Universität, Orléans-Ring 23, D-4400 Münster, Federal Republic of Germany Problems associated with stereoselective glycosy lations in the 2-deoxy sugar series are outlined and exemplified. General solutions are provided for the 2-deoxy-α-glycosides employing the N -iodosuccinimide glycosylation. The 2-deoxy-βglycosides are available via certain 2-bromo -2-deoxyglycosyl bromides accessible from simple isopropylidene derivatives by dibromomethyl methyl ether reactions. Syntheses of four different E-D-C trisaccharides of the various aureolic acids are reported that make extensive use of these procedures. A novel approach for the preparation of the G-B-A trisaccharide gly coside of class II anthracyclines is described. Here the combined azide --N-iodosuccinimide procedure is applied to construct a precursor of the aminodeoxy sugar unit. After subsequent N-iodosuccinimide glycosylations, the precursor trisaccharide is converted straightforwardly into the target molecule. The b a s i c c o n c e p t s o f g l y c o s y l a t i o n have b e e n known f o r more t h a n e i g h t y y e a r s . N e v e r t h e l e s s , t h e s e l e c t i v e f o r m a t i o n o f a f u l l a c e t a l c o n s t i t u t e s a n d r e m a i n s one o f the major c h a l l e n g e s i n c a r b o h y d r a t e c h e m i s t r y . W i t h i n t h e c u r r e n t d e c a d e , a number o f a t t r a c t i v e a p p r o a c h e s f o r t h e g l y c o s y l a t i o n o f s i m p l e a l c o h o l s and a l s o more-com p l e x a g l y c o n s ( i n c l u d i n g s u g a r d e r i v a t i v e s ) have b e e n d e v e l o p e d (e.g. 1,2). I n a l l cases a h i g h s t e r e o s e l e c -
c
0097-6156/89/0386-0131$06.00/0 1989 American Chemical Society
In Trends in Synthetic Carbohydrate Chemistry; Horton, D., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
Downloaded by MIT on May 21, 2013 | http://pubs.acs.org Publication Date: December 30, 1989 | doi: 10.1021/bk-1989-0386.ch008
132
TRENDS IN SYNTHETIC CARBOHYDRATE CHEMISTRY
t i v i t y i s d e s i r e d , and as has b e e n a b u n d a n t l y shown, t h e s i m p l e t r a n s f e r o f a p r o c e d u r e worked o u t f o r a c e r t a i n sugar s e r i e s does not n e c e s s a r i l y a p p l y t o a n o t h e r , i s o m e r i c s e r i e s . A l l o f t h e p r e s e n t l y u s e d and e f f e c t i v e g l y c o s y l a t i o n procedures i n the normal sugar s e r i e s i n g e n e r a l make use o f a n e i g h b o r i n g g r o u p a t t h e p o s i t i o n n e x t t o t h e a n o m e r i c c e n t e r , be i t by a r e a l a n c h i m e r i c a s s i s t a n c e o r by t h e o p e r a t i o n o f s t e r i c i n f l u e n c e . The p r e s e n t c o n t r i b u t i o n c e n t e r s on s t e r e o s e l e c t i v e s y n t h e s e s o f mono- and i n p a r t i c u l a r o l i g o - s a c c h a r i d e s o f t h e 2-deoxy- and t h e 2 , 6 - d i d e o x y s e r i e s as w e l l as some branched-chain s p e c i e s . These are the p r i n c i p a l sugar p o r t i o n s i n a l a r g e number o f i m p o r t a n t n a t u r a l g l y c o s i d e s , s u c h as t h e c a r d i a c g l y c o s i d e s ( 3 ) , t h e o r t h o s o m y c i n s ( £ ) , t h e t e t r o n i c a c i d s ( 5 ) , t h e a u r e o l i c a c i d s (6, s e e b e l o w ) , and t h e a n t h r a c y c l i n e s (7, s e e b e l o w ) , t o name j u s t a few. N a t u r e ' s a p p r o a c h t o t h e 6-deoxy s u g a r s i s known t o i n v o l v e o x i d a t i o n of a n u c l e o t i d e - s u g a r g l y c o s i d e with o x i d o r e d u c t a s e and s u b s e q u e n t r e d u c t i o n w i t h NADPH (8.) · The i n t r o d u c t i o n o f m e t h y l b r a n c h e s was shown (9) t o p r o ceed a t the stage of the keto sugar i n t e r m e d i a t e s under the a c t i o n of " a c t i v e methionine" [S-(5 -adenosyl)methio n i n e ] . T h e r e i s l i t t l e known a b o u t t h e f o r m a t i o n o f t h e 2 - d e o x y f u n c t i o n . The t r a n s f e r o f c y t i d i n e d i p h o s p h a t e i n t o 2 ' - d e o x y c y t i d i n e 5 - d i p h o s p h a t e i s c a t a l y z e d by CDP r e d u c t a s e i n E s c h e r i c h i a c o l i (10). A l s o d e s c r i b e d i s the formation of 2-deoxy-D-ervthro-pentofuranose 5'-phosphate c a t a l y z e d by an a l d o l a s e i n L a c t o b a c i l l u s p l a n t a r u m (10). The d e t a i l e d mechanism i s unknown, and u n t i l now t h e r e have b e e n no s t u d i e s i n t h e 2 - d e o x y h e x o s e s e r i e s (H.G. F l o s s , p e r s o n a l communication 1986). E v i d e n t l y the p a r t i c u l a r problems i n the c h e m i c a l s y n t h e s i s o f 2-deoxy s u g a r g l y c o s i d e s a r e t h e m i s s i n g n e i g h b o r i n g g r o u p , and a r e a l s o a s s o c i a t e d w i t h t h e e n hanced l a b i l i t y of t h e i r g l y c o s y l h a l i d e s . For i n s t a n c e , t r e a t m e n t o f t h e a - o r t h e β-glycosyl h a l i d e ( t h e f o r m e r b e e i n g s l i g h t l y more s t a b l e b e c a u s e o f t h e a n o m e r i c e f f e c t ) i n the 2,6-dideoxv-D-arabino s e r i e s ^ or 2 w i t h an a l c o h o l i n t h e p r e s e n c e of a s i l v e r p r o m o t e r i s s u p p o s e d t o p r o c e e d v i a t h e o x o c a r b e n i u m i n t e r m e d i a t e 4,. A f t e r n u c l e o p h i l i c a t t a c k of the a l c o h o l , both of the p r o t o n a t e d p r e c u r s o r s are formed, which a f t e r r e l e a s e of t h e p r o t o n g i v e t h e a - and t h e β-glycosides 5 and &. M o s t l y t h e f o r m e r p r e v a i l s , p r o b a b l y a g a i n by t h e o p e r a t i o n o f an a n o m e r i c e f f e c t . A n o t h e r f r e q u e n t s t a b i l i z a t i o n o f 4 i n t h i s s e r i e s o c c u r s by d i r e c t d e p r o t o n a t i o n t o g i v e t h e c y c l i c e n o l e t h e r ( g l y c a l ) 7. T h e s e g l y c a l s b e a r i n g a l e a v i n g group a t the a l l y l i c p o s i t i o n (carbon 3) c a n e a s i l y u n d e r g o a c i d - c a t a l y z e d g l y c o s y l a t i o n w i t h 1
1
In Trends in Synthetic Carbohydrate Chemistry; Horton, D., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
Downloaded by MIT on May 21, 2013 | http://pubs.acs.org Publication Date: December 30, 1989 | doi: 10.1021/bk-1989-0386.ch008
8. THIEM
Deoxy Oligosaccharides ofAntibiotics
133
a l l y l i c r e a r r a n g e m e n t ( F e r r i e r r e a c t i o n , 11,12.) and g i v e t h e a l k y l a- and 6 - D - e r v t h r o - h e x - 2 - e n o p y r a n o s i d e s 3, and 6. I t i s n o t a t t r a c t i v e t o r e f u n c t i o n a l i z e s u c h a l k e n i c s u g a r s as 3, o r 6 i n t o t h e r e q u i r e d t a r g e t g l y c o s i d e s s u c h as 5, o r 8. ~ T h i s g e n e r a l o v e r v i e w may be i l l u s t r a t e d by an ex ample: t r e a t m e n t o f 3 , 4 - d i - 0 - a c e t y l - 2 , 6 - d i d e o x y - a - D - a r a b i n o - h e x o p v r a n o s v l b r o m i d e (9) w i t h m e t h y l 4 - 0 - a c e t y l 2 , 6 - d i d e o x y - a - D - l y x o - h e x o p y r a n o s i d e (10) u n d e r s y s t e m a t i c a l l y developed and a d j u s t e d c o n d i t i o n s g a v e i n 56% o p t i m i z e d y i e l d both the a - ( l - > 3 ) - and the β-(l->3)-linked d i s a c c h a r i d e s 11 and 12 i n the r a t i o o f a p p r o x i m a t e l y 2:1 (13.rU.) . ApartHÉrom tfîis d e l i c a t e chemistry, a t l e a s t one separation step i s r e q u i r e d . Consequently, s t e r e o s e l e c t i v e or even b e t t e r s t e r e o s p e c i f i c s o l u t i o n s f o r the p r e p a r a t i o n o f t h e s e o l i g o s a c c h a r i d e s w o u l d be c e r t a i n l y appreciated. We have d e v e l o p e d s u c h methods, and t h e s e a r e b r i e f l y o u t l i n e d i n g e n e r a l . Treatment of a g l y c a l d e r i v a t i v e 13 w i t h N - h a l o s u c c i n i m i d € î (X = B r , : 15.; X = I , 16.) s u p p o s e d l y g i v e s 1,2-halonium i o n s (perhaps i n resonance w i t h a 2 - h a l o - o x o c a r b e n i u m i o n ) . T h e s e a r e a t t a c k e d by t h e n u c l e o p h i l e R'OH t o g i v e m a i n l y t h e 1 , 2 - t r a n s - 2 - h a l o g l y c o s i d e s 14. F u r t h e r r e d u c t i v e c l e a v a g e o f t h e 2 - h a l o s u b s t i t u e n t c o n c l u d e s an e a s y , a t t r a c t i v e and h i g h l y s t e r e o s e l e c t i v e a p p r o a c h t o 2 , 6 - d i d e o x y α - g l y c o s i d e s 1§ i n t h e D - a r a b i n o , - l y x o , and - r i b o s e r i e s . As d e m o n s t r a t e d c o n c l u s i v e l y i n many examples ( e g . 17) t h e use o f NIS (16) i s c o n s i d e r a b l y s u p e r i o r t o NBS (1£) w i t h r e s p e c t t o t h e y i e l d s o f t h e g l y c o s y l a t i o n (13->14) as w e l l as t h e h a l i d e - c l e a v a g e s t e p (14->15). T h e " N l S ^ p r o c e d u r e has a l s o been t r i e d f o r t h e s y n t h e s i s o f 2-deoxy^-glycosides. A l t h o u g h t h i s c o u l d be r e a l i z e d , t h e method p r o v e d a t t r a c t i v e o n l y i n p a r t i c u l a r s i t u a t i o n s (18-20). The most a t t r a c t i v e a p p r o a c h f o r t h e 2 - d e o x y ^ g l y c o s i d e s s t a r t s with 2-bromo-2,6-dideoxyhexopyranosyl b r o m i d e s (22.) s u c h as 16,. T h e s e a r e a v a i l a b l e r e g i o - and s t e r e o - s p e c i f i c a l l y f r o m r e a d i l y a c c e s s i b l e and simple p r e c u r s o r s by r e a c t i o n w i t h d i b r o m o m e t h y l m e t h y l e t h e r (DBE) (22,£3). In p r i n c i p l e , the f o r m a t i o n of r e l a t e d compounds may be a n t i c i p a t e d by t h e a d d i t i o n o f b r o m i n e t o g l y c a l p r e c u r s o r s . P r e v i o u s s t u d i e s ( 2 4 - 2 7 ) , however, proved these processes to y i e l d s e v e r a l isomers which renders t h i s approach of l i t t l e p r e p a r a t i v e v a l u e . T r e a t m e n t o f t h e h a l i d e s 16 w i t h an a l c o h o l p r o m o t e d by s i l v e r s a l t s does y i e l d m a i n l y t h e β-glycosides 17 (28., 29) . O b v i o u s l y t h e bromo s u b s t i t u e n t d i r e c t s t h e " i n c o m i n g n u c l e o p h i l e by s t e r i c r e a s o n s o r p o s s i b l y v i a a 1,2-bromoniumbromo-oxocarbenium i n t e r m e d i a t e . F o l l o w i n g a r e d u c t i o n s t e p , t h e s y n t h e s e s o f β-glycosides 18
In Trends in Synthetic Carbohydrate Chemistry; Horton, D., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
134
TRENDS IN SYNTHETIC CARBOHYDRATE CHEMISTRY
Downloaded by MIT on May 21, 2013 | http://pubs.acs.org Publication Date: December 30, 1989 | doi: 10.1021/bk-1989-0386.ch008
i n t h e D - a r a b i n o (28,29) and - l v x o s e r i e s (30) were r e a l i z e d . A n o t h e r a p p r o a c h f o r t h e D - r i b o s e r i e s was d e m o n s t r a t e d by W i e s n e r ' s g r o u p (3lT. S t a r t i n g f r o m t h e t h i o g l y c o s i d e 1?, m e r c u r y - a s s i s t e d s o l v o l y s i s i s c o n s i d e r e d t o g e n e r a t e a 1 , 3 - a c y l o x o n i u m i n t e r m e d i a t e 2p w h i c h i s a t t a c k e d by t h e a l c o h o l p r i n c i p a l l y f r o m t h e β-face t o g i v e 21. Even t h o u g h t h e r e r e m a i n some i n c o n s i s t e n c i e s w i t h r e s p e c t t o the anomeric r a t i o s o b t a i n e d i n the s y n t h e s i s o f mono- o r o l i g o - s a c c h a r i d e g l y c o s i d e s , t h i s method p r o v e d u s e f u l i n t h e s e l e c t i v e p r e p a r a t i o n o f cardiac glycosides. B o t h p r o c e d u r e s f o r s e l e c t i v e s y n t h e s e s o f 2,6d i d e o x y - α - and β-glycosides w i l l be o u t l i n e d i n t h e a u r e o l i c a c i d and a l s o t h e a n t h r a c y c l i n e o l i g o s a c c h a r i d e series. Aureolic Acid
Oligosaccharides
These t e t r a h y d r o a n t h r a c e n o n e o l i g o s a c c h a r i d e a n t i b i o t i c s r e c e i v e d t h e i r name f r o m t h e i r c h a r a c t e r i s t i c g o l d e n a p p e a r a n c e . The most p r o m i n e n t members, chromom y c i n A3 ( 2 2 ) , o l i v o m y c i n A ( 2 3 ) , and m i t h r a m y c i n (24) c o n s t i t u t e p o t e n t c y t o s t a t i c agents which, even though they are extremely t o x i c , enjoy s e l e c t e d c l i n i c a l a p p l i c a t i o n i n t h e t r e a t m e n t o f c e r t a i n tumors ( 6 ) . The c y t o s t a t i c a c t i v i t y i s s u p p o s e d t o r e s u l t f r o m a s t r o n g and s e l e c t i v e i n h i b i t i o n o f t h e DNA-dependent RNA s y n t h e s i s (32., 33.) . I n t h e p r e s e n c e o f Mg2+, a c o m p l e x a t i o n o f g u a n o s i n e - r i c h DNA f r a g m e n t s was o b s e r v e d , and further i n f o r m a t i o n as t o t h i s mechanism has been r e c e n t l y d i s c u s s e d (34.) . E a r l i e r s t u d i e s proved the s t r u c t u r e of the almost s i m i l a r t e t r a h y d r o c e n o n e a g l y c o n s i n 22-24 h a v i n g t h e c h i r a l , f i v e - c a r b o n s i d e c h a i n a t C - 3 ^ s ^ w e l l as t h o s e o f t h e i n d i v i d u a l m o n o s a c c h a r i d e s ( 3 5 , 3 6 ) . A t t e m p t s were made t o a p p l y K l y n e ' s r u l e and d e d u c e t h e s t r u c t u r e o f t h e o l i g o s a c c h a r i d e s and t h e i r a t t e c h m e n t t o t h e a g l y c o n b u t t h i s was n o t u n i f o r m l y c o n v i n c i n g (37.) · complete s u g a r s e q u e n c e and t h e d i r e c t i o n and t y p e o f t h e i r i n t e r g l y c o s i d i c l i n k a g e s were a s s i g n e d by e x t e n d e d n.m.r. s p e c t r o c o p y and s u p p o r t e d by s y n t h e s e s (13,14,38., 39) . T h e r e a r e o n l y m i n o r d e v i a t i o n s between 22 and 23, a l t h o u g h t h e y a r e p r o d u c e d by d i f f e r e n t s t r e p t o m y c e s s t r a i n s . I n b o t h o f t h e s e compounds a d i f f e r e n t l y s u b s t i t u t e d a - ( l - > 3 ) - l i n k e d b i s - 2 , 6 - d i d e o x y - D - l y x o - u n i t B-A i s a t t a c h e d t o t h e p h e n o l i c s i t e a t C-6. T h e i r E-D-C t r i s a c c h a r i d e shows a t e r m i n a l 3 - C - m e t h y l - b r a n c h e d s u g a r , L - o l i v o m y c o s e E, a t t a c h e d by an a - ( l - > 3 ) - l i n k a g e t o t h e F ~ ( l - > 3 ) - b o u n d d i m e r i c o l i v o s y l - o l i v o s e D-C. I n m i t h r a m y c i n (24), the B-sugar i s a 2.6-dideoxv-D-arabino u n i t a t t a c f i e d t o A v i a a β - ( l - > 3 ) - l i n k a g e . I n t h e E-D-C tri s a c c h a r i d e p a r t , o n l y β - ( l - > 3 ) - l i n k a g e s o c c u r . The D-C u n i t i s l i k e w i s e s i m i l a r , and t h e t e r m i n a l s u g a r a g a i n i s o f t h e 3 - C - m e t h y l - b r a n c h e d t y p e , b u t t h i s t i m e i t i s Dmycarose. T
n
e
In Trends in Synthetic Carbohydrate Chemistry; Horton, D., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
Deoxy Oligosaccharides ofAntibiotics
Downloaded by MIT on May 21, 2013 | http://pubs.acs.org Publication Date: December 30, 1989 | doi: 10.1021/bk-1989-0386.ch008
THIEM
In Trends in Synthetic Carbohydrate Chemistry; Horton, D., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
TRENDS IN SYNTHETIC CARBOHYDRATE CHEMISTRY
Downloaded by MIT on May 21, 2013 | http://pubs.acs.org Publication Date: December 30, 1989 | doi: 10.1021/bk-1989-0386.ch008
136
In Trends in Synthetic Carbohydrate Chemistry; Horton, D., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
Downloaded by MIT on May 21, 2013 | http://pubs.acs.org Publication Date: December 30, 1989 | doi: 10.1021/bk-1989-0386.ch008
8. THIEM
Deoxy Oligosaccharides ofAntibiotics
137
We have p r e v i o u s l y r e p o r t e d t h e p r e p a r a t i o n o f t h e v a r i o u s B-A u n i t s (13., 40) and have a l s o d e v e l o p e d s y n t h e s e s f o r t h e E-D (41) as w e l l as t h e u n i f o r m D-C u n i t (42). T h i s p r e s e n t a t i o n f o c u s e s on a s e q u e n t i a l assemb l i n g o f t h e s e complex o l i g o s a c c h a r i d e u n i t s , and d i s c u s s e s n o v e l a p p r o a c h e s t o a number o f E-D-C t r i s a c c h a r i d e s . S t a r t i n g w i t h methyl α-D-mannopyranoside t h e r e i s ready a c c e s s t o the 2 , 3 - O - i s o p r o p y l i d e n e rhamnoside 25. T r e a t m e n t o f 25 i n d i c h l o r o m e t h a n e w i t h DBE and z i n c b r o m i d e f o r 5.5 h o u r s a t room t e m p e r a t u r e g i v e s t h e 2,3O - i s o p r o p y l i d e n e r h a m n o s y l b r o m i d e 26 as a v e r y r e a c t i v e i n t e r m e d i a t e w h i c h may p r o v e u s e f u l i n f u r t h e r r e a c t i o n s t o g i v e m a n n o s i d e s (29). A f t e r a n o t h e r 6.5 hours (12 hours a l t o g e t h e r ) the 3-O-formylated 2-bromo-2,6-dideoxyα - g - g l u c o p y r a n o s y l b r o m i d e 27 i s o b t a i n e d i n h i g h y i e l d . The mechanism o f f o r m a t i o n may be s u p p o s e d t o p r o c e e d v i a 2 , 3 - f o r m o x o n i u m i n t e r m e d i a t e s (21). Benzylglycosylation o f 27 l e a d s v i r t u a l l y e x c l u s i v e l y t o t h e c r y s t a l l i n e g l y c o s i d e 28. T r e a t m e n t w i t h h o t m e t h a n o l c o n t a i n i n g one drop of concentrated h y d r o c h l o r i c a c i d achieves s e l e c t i v e c l e a v a g e o f t h e f o r m y l g r o u p and f u r n i s h e s t h e c r y s t a l l i n e monohydroxy compound 29,. The g l y c o s y l b r o m i d e 27 and t h e s u g a r a g l y c o n i c component were c o n d e n s e d u n d e r d i l i g e n t l y o p t i m i z e d c o n d i t i o n s with r e s p e c t to the s o l v e n t m i x t u r e (4:1 toluene—nitromethane), the temperature r a n g e and r a t e o f i n c r e a s e (-78° o v e r 2 d a y s t o room t e m p e r a t u r e ) , and t h e p r o m o t e r ( s i l v e r t r i f l a t e , 43.) . T h i s r e s u l t e d i n a v e r y g o o d y i e l d (92%) and a f a v o u r a b l e α:β r a t i o o f 30:31 - 1:6.5. F o r t u n a t e l y the d e s i r e d β - ( l - > 3 ) - l i n k e d d i s a c c h a r i d e 31 c o u l d be f r a c t i o n a l l y c r y s t a l l i z e d from the mixture^ A f t e r h a v i n g a s s e m b l e d t h e D-C p r e c u r s o r t h e a - ( l - > 3 ) - a t t a c h m e n t o f t h e Ε u n i t was t o be p e r f o r m e d by t h e NIS method. T h e r e f o r e a f a v o r a b l e a c c e s s t o t h e Lo l i v o m y c a l 3J was n e e d e d . We had p r e v i o u s l y p r e p a r e d t h i s compound by a f i v e s t e p r o u t e f r o m |±-arabinose (4£) . R e c e n t l y an a d v a n t a g e o u s p r e p a r a t i o n o f 3J and i t s e p i m e r t-mycaral (36) by t r e a t m e n t o f m e t h y l 2 , 3 - O - b e n z y l i d e n e a - L - r h a m n o p y r a n o s i d e (35) w i t h m e t h y l l i t h i u m , was worked out ( 4 5 ) · ~ F o l l o w i n g the s e l e c t i v e removal of the 3'-formyloxy f u n c t i o n , t h e d i s a c c h a r i d e 32 was o b t a i n e d and t h i s d i d n o t u n d e r g o any r e a c t i o n w i t h t h e g l y c a l 37 i n t h e p r e s e n c e o f NIS. The a s s u m p t i o n was a t hand t h a t t h e 2'bromo s u b s t i t u e n t m i g h t impede t h e a c c e s s i b i l i t y o f t h e 3 ' - h y d r o x y g r o u p . However, t r i b u t y l s t a n n a n e r e d u c t i o n o f 32 gave compound 3^, and a g a i n , t h i s p r o d u c t showed no r e a c t i o n i n t h e NIS g l y c o s y l a t i o n w i t h 37. Amazingly, i t was o b s e r v e d t h a t a d i s a c c h a r i d e g l y c a l made up f r o m two m o l e c u l e s o f 37 c o u l d be o b t a i n e d i n modest y i e l d (46). T h i s r e s u l t r e f l e c t s a h i g h e r n u c l e o p h i l i c i t y of the t e r t i a r y h y d r o x y g r o u p i n 37 t h a n t h a t o f t h e s e c o n d a r y one i n 33.
In Trends in Synthetic Carbohydrate Chemistry; Horton, D., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
138
TRENDS IN SYNTHETIC CARBOHYDRATE CHEMISTRY
F i n a l l y , t h e 4 ' - b e n z o a t e f u n c t i o n was a l s o s a p o n i f i e d . The u n b l o c k e d S ' ^ ' - d i o l component 3£ d i d i n d e e d u n d e r g o a smooth NIS g l y c o s y l a t i o n w i t h tfie L - o l i v o m y c a l 37. T h i s o c c u r e d r e g i o s p e c i f i c a l l y i n o v e r a l l 64% y i e l d w i t h f o r m a t i o n of o n l y the i n t e r g l y c o s i d i c ( l " - > 3 ' ) l i n k a g e and a l s o p r o c e e d e d s t e r e o s p e c i f i c a l l y t o w a r d s t h e α - g l y c o s i d e w i t h r e s p e c t t o t h e t e r m i n a l s a c c h a r i d e . The E-D-C derivative * s f u r t h e r hydrogenated t o the t r i s a c c h a r i d e u n i t 39 o f chromomycin A 3 (22) and o l i v o m y c i n A (23). ~ ~ M i t h r a m y c i n (24) b e a r s t h e t e r m i n a l s u g a r u n i t £ - m y c a r o s e . By a s i m i l a r p r e p a r a t i o n as f o r t h e m e t h y l b r a n c h e d g l y c a l s J§ 37* t h e D ^ e n a n t i o m e r o f 36, namely t h e l a b i l e D - m y c a r a l 40 was o b t a i n e d ( 4 5 ) ? " ' l t s NIS c o n d e n s a t i o n w i t h t h e 3 , 4 - < ï ï o l d i s a c c h a r i d e £4 p r o c e e d s s m o o t h l y , b u t t h e r e a c t i o n t u r n e d o u t t o be r a t h e r s l o w w i t h r e s p e c t to the s t a b i l i t y of the D-mycaral. T h i s r e s u l t s i n o n l y a modest y i e l d (12%) o f t h e t r i s a c c h a r i d e 41 w h i c h was h y d r o g e n o l y z e d t o compound 42. T h i s i n t u r n c o n s t i t u t e s an i s o m e r o f t h e t r i s a c c h a r i d e s e q u e n c e i n 24. A n o v e l approach f o r the mithramycin t r i s a c c h a r i d e r e q u i r e d a c o n c e p t i o n a l change. Thus, the u n i f o r m l y β - ( l - > 3 ) - l i n k e d t h r e e s u g a r u n i t s were t o be a s s e m b l e d f i r s t , and o n l y t h e n t h e b r a n c h i n t h e t e r m i n a l u n i t was t o be g e n e r a t e d . I n d e e d , g l y c o s y l a t i o n o f t h e 3'-monohyd r o x y d i s a c c h a r i d e 32 w i t h t h e g l y c o s y l b r o m i d e 2J, fol lowing the p r e v i o u s l y e s t a b l i s h e d procedure proceeded w i t h a l m o s t 70% y i e l d . The r a t i o α:β = 1:10 was again a d v a n t a g e o u s i n f a v o r o f t h e d e s i r e d d e r i v a t i v e 43, w h i c h c o u l d be c r y s t a l l i z e d f r o m t h e m i x t u r e . F u r t h e r s u b s e quent s t e p s (methanol—HC1) r e l e a s e d s e l e c t i v e l y the 3 - f o r m y l o x y g r o u p , r e d u c e d t h e t h r e e bromo f u n c t i o n s (BueSnH), and o x i d i z e d a t C-3" w h i c h gave t h e t r i s a c c h a r i d e 3 " - u l o s i d e 44, i n h i g h o v e r a l l y i e l d . F i n a l l y , t r e a t ment o f 44 w i t h m e t h y l l i t h i u m gave s t e r e o s p e c i f i c a l l y t h e t r i s a c c h a r i d e s 45 and 46 ( p e c u l i a r l y w i t h an a d d i t i o n a l b e n z o a t e g r o u p a t C-3)'T which b o r e e x c l u s i v e l y a t e r m i n a l g - o l i v o m y c o s e u n i t E. Previous branching r e a c t i o n s of a l k y l a-hexopyranos3 - u l o s i d e s gave m a i n l y o r e x c l u s i v e l y t h e r i b o d e r i v a t i v e s (45», 47-49) . T h i s i s i n a c c o r d a n c e w i t h e x p e c t a t i o n s , because of p a r t i a l b l o c k i n g of the n u c l e o p h i l e from the lower f a c e of the molecule. Q u i t e r e c e n t e x p e r i ments w i t h t h e c o r r e s p o n d i n g a l k y l β - 1 ι β χ ο ρ ν Γ 3 η ο 3 - 3 - ^ ο s i d e s s u c h as 47 r e s u l t e d i n a r a b i n o : r i b o r a t i o s o f a p p r o x i m a t e l y 2:1 ( J . Thiem, M. G e r k e n , B. S c h ô t t m e r , J.Weigand, C a r b o h y d r . Res., i n p r e s s ) . Owing t o t h e l a c k of an a x i a l a n o m e r i c s u b s t i t u e n t i n t h i s c a s e , n u c l e o p h i l i c a t t a c k from below p r e v a i l s . A comparable r a t i o w i t h t h e t r i s a c c h a r i d e u l o s i d e 44 w o u l d have b e e n e x p e c t e d . The e x c l u s i v e n u c l e o p h i l i c ^ t t a c k f r o m b e l o w may be assumed t o be g o v e r n e d by s e c o n d a r y b i n d i n g s o f t h e reagent i n the course of i t s approach t o the c a r b o n y l site. w
a
n
d
Downloaded by MIT on May 21, 2013 | http://pubs.acs.org Publication Date: December 30, 1989 | doi: 10.1021/bk-1989-0386.ch008
,
,
M
/
In Trends in Synthetic Carbohydrate Chemistry; Horton, D., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
THIEM
Deoxy Oligosaccharides ofAntibiotics
Downloaded by MIT on May 21, 2013 | http://pubs.acs.org Publication Date: December 30, 1989 | doi: 10.1021/bk-1989-0386.ch008
8.
In Trends in Synthetic Carbohydrate Chemistry; Horton, D., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
139
Downloaded by MIT on May 21, 2013 | http://pubs.acs.org Publication Date: December 30, 1989 | doi: 10.1021/bk-1989-0386.ch008
140
TRENDS IN SYNTHETIC CARBOHYDRATE CHEMISTRY
A n o t h e r r o u t e t o a m e t h y l - b r a n c h e d d e r i v a t i v e makes use of r e d u c t i v e c l e a v a g e of s p i r o e p o x i d e s ( 5 0 ) . The r e a l i z a t i o n o f t h i s p r o c e s s was t e s t e d i n t h e m o n o s a c c h a r i d e s e r i e s . W i t t i g o l e f i n a t i o n o f 4 J , was u s e d t o f o r m t h e e x o c y c l i c m e t h y l e n e compound 4 8 . T h i s s u g a r c o n t a i n s an i n h e r e n t a l l y l a l c o h o l f r a g m e n t the c h i r a l C-4 alcoh o l f u n c t i o n o f w h i c h s h o u l d be i d e a l y s u i t e d t o d e t e r mine t h e c h i r a l i t y o f t h e e p o x i d e t o be f o r m e d by t h e S h a r p l e s s method. W i t h t e r t - b u t v l h y d r o p e r o x i d e , t i t a n i u m t e t r a i s o p r o p o x i d e and ( - ) - t a r t r a t e ( f o r a " l i k e mode" p r o c e s s ) no r e a c t i o n o c c u r e d . A f t e r a number o f a t t e m p t s , t h e S h a r p l e s s method was abandoned and e x t e n d e d b a c k t o the w e l l - e s t a b l i s h e d m-chloroperoxybenzoic a c i d epoxidat i o n . The ( 3 R ) - e p o x i d e 4 £ was o b t a i n e d s t e r e o s p e c i f i c a l l y i n e x c e l l e n t y i e l d ( 8 3 % f ; and t h i s c o u l d be r e a d i l y r e d u c e d t o g i v e t h e D - r i b o compound 50. The e x c l u s i v e f o r m a t i o n o f 4 9 i s u n e x p e c t e d and may be a s s o c i a t e d w i t h a s t r o n g s t e r e o c h e m i c a l i n d u c t i o n by t h e c h i r a l c e n t e r s at C - l , C-4, and C-5. Subsequent to t h i s s u c c e s s , e x t e n s i o n to the t r i s a c c h a r i d e s e r i e s was a t t e m p t e d . I n t h i s c a s e , P e t e r s o n o l e f i n a t i o n o f t h e 3 " - u l o s i d e 4 4 gave t h e 3"-exo-methyl e n e d e r i v a t i v e 51. T r e a t m e n t o f 5 1 w i t h m.-chloroperoxyb e n z o i c a c i d u n d e r c o n d i t i o n s s i m i l a r t o t h o s e as e l u c i dated f o r the monosaccharides gave s t e r e o s p e c i f i c a l l y t h e ( 3 " R ) - s p i r o e p o x i d e compound 5 £ . S u b s e q u e n t r e d u c t i o n f u r n i s h e d t h e c o r r e c t E-D-C t r i s a c c h a r i d e s e q u e n c e 53 o f mithramicin. Anthracycline Oligosaccharides D a u n o r u b i c i n (54) and t h e l e s s - t o x i c a d r i a m y c i n (55) belong to the c l a s s I a n t h r a c y c l i n e a n t i b i o t i c s · Owing t o t h e i r p r o n o u n c e d c y t o s t a t i c a c t i v i t y t h e y a r e v a l u a b l e c h e m o t h e r a p e u t i c a g e n t s ( 5 3 - 5 5 ) . Ant h r a c y c l i n e s h a v i n g o l i g o s a c c h a r i d e c h a i n s , s u c h as a c l a c i n o m y c i n (56) ( 5 6 ) o r m a r c e l l o m y c i n (57.) , named c l a s s I I anthracycline a n t i b i o t i c s , e x h i b i t a more-favorable ther a p e u t i c b r e a d t h . Among o t h e r a d v a n t a g e s , t h e c l a s s I I compounds a r e o f s i m i l a r c y t o s t a t i c a c t i v i t y as t h e c l a s s I compounds b u t show c o n s i d e r a b l e l e s s c u m u l a t i v e c a r d i o toxicity (£8). A few s t r u c t u r e — a c t i v i t y c o r r e l a t i o n s have b e e n o u t l i n e d , e.g. t h e i m p o r t a n c e o f a 3 - a m i n o 2 , 3 , 6 - t r i d e o x y - L - l y x o d e r i v a t i v e a t t a c h e d as t h e s u g a r A unit (58). ~~ Thus, i t i s of i n t e r e s t t o g e n e r a t e o l i g o s a c c h a r i d e s o f t h e t y p e C-B-A i n 56, a l l o f w h i c h a r e l i n k e d i n t e r g l y c o s i d i c a l l y by a - ( 1 ^ > 4 ) - b o n d s . We have p r e v i o u s l y s y n t h e s i z e d v a r i o u s d e r i v a t i v e s o f t h e t e r m i n a l C-B d i s a c c h a r i d e s employing the F e r r i e r g l y c o s y l a t i o n approach (59, 6 0 ) . A t t h a t same t i m e we c o u l d combine t h e a z i d e f u n c t i o n a l i z a t i o n of g l y c a l s (61) w i t h the N - i o d o s u c c i n i m i d e method ( 1 6 ) and d e v e l o p a g e n e r a l a p p r o a c h t o 3 -
In Trends in Synthetic Carbohydrate Chemistry; Horton, D., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
Deoxy Oligosaccharides ofAntibiotics
Downloaded by MIT on May 21, 2013 | http://pubs.acs.org Publication Date: December 30, 1989 | doi: 10.1021/bk-1989-0386.ch008
8. THIEM
In Trends in Synthetic Carbohydrate Chemistry; Horton, D., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
141
Downloaded by MIT on May 21, 2013 | http://pubs.acs.org Publication Date: December 30, 1989 | doi: 10.1021/bk-1989-0386.ch008
142
TRENDS IN SYNTHETIC CARBOHYDRATE CHEMISTRY
a m i n o - 2 , 3 , 6 - t r i d e o x y - a - g l y c o s i d e s (62). I n essence t h i s p r o c e s s was f u r t h e r a p p l i e d t o g e n e r a t e o t h e r precursors i n t h i s f i e l d (63). R a t h e r e a r l y i t became e v i d e n t t h a t t h e NIS g l y c o s y l a t i o n o f an a x i a l 4-OH g r o u p , e v e n i n a b l o c k e d 3-amino s u g a r l i k e d a u n o s a m i n e o r r h o d o s a m i n e , c o u l d n o t be e f f e c t e d e f f i c i e n t l y (64). Consequently, a t r i s a c c h a r i d e s y n t h e s i s was r e q u i r e d t h a t a l l o w e d f a c i l e i n v e r s i o n o f a p r e c u r s o r s t r u c t u r e subsequent t o the advantageous use o f NIS g l y c o s y l a t i o n s t e p s . The a z i d e — f i - i o d o s u c c i n i m i d e g l y c o s y l a t i o n (62) e m p l o y e d w i t h t r i - O - a c e t y l - D ^ g l u c a l (57) and b e n z y l a l c o h o l g a v e i n 92% y i e l d a 2:1 m i x t u r e o'P'the 3 - a z i d o - 2 , 3 dideoxy-2-iodo-D-altro and D-manno e p i m e r s (62 and 6 4 ) . The r e a c t i o n p r o c e s s i s u n d e r s t o o d t o i n v o l v e p r i m a r y n u c l e o p h i l i c a t t a c k o f t h e a z i d e under a l l y l i c rearrangement t o f u r n i s h t h e a - a n d t h e B - D - e r v t h r o - h e x - 2 - e n o p y r a n o s y l a z i d e s 5 § and 59. T h e s e a r e ^ i n e q u i l i b r i u m v i a a [3.3]-sigmatropic rearrangement with the 3-azido-3-deoxyI ) - r i b o (60,) o r D - a r a b i n o g l y c a l s (61) . The m o r e - r e a c t i v e e n o l e t h e r s a r e p a r t i c u l a r l y proneHEo a t t a c k by an e l e c t r o p h i l e l i k e I"K and t h e r e s u l t i n g i o d o n i u m ( o r 2 - i o d o o x o c a r b e n i u m ) i n t e r m e d i a t e s a r e s u b s e q u e n t l y a t t a c k e d by the n u c l e o p h i l e t o g i v e p r e d o m i n a n t l y t h e p r o d u c t s o f t r a n s - d i a x i a l g e o m e t r y . F o l l o w i n g d e a c e t y l a t i o n , t h e Da l t r o d e r i v a t i v e 63 c o u l d by c r y s t a l l i z e d f r o m t h e mixture . ^ R e d u c t i v e d e i o d i n a t i o n w i t h BusSnH s m o o t h l y gave t h e 3 - a z i d o - D - r i b o d e r i v a t i v e 66. I n v e r s i o n a t C-5 and r e d u c t i o n a t C-6 and o f t h e a z i d o f u n c t i o n s h o u l d g i v e t h e L - l y x o t a r g e t m o l e c u l e . The most c o n v e n i e n t p a t h f o r t h e C-5 i n v e r s i o n employs s t e r e o s p e c i f i c h y d r o g é n a t i o n o f an e x o c y c l i c g l y c a l (60, 6 5 ) . A p p l i c a t i o n o f t h e NIS/PI13P r e a g e n t (66, 61) and s u b s e q u e n t a c e t y l a t i o n g a v e t h e 6i o d o component 67 i n g o o d y i e l d . E l i m i n a t i o n o f h y d r o g e n i o d i d e i s g e n e r a l l y performed with s i l v e r f l u o r i d e i n a n h y d r o u s p y r i d i n e (68.) , b u t was e f f e c t e d h e r e p r e f e r e n t i a l l y by u s e of DBU ( 6 9 ) . T h i s gave t h e h e x - 5 - e n o p y r a n o s i d e £g, i n v i r t u a l l y q u a n t i t a t i v e y i e l d . As t h e f i n a l s t e p , t h e l a b i l e e n o l e t h e r 68, was h y d r o g e n a t e d i n methanol with platinum/charcoal a t 30 b a r p r e s s u r e o f h y d r o gen. A c e t y l a t i o n t h e n g a v e s t e r e o s p e c i f i c a l l y b e n z y l Na c e t y l - p - L - d a u n o s a m i n i d e (70), o b t a i n e d c r y s t a l l i n e i n good y i e l d . T h i s r e a c t i o n s e q u e n c e was n o t meant a t t h e o u t s e t t o add a n o t h e r d a u n o s a m i n i d e s y n t h e s i s t o t h e number r e p o r t e d i n t h e l i t e r a t u r e (70.). However, w i t h o n l y s i x s t r a i g h t f o r w a r d s t e p s f r o m D - g l u c o s e and an o v e r a l l y i e l d o f a p p r o x . 20% i t may indeecT c o n s t i t u t e a r a t h e r f a v o r a b l e a l t e r n a t i v e . The main p u r p o s e f o r t h e d e v e l o p ment o f t h i s s e q u e n c e r e s i d e s i n t h e a d v a n t a g e o u s i n c o r poration of the precursor f o r the u n i t A i n t o the t r i s a c charide synthesis. By t r e a t m e n t o f t h e D - r i b o compound 66 w i t h t e r t -
In Trends in Synthetic Carbohydrate Chemistry; Horton, D., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
Downloaded by MIT on May 21, 2013 | http://pubs.acs.org Publication Date: December 30, 1989 | doi: 10.1021/bk-1989-0386.ch008
8.
THIEM
143
Deoxy Oligosaccharides ofAntibiotics
OAc
OAc
58 N
Q \
N
°3
u UAc
AcO
AcO'
S
N N
61
33
BnOH
NIS
OR
N
3
"3^
OBn 62 63
R = Ac R:H
& 65
n-Bu SnH 3
DBU N
3
R X 66 Η OH & Ac I
0B
n
H
2
z
0
^ ;
1.H -Pt 2
H C7\ -7-a 3
0
AcO 69
In Trends in Synthetic Carbohydrate Chemistry; Horton, D., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
144
TRENDS IN SYNTHETIC CARBOHYDRATE CHEMISTRY
b u t y l c h l o r o d i m e t h y l s i l a n e s e l e c t i v e b l o c k i n g of the p r i mary h y d r o x y g r o u p was a c h i e v e d t o g i v e 71. T h i s d e r i v a t i v e was t o s e r v e as t h e A u n i t p r e c u r s o r o n t o w h i c h t h e o t h e r s u g a r s a r e a t t a c h e d , and w h i c h f i n a l l y was t o be c o n v e r t e d i n t o a product having the L - l v x o c o n f i g u r a t i o n . As t h e p r e c u r s o r f o r t h e Β u n i t , t h e s e l e c t i v e l y b e n z y l a t e d ^ - f u c a l d e r i v a t i v e TO, c o u l d be o b t a i n e d c r y s t a l l i n e f r o m L - f u c a l by a p p l y i n g a p h a s e - t r a n s f e r - c a t a l y z e d p r o c e s s T64). By a F e r r i e r r e a c t i o n o f d i - O - a c e t y l L - r h a m n a l and a s u b s e q u e n t r e t r o e n o l e t h e r f o r m a t i o n t h r o u g h h y d r i d e a t t a c k a t C-3 (71.) t h e t - a m i c e t a l o b t a i n e d (64.) ; t h i s r e a c t i o n was c o n c u r r e n t l y a l s o ^ c i e s c r i b e d by o t h e r s ( 7 2 ) . G l y c o s y l a t i o n o f t h e g l y c a l 70 w i t h t h e s u g a r a g l y c o n 71 i n t h e p r e s e n c e o f N - i o d o s u c c i n i m i d e p r o c e e d e d s m o o t h l y and i n good y i e l d t o g i v e t h e d i s a c c h a r i d e d e r i v a t i v e 73. C l e a v a g e o f t h e 4 ' - a c e t o x y g r o u p y i e l d e d t h e new d i s a c c h a r i d e a g l y c o n 74. T h i s a g a i n c o u l d be g l y c o s y l a t e d by t h e NIS p r o c e d u r e t o L - a m i c e t a l 72 i n h i g h y i e l d , and t h i s gave t h e t r i s a c c h a r T d e 75. I n t e r e s t i n g l y , there i s no p r o b l e m i n g l y c o s y l a t i o n o i i t h e a x i a l h y d r o x y l g r o u p at the 4 ' - p o s i t i o n of the t e r m i n a l I r - a a l a c t o r e s i d u e i n 7£, i n c o n t r a s t t o t h o s e d e r i v a t i v e s h a v i n g a 3-amino s u b s t i t u e n t and o t h e r w i s e s i m i l a r s t r u c t u r e . A f t e r h a v i n g assembled the t h r e e sugar u n i t s they had t o be t r a n s f o r m e d i n t o t h e d e o x y - and a m i n o d e o x y - L l v x o s t r u c t u r e s . The i o d o f u n c t i o n s a r e r e a d i l y removed by t h e r a d i c a l l y - i n d u c e d r e d u c t i o n w i t h BU3 SnH t o g i v e JS. T r e a t m e n t o f 76 w i t h f l u o r i d e i n a n h y d r o u s t e t r a h y d r o f u r a n y i e l d e d q u a n t i t a t i v e l y t h e d e r i v a t i v e 77, w h i c h i n t u r n was s e l e c t i v e l y i o d i n a t e d a t p o s i t i o n 6 t o g i v e J§. The d e h y d r o h a l o g e n a t i o n w i t h DBU p r o c e e d e d even b e t t e r t h a n i n t h e m o n o s a c c h a r i d e s e r i e s and gave t h e e x o c y c l i c t r i s a c c h a r i d e e n o l e t h e r , compound 79. H y d r o g é n a t i o n under p r e s s u r e w i t h p l a t i n u m / c h a r c o a l i n methanol and s u b s e q u e n t a c e t y l a t i o n a c c o m p l i s h e d t h e s y n t h e s i s o f t h e C-B-A t r i s a c c h a r i d e g l y c o s i d e 80, i n s a t i s f a c t o r y y i e l d . T h i s compound c o n s t i t u t e s tiie c a r b o h y d r a t e s e q u e n c e o f d i h y d r o a c l a c i n o m y c i n . I t may c e r t a i n l y be f u r t h e r processed i n t o the t r i s a c c h a r i d e p a r t of a c l a c i n o m y c i n ( 5 § ) . The main a d v a n t a g e o f t h i s n o v e l a p p r o a c h r e s i d e s i n i t s v e r s a t i l i t y f o r the c o n s t r u c t i o n of s e l e c t i v e l y v a r i e d o l i g o m e r s s i m i l a r t o t h a t i n 56. F i n a l l y , c r e d i t s h o u l d be g i v e n t o M o n h e r e t ' s g r o u p who were t h e f i r s t (73.) t o a s s e m b l e C-B-A trisaccharide p r e c u r s o r s o f c l a s s I I a n t h r a c y c l i n e s . The f u c o s y l b r o mide 82 was o b t a i n e d f r o m t h e m e t h y l g l y c o s i d e 81 f o l l o w i n g o u r b r o m o t r i m e t h y l s i l a n e p r o c e d u r e (74.) . TÎîe b e n z y l oc-daunosaminide 84 o b t a i n e d f r o m t h e d i f f i c u l t l y a c c e s s i b l e compound 83 s e r v e d as t h e a g l y c o n s u g a r u n i t . C o n d e n s a t i o n o f ^ É h e s e components made use o f t h e H e l f e r i c h c o n d i t i o n s and gave t h e a - ( l - > 4 ) - l i n k e d d i s a c c h a r i d e 85 i n o n l y 40% y i e l d . The t e r m i n a l s t e p was a g a i n a NIS g l y c o s y l a t i o n (16.) o f t h e L - a m i c e t a l 72, w h i c h gave t h e
Downloaded by MIT on May 21, 2013 | http://pubs.acs.org Publication Date: December 30, 1989 | doi: 10.1021/bk-1989-0386.ch008
7
In Trends in Synthetic Carbohydrate Chemistry; Horton, D., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
2
w
a
s
Deoxy Oligosaccharides ofAntibiotics
Downloaded by MIT on May 21, 2013 | http://pubs.acs.org Publication Date: December 30, 1989 | doi: 10.1021/bk-1989-0386.ch008
8. T H I E M
79
80
In Trends in Synthetic Carbohydrate Chemistry; Horton, D., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
145
TRENDS IN SYNTHETIC CARBOHYDRATE CHEMISTRY
Downloaded by MIT on May 21, 2013 | http://pubs.acs.org Publication Date: December 30, 1989 | doi: 10.1021/bk-1989-0386.ch008
146
t r i s a c c h a r i d e component 86. A n o t h e r c o r r e s p o n d i n g p r e p a r a t i o n o f t h e m a r c e l l o m y c m t r i s a c c h a r i d e u n i t s was r e c e n t l y p u b l i s h e d by t h e same g r o u p ( 7 5 ) . A few f i n a l words f o c u s on t h e g l y c o s y l a t i o n o f a n t h r a c y c l i n o n e s . A number o f e a r l i e r r e p o r t s . u s e d t h e g l y c o s y l h a l i d e s prepared i n s i t u from 1-acyloxy d e r i v a t i v e s o f 3 - a m i n o - 2 , 3 , 6 - t r i d e o x y - s u g a r d e r i v a t i v e s and f o l l o w e d the Koenigs-Knorr c o n d i t i o n s w i t h amazing s t e r e o s e l e c t i v i t i e s ( c f . 52). R e c e n t l y the d i r e c t condensa t i o n o f t h e 1 - a c y l o x y compounds t o a n t h r a c y c l i n o n e s was reported to operate with t r i m e t h y l s i l y l trifluoromethane s u l f o n a t e (TMSOTf) i n e x t r e m l y h i g h y i e l d ( 7 6 ) . A n o t h e r approach s u c c e s s f u l y used the F e r r i e r g l y c o s y l a t i o n p r o c e d u r e ( 6 4 ) . O b v i o u s l y d e p e n d e n t on t h e t y p e o f a n t h r a c y c l i n o n e , t h e NIS p r o c e d u r e may a l s o be a p p l i e d . As a p a r t i c u l a r n i c e a p p l i c a t i o n , t h e NIS g l y c o s y l a t i o n o f d i a c e t y l - ^ - r h a m n a l 87 w i t h t h e r a c e m i c a n t h r a c y c l i n o n e 88 s h o u l d be m e n t i o n e d Γ ' T h i s gave good y i e l d s o f t h e d i a s t e ^ r e o m e r i c (7S,9S) and (7£,9R) g l y c o s i d e s 89 and 9Q w h i c h c o u l d be s e p a r a t e d r e a d i l y (77, c f . a l s o ^ 7 8 ) , t h u s c o n s t i t u t i n g a convenient r e s o l u t i o n s t e p i n the t o t a l syn t h e s i s of a n t h r a c y c l i n e g l y c o s i d e s .
HO NHC0CF
3
0
rac. 14 -Q -TBOMS-4 - demethoxyadriamycinone
87
OTBDMS ΌΗ
89 (9S) 29% 90 19 R 1 27%
In Trends in Synthetic Carbohydrate Chemistry; Horton, D., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
8. THIEM
Deoxy Oligosaccharides ofAntibiotics
147
Acknowledgments S t u d i e s o f t h i s g r o u p have e n j o y e d c o n t i n u o u s s u p p o r t f r o m t h e D e u t s c h e F o r s c h u n g s g e m e i n s c h a f t and t h e Fonds der Chemischen I n d u s t r i e , which i s g r a t e f u l l y acknowled ged.
Downloaded by MIT on May 21, 2013 | http://pubs.acs.org Publication Date: December 30, 1989 | doi: 10.1021/bk-1989-0386.ch008
Literature Cited 1. Hanessian, S.; Banoub, J. ACS Symposium Series 1976, 39, 36. 2. Paulsen, H. Angew. Chem. 1982, 94, 184. 3. Reichstein, T . ; Weiss, E. Adv. Carbohydr. Chem. 1962, 17, 65. 4. Wright, D.E. Tetrahedron 1979, 35, 1207; O l l i s , W.D.; Smith, C . ; Wright, D.E. Tetrahedron 1979, 35, 105. 5. Mallams, A . K . ; Puar, M.S., Rossman, R.R.; McPhail, A . T . ; Macfarlane, R.D.; Stephens, R.L. J. Chem. Soc., Perkin Trans. 1, 1983, 1497. 6. Remers, W.A. The Chemistry of Antitumor Antibiotics, Wiley, New York, N.Y. 1979. 7. Kelly, T.R. Annu. Rep. Med. Chem., 1979, 14, 288. 8. Sharon, N. Complex Carbohydrates - Their Chemistry, Biosynthesis, and Functions, Addison-Wesley Publ. Comp., Reading, Massachusetts 1975. 9. Grisebach, H. Angew. Chem. 1972, 84, 192. 10. Sable, H.Z. Adv. Enzymol. 1966, 28, 391. 11. Ferrier, R . J . Adv. Carbohydr. Chem. 1965, 20, 67. 12. Ferrier, R . J . Adv. Carbohydr. Chem. Biochem. 1969, 24, 199. 13. Thiem, J.; Schneider, G. Angew. Chem. 1983, 95, 54. 14. Thiem, J.; Schneider, G . ; Sinnwell, V. Liebigs Ann. Chem.. 1986, 814. 15. Tatsuta, K . ; Fujimoto, K . ; Kinoshita, M.; Umezawa, S. Carbohydr. Res. 1977, 54, 85. 16. Thiem, J.; Karl, H . ; Schwentner, J. Synthesis 1978, 696. 17. Thiem, J.; Elvers, J. Chem. Ber. 1979, 112, 818. 18. Thiem, J.; Ossowski, P.; Ellermann, U. Liebigs Ann. Chem. 1981, 2228. 19. Thiem, J.; Ossowski, P. J. Carbohydr. Chem. 1984, 3, 287. 20. Thiem, J.; Prahst, Α . ; Lundt, I. Liebigs Ann. Chem. 1986, 1044. 21. Bock, K . ; Pedersen, C . ; Thiem, J. Carbohydr. Res. 1979, 73, 85. 22. Gross, H . ; Karsch, U. J. Prakt. Chem. 1965, 29, 315. 23. Bognar, R.; Farkas-Szabo, I . ; Farkas, I . ; Gross, H. Carbohydr. Res. 1967, 5, 241. 24. Lemieux, R . U . ; Fraser-Reid, B. Canad. J. Chem. 1965, 43, 1460. 25. Igarashi, K . ; Honma, T . ; Imagawa, T. J. Org. Chem. 1970, 35, 610. 26. Boullanger, P.; Descotes, G. Carbohydr. Res. 1976, 51, 55.
In Trends in Synthetic Carbohydrate Chemistry; Horton, D., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
Downloaded by MIT on May 21, 2013 | http://pubs.acs.org Publication Date: December 30, 1989 | doi: 10.1021/bk-1989-0386.ch008
148
TRENDS IN SYNTHETIC CARBOHYDRATE CHEMISTRY
27. Horton, D.; Priebe, W.; Varela, O. J . Org. Chem. 1986, 51, 3479. 28. Thiem, J.; Gerken, M.; Bock, K. Liebigs Ann. Chem. 1983, 462. 29. Thiem, J.; Gerken, M. J. Carbohydr. Chem. 1982/83, 1, 229. 30. Schöttmer, Β. Diplomarbeit, University of Munster 1985. 31. Wiesner, K.; Tsai, T.Y.R.; Jin, H. Helv. Chim. Acta 1985, 68, 300. 32. Ward, D.C.; Reich, E . ; Goldberg, I.H. Science 1965, 149, 1259. 33. Behr, W.; Honikel, K.; Hartmann, G. Europ. J . Biochem. 1969, 9, 82. 34. van Dyke, M.; Dervan, P.B. Biochem. 1983, 22, 2373. 35. Miyamoto, M.; Morita, K.; Kawamatsu, Y.; Naguchi, S.; Marumoto, R.; Sasai, M.; Nohara, Α.; Nakadaira, Y.; Lin, Y.Y.; Nakanishi, K. Tetrahedron 1966, 22, 2761. 36. Berlin, Yu.A.; Kolosov, M.N.; Schemyakin, M.M. Tetrahedron Lett. 1966, 1431. 37. Miyamoto, M.; Kawamatsu, Y.; Kawashima, K.; Shino hara, M.; Tanaka, K.; Tatsuoka, S.; Nakanishi, K. Tetrahedron 1967, 23, 421. 38. Thiem, J.; Meyer, B. J . Chem. Soc., Perkin Trans. 2, 1979, 1331. 39. Thiem, J.; Meyer, B. Tetrahedron 1981, 37, 551. 40. Thiem, J.; Meyer, B. Chem. Ber. 1980, 113, 3058. 41. Thiem, J.; Elvers, J . Chem. Ber. 1980, 113, 3049. 42. Thiem, J.; Karl, H. Chem. Ber. 1980, 113, 3039. 43. Hanessian, S.; Banoub J . Carbohydr. Res. 1977, 53, C 13. 44. Thiem, J.; Elvers, J . Chem. Ber. 1979, 112, 818. 45. Jung, G.; Klemer, A. Chem.Ber. 1981, 114, 740. 46. Thiem, J.; Gerken, M. J . Org. Chem. 1985, 50, 954. 47. Thiem, J.; Elvers, J . Chem. Ber. 1981, 114, 1442. 48. Dyong, I.; Merten, H.; Thiem J . Liebigs Ann. Chem. 1986, 600. 49. Thiem, J.; Elvers, J . Chem. Ber. 1978, 111, 3514. 50. Yoshimura, J . Advan. Carbohydr. Chem. Biochem. 1984, 42, 69. 51. Crooke, S.T.; Reich, S.D. (Eds.) Anthracyclines Current Status and Development, Academic Press, New York 1980. 52. El Khadem, H.S. (Ed.) Anthracycline Antibiotics, Academic Press, New York 1982. 53. Füllenbach, D.; Nagel, G.A.; Seeber, S. (Eds.) Adriamycin-Symposium: Ergebnisse und Aspekte, Karger, Basel 1981. 54. Arcamone, F. Doxorubicin - Anticancer Antibiotics, Academic Press, New York 1981. 55. Jones, S.E. (Ed.) Current Concepts in the Use of Doxorubicin Chemotherapy, Farmitalia Carlo Erba, Milano 1982. 56. Oki, T. Aclacinomycin A, Chap. 19, p. 323 in lit. 50.
In Trends in Synthetic Carbohydrate Chemistry; Horton, D., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
Downloaded by MIT on May 21, 2013 | http://pubs.acs.org Publication Date: December 30, 1989 | doi: 10.1021/bk-1989-0386.ch008
8. THIEM Deoxy Oligosaccharides of Antibiotics
149
57. Reich, S.D.; Bradner, W.T.; Rose, W.C.; Schurig, J . Ε . ; Madissoo, Η.; Johnson, D.F.; DuVernay, V.H.; Crooke, S.T. Marcellomycin, Chap. 20, p. 343 in lit. 50. 58. Doyle, T.W. Anthracycline Oligosaccharides, Chap. 4, p. 27 in L i t . 50. 59. Thiem, J.; Hoist, M.; Schwentner, J . Chem. Ber. 1980, 113, 3488. 60. Thiem, J.; Kluge, W.; Schwentner, J . Chem. Ber. 1980, 113, 3497. 61. Heyns, K.; Hohlweg, R. Chem. Ber. 1978, 111, 1632. 62. Heyns, K.; Feldmann, J.; Hadamczyk, D.; Schwentner, J.; Thiem, J . Chem. Ber. 1981, 114 232. 63. Thiem, J.; Springer, D. Carbohydr. Res. 1985, 325. 64. Springer, D. Dissertation, University of Hamburg 1985. 65. Horton, D.; Weckerle, W. Carbohydr. Res. 1975, 44, 227. 66. Appel, R. Angew. Chem. 1975, 87, 863. 67. Hanessian, S.; Lavallee, P. Meth. Carbohydr. Chem. 1976, 7, 49. 68. Helferich, B.; Himmen, E. Ber. Dtsch. Chem. Ges. 1928, 61, 1825. 69. Oediger, H.; Möller, F. Angew. Chem. 1967, 79, 53. 70. Hauser, F.M.; Ellenberger, S.R. Chem. Rev. 1986, 86, 35. 71. Fraser-Reid, B.; Radatus, B.; Tarn, S.Y.-K. Meth. Carbohyr. Chem. 1980, 8, 219. 72. Martin, Α.; Pais, M.; Monneret, C. Carbohydr. Res. 1983, 113, 21. 73. Martin, Α.; Pais, M.; Monneret, C. J. Chem. Soc., Chem. Commun. 1983, 305. 74. Thiem, J.; Meyer, B. Chem. Ber. 1980, 113, 3075. 75. Monneret, C.; Martin, Α.; Pais, M. Tetrahedron Lett. 1986, 22, 575. 76. Kimura, Y.; Suzuki, M.; Matsumoto, T . ; Abe, R.; Terashima, S. Chem. Lett. 1984, 501. 77. Horton, D.; Priebe, W.; Varela, O. Carbohydr. Res. 1984, 130, C 1. 78. Horton, D.; Priebe, W. Carbohydr. Res. 1985, 136, 391. RECEIVED May 31, 1988
In Trends in Synthetic Carbohydrate Chemistry; Horton, D., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.