Twenty Years Hard Labor as a Fiber Diffractionist - ACS Symposium

Jul 23, 2009 - X-ray diffraction can be used to help determine the molecular geometry of polymers that prefer to be long helices rather than more comp...
2 downloads 6 Views 2MB Size
1 Twenty Years Hard Labor as a Fiber Diffractionist STRUTHER ARNOTT

Downloaded by 5.8.47.55 on February 8, 2017 | http://pubs.acs.org Publication Date: November 17, 1980 | doi: 10.1021/bk-1980-0141.ch001

Department of Biological Sciences, Purdue University, West Lafayette, IN 47907

X-ray diffraction can be used to help determine the molecular geometry of polymers that prefer to be long helices rather than more complexly folded structures. It is usually possible to prepare specimens i n which such helical molecules are aligned with their long axes parallel. Often further lateral organization occurs, but rarely to the degree of a three-dimensionally ordered single crystal. Potentially this is an advantage, since there is more information (about the Fourier transform (1, 2, 3) of a molecular structure) i n the continuous intensity distribution i n the diffraction pattern from a less well-ordered system than there i s the "sampled" distribution characteristic of a single crystal. But, since "sampling" also implies local amplification of the molecular transform (at reciprocal lattice points), i t s absence results i n much weaker diffraction signals and the theoretical advantage of knowing the continuous intensity variation is offset by the experimental difficulty of recording it accurately. A further complication is that there are a great many kinds of partially-ordered systems of helical molecules, each giving rise to different types of diffraction pattern i n which both continuous intensity and Bragg maxima occur. If we wish quantitatively to analyze a diffraction pattern we, of course, have to succeed i n modelling not only the molecular structure but also the molecular packing. This i s true

0-8412-0589-2/80/47-141-001$07.50/0 © 1980 American Chemical Society French and Gardner; Fiber Diffraction Methods ACS Symposium Series; American Chemical Society: Washington, DC, 1980.

2

FIBER DIFFRACTION METHODS

for

any

d i f f r a c t i o n p a t t e r n , but

for fiber diffraction

patterns

t h e r e i s a d d i t i o n a l c o m p l e x i t y b e c a u s e t h e modes o f p a c k i n g more v a r i e d and

complex than i n s i n g l e

Fibrous biopolymers

crystals.

are a f f l i c t e d

a l s o by

the problem of

p h a s e d e t e r m i n a t i o n common t o a l l X - r a y a n a l y s e s and

by

are

of s t r u c t u r e ,

t h e same l i m i t a t i o n s o f r e s o l u t i o n t h a t a f f e c t

diffraction

a n a l y s e s o f m o s t m a c r o m o l e c u l e s e v e n when ( l i k e g l o b u l a r enzymes) they are o r g a n i z e d

i n single crystals.

The

ways i n w h i c h

Downloaded by 5.8.47.55 on February 8, 2017 | http://pubs.acs.org Publication Date: November 17, 1980 | doi: 10.1021/bk-1980-0141.ch001

problems have been overcome f o r f i b r o u s systems a r e commonplace, a l t h o u g h biopolymers

t h e e m p h a s i s may

enough f o r f a c i l e p h a s e d e t e r m i n a t i o n . h i g h symmetry and

Nor,

These

atoms h e a v y

because of

their

tendency to d i s o r d e r , i s i t easy to o b t a i n

i s o m o r p h o u s heavy-atorn occupancy.

quite

be u n f a m i l i a r .

do n o t u s u a l l y h a v e c o v a l e n t l y - b o u n d

these

d e r i v a t i v e s without m u l t i p l e s i t e

T h e r e f o r e , many o f

the w e l l - t r o d d e n paths t h a t l e a d

from s e t s of d i f f r a c t i o n i n t e n s i t i e s to a unique s o l u t i o n molecular

s t r u c t u r e are not a v a i l a b l e .

More u s u a l l y one

of builds

a s t e r e o c h e m i c a l l y p l a u s i b l e model o f a r e s i d u e t h a t f i t s a h e l i x w h i c h has

t h e d i m e n s i o n s and

symmetry

determined from the l a y e r - l i n e spacings a b s e n c e s and pattern.

is

from the

general i n t e n s i t y d i s t r i b u t i o n i n the

T h e r e a f t e r t h e p r o b l e m i s one

fundamentally

and

of refinement.

(4J As

If

of,

t a s k of r e f i n i n g each p o s s i b i l i t y

a d j u d i c a t i n g among o p t i m i z e d m o d e l s o f e a c h k i n d by tests

systematic

diffraction

d i f f e r e n t i n i t i a l models are conceived

then the a d d i t i o n a l

into

characteristics

there and

appropriate

. I see i t , s t r u c t u r a l b i o c h e m i s t s

and

polymer

u s i n g f i b e r d i f f r a c t i o n data should s t r i v e to mimic

scientists classical

c r y s t a l l o g r a p h i c s t u d i e s so as t o a r r i v e a t s i m i l a r l y c r e d i b l e s o l u t i o n s o f s t r u c t u r e s by

s i m i l a r l y n o n c o n t r o v e r s i a l methods o f

procedure that are s i m i l a r l y r e p r o d u c i b l e i n other We

laboratories.

a r e o b v i o u s l y on t h e t h r e s h o l d o f g r e a t l y i m p r o v i n g

accuracy

o f i n t e n s i t y measurement b u t

I will

the

leave d i s c u s s i o n of

French and Gardner; Fiber Diffraction Methods ACS Symposium Series; American Chemical Society: Washington, DC, 1980.

1.

ARNOTT

3

A Fiber Diffractionist

t h i s t o o t h e r s and d i s c u s s i n t u r n t h e d i f f e r e n t k i n d s o f packing arrangements a v a i l a b l e t o f i b r o u s molecules, scheme f o r d e t e r m i n i n g

a general

t h e i r s t r u c t u r e s and p a c k i n g s , and

e x a m p l e s o f a r b i t r a t i o n among c o m p e t i n g m o d e l s .

Types o f D i s o r d e r and Consequent D i f f r a c t i o n E f f e c t s

Although

Downloaded by 5.8.47.55 on February 8, 2017 | http://pubs.acs.org Publication Date: November 17, 1980 | doi: 10.1021/bk-1980-0141.ch001

will be

somewhat i d e a l i z e d ,

s e r v e t o i n d i c a t e t h e v a r i e t y o f p a c k i n g modes t h a t may

encountered.

molecules

The m o d e l h a s p a r a l l e l a r r a y s o f h e l i c a l

with their

l o n g axes i n t e r s e c t i n g a p l a n e

t o them a t p o i n t s f o r m i n g present not

t h e f o l l o w i n g g e n e r a l model

d i s c u s s i o n we w i l l

infinite,

although

a ( r e g u l a r rhombic) n e t . I n t h e ignore the f a c t that these nets a r e

f i n i t e n e t a r e a has t h e important

consequence o f broadening

diffraction signals,

a g g r a v a t i n g problems o f i n t e n s i t y measurement. be r e c o g n i z e d

thereby I t should

also

t h a t f i b e r s t y p i c a l l y c o n s i s t o f many s m a l l d o m a i n s

l i k e o u r m o d e l and t h a t t h e s e a r e p a r a l l e l h e l i x axes'

perpendicular

d i r e c t i o n b u t no o t h e r .

i n respect o f the

T h i s means ( f o r e x a m p l e )

t h a t when t h e d o m a i n s a r e f u l l y c r y s t a l l i n e t h e d i f f r a c t i o n the f i b e r i s l i k e

from

that from a r o t a t e d s i n g l e c r y s t a l , w i t h t h e

penalty of overlapping d i f f r a c t i o n signals f o rreciprocal

lattice

p o i n t s w i t h t h e same r e c i p r o c a l s p a c e c y l i n d r i c a l p o l a r r a d i u s (R i n F i g . 1 ) . However, f o r t h e moment we w i l l

discuss only

the consequences o f d i f f e r e n t types o f d i s o r d e r i n g o f m o l e c u l a r p a c k i n g within An

each s m a l l domain.

i s o l a t e d h e l i c a l molecule

i s i n essence a

c r y s t a l " because o f i t s a x i a l p e r i o d i c i t y . transform

"one-dimensional

I t sFourier

(]L, 2> 3 ) i s t h e r e f o r e c o n f i n e d t o l a y e r l i n e s a n d o n

each l a y e r l i n e i t i s a continous

f u n c t i o n p r o p o r t i o n a l t o Twhere

French and Gardner; Fiber Diffraction Methods ACS Symposium Series; American Chemical Society: Washington, DC, 1980.

4

FIBER DIFFRACTION METHODS

T = EE nj

f. J J

( 2 i r R r . ) e x p [ i { n ( < M .+ir/2)+2Tr*,z .} ]

n

J

J

(i)

J

If G

= E f. J ^ Z i r R T j ) exp[i(2Trilz -n(|) )],

n

j

(ii)

j

and t

= G

n

exp[in(*-hr/2)],

n

( i i i )

Downloaded by 5.8.47.55 on February 8, 2017 | http://pubs.acs.org Publication Date: November 17, 1980 | doi: 10.1021/bk-1980-0141.ch001

then T = E t n is

(iv)

n

an a b b r e v i a t e d

S y m b o l s and

form of

definitions:

( i ) that w i l l

be

o = a x i a l repeat

found u s e f u l below. along

length

S^ i s t h e r e c i p r o c a l ( i . e . d i f f r a c t i o n ) s p a c e v e c t o r c a r t e s i a n components ( S , n , C ) ; C = ^/o

9

i s an

i n t e g e r ; S^ = R + _C v e c t o r i a l l y ;

c y l i n d r i c a l polar coordinates coordinates coordinates

Z

C

j/ >

(R,I|J,0 a r e

of

2 i r ) ; Az the a x i a l th ^

the p

displacement

h e l i c a l molecule; A

i n t e g e r d e t e r m i n e d by

f o r an

is a

vector

N-fold

the s e l e c t i o n r u l e

w h e r e m = 0,+l,+2, e t c .

That T i s a s e r i e s of B e s s e l r a t h e r than

trigonometric

i s merely a consequence of u s i n g c y l i n d r i c a l

coordinates for

the

the f i r s t

the net on w h i c h the h e l i c e s a r e a r r a y e d ;

i n t e g r a l h e l i x , n i s an

functions

cartesian

k i n d o f o r d e r n and ^ the r e l a t i v e o r i e n t a t i o n of the p helical

( a s a f r a c t i o n o f o)

n = £-Nm,

the

f j i s the s c a t t e r i n g f a c t o r of

m o l e c u l e (as a f r a c t i o n of

in

has

I ( t h e l a y e r l i n e number)

o f p o i n t t h a t has

(Y) = B e s s e l f u n c t i o n o f

n argument Y;

that

(£,n,C); (r.,(|>.,Z.) a r e t h e c y l i n d r i c a l p o l a r tfo 3 3 3 of the j atom o f one r e s i d u e o f t h e h e l i c a l

m o l e c u l e ; z^ = atom; J

helix;

( r , _., oz/)

f o r atoms i n r e a l s p a c e and

points i n r e c i p r o c a l space.

Not

only

is this a

framework f o r d e s c r i b i n g a h e l i c a l m o l e c u l e , but e c o n o m i e s i n c o m p u t i n g T.

For

polar (R, ^,

convenient

i t can l e a d

h e l i c e s , only Bessel

£/