Ultrafast Solvent-Assisted Sodium Ion Intercalation into Highly

Nov 30, 2015 - reported for a carbon-based Na-ion battery anode to the best of our knowledge. Utilizing in situ Raman spectroscopy, we reveal a highly...
0 downloads 7 Views 5MB Size
Letter pubs.acs.org/NanoLett

Ultrafast Solvent-Assisted Sodium Ion Intercalation into Highly Crystalline Few-Layered Graphene Adam P. Cohn,† Keith Share,‡ Rachel Carter,† Landon Oakes,‡ and Cary L. Pint*,†,‡ †

Department of Mechanical Engineering and ‡Interdisciplinary Materials Science Program, Vanderbilt University, Nashville, Tennessee 37235, United States S Supporting Information *

ABSTRACT: A maximum sodium capacity of ∼35 mAh/g has hampered the use of crystalline carbon nanostructures for sodium ion battery anodes. We demonstrate that a diglyme solvent shell encapsulating a sodium ion acts as a “nonstick” coating to facilitate rapid ion insertion into crystalline few-layer graphene and bypass slow desolvation kinetics. This yields storage capacities above 150 mAh/g, cycling performance with negligible capacity fade over 8000 cycles, and ∼100 mAh/g capacities maintained at currents of 30 A/g (∼12 s charge). Raman spectroscopy elucidates the ordered, but nondestructive cointercalation mechanism that differs from desolvated ion intercalation processes. In situ Raman measurements identify the Na+ staging sequence and isolates Fermi energies for the first and second stage ternary intercalation compounds at ∼0.8 eV and ∼1.2 eV. KEYWORDS: Graphene, sodium ion batteries, in situ Raman spectroscopy, solvent cointercalation, graphene intercalation compounds, anode, Na+

G

routes to explore combinations of ion species and materials that are otherwise impossible. Recently, Lin et al. showed that aluminum ion batteries based on graphitic electrodes can be produced with specific capacity of ∼70 mAh/g by facilitating intercalation of the Al ions through a chloroaluminate ion species formed in the electrolyte.11 These authors report minimal capacity fade over 7500 cycles and rate capabilities up to 4 A/g. Such ideas have also recently been explored for Naion batteries using commercially purchased bulk graphite materials to achieve capacities of ∼110 mAh/g by using glyme-based electrolytes.12−15 Overall, the ability to bypass the slow desolvation step16 has been proven to yield higher rate capabilities than traditional intercalation processes.13 Whereas nanoscale materials such as few-layered graphene exhibit inherent large electrode−electrolyte interface areas that result in ion storage near the electrode−electrolyte interface, such materials should be ideally suited to optimize cointercalation storage, though no studies so far have investigated nanostructured electrodes for sodium cointercalation. A key challenge for next-generation batteries is to simultaneously improve multiple metrics over state-of-the-art devices to enable wide use in emerging applications. For example, solar-storage integrated systems require lifetimes matching solar cells (30 years), electric vehicles require a

raphite and more recently graphene, which are crystalline forms of carbon, have been pivotal in the development of lithium-ion batteries. Despite years of research on alternative anode materials, carbons remain the paramount choice for battery manufacturing due to low cost, excellent stability with diverse electrolytes, and high capacity. Whereas sodium ion batteries present a cost and manufacturing landscape that could potentially revolutionize low-cost secondary storage applications, such as grid-scale storage, a major hurdle has been that crystalline carbon materials are a poor host for sodium ions, leading to a maximum capacity of 2). Finally the G peaks evolve into a broad (fwhm ∼60 cm−1) peak by stage 2 and then disappear by stage 1.37 In contrast, we do not observe any initial dilute staging, and the progressing spectra show extremely sharp, well-resolved Lorenztian peaks through stage 2 formation, indicating a more ordered staging process. Accordingly, these findings demonstrate that minimal in-plane deformation of the lattice occurs during the reaction, which is likely a result of the weak interaction of the ion with the host and appears to be another key factor facilitating the fast inplane diffusion and improved cycling stability. Additional in situ Raman data showing spectra acquired with the 2.33 eV laser, the deintercalation reaction, the evolution of the 2D peak, and the methodology used to identify the early stage compounds are included in Figures S6−11. While the narrowing of the G peak can be simply attributed to increasing structural order, it has also been ascribed to increased phonon lifetimes in charge graphenea result of blocking the decay of G-mode phonons into electron−hole pairs that takes place during the Kohn anomaly process.19 The



ASSOCIATED CONTENT

S Supporting Information *

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.nanolett.5b04187. (i) Additional experimental details, (ii) dQ/dV differential capacity curves based on galvanostatic data, (iii) GITT and CV measurements used to calculate diffusion coefficient, (iv) cycling performance measured at 1 A/g rates, (v) experimental setup used for in situ Raman spectroscopy, (vi) full sequence of in situ Raman spectroscopy scans, with two lasers and correlation E

DOI: 10.1021/acs.nanolett.5b04187 Nano Lett. XXXX, XXX, XXX−XXX

Letter

Nano Letters



(21) Reina, A.; Jia, X.; Ho, J.; Nezich, D.; Son, H.; Bulovic, V.; Dresselhaus, M. S.; Kong, J. Nano Lett. 2009, 9, 30−35. (22) Maluangnont, T.; Bui, G. T.; Huntington, B. A.; Lerner, M. M. Chem. Mater. 2011, 23, 1091−1095. (23) Weppner, W.; Huggins, R. A. J. Electrochem. Soc. 1977, 124, 1569−1578. (24) Levi, M. D.; Aurbach, D. J. Electroanal. Chem. 1997, 421, 79−88. (25) Aurbach, D.; Markovsky, B.; Weissman, I.; Levi, E.; Ein-Eli, Y. Electrochim. Acta 1999, 45, 67−86. (26) Zhu, Y.; Murali, S.; Stoller, M. D.; Ganesh, K.; Cai, W.; Ferreira, P. J.; Pirkle, A.; Wallace, R. M.; Cychosz, K. A.; Thommes, M. Science 2011, 332, 1537−1541. (27) Jaber-Ansari, L.; Puntambekar, K. P.; Tavassol, H.; Yildirim, H.; Kinaci, A.; Kumar, R.; Saldaña, S. J.; Gewirth, A. A.; Greeley, J. P.; Chan, M. K. ACS Appl. Mater. Interfaces 2014, 6, 17626−17636. (28) Dimiev, A. M.; Ceriotti, G.; Behabtu, N.; Zakhidov, D.; Pasquali, M.; Saito, R.; Tour, J. M. ACS Nano 2013, 7, 2773−2780. (29) Pisana, S.; Lazzeri, M.; Casiraghi, C.; Novoselov, K. S.; Geim, A. K.; Ferrari, A. C.; Mauri, F. Nat. Mater. 2007, 6, 198−201. (30) Das, A.; Pisana, S.; Chakraborty, B.; Piscanec, S.; Saha, S.; Waghmare, U.; Novoselov, K.; Krishnamurthy, H.; Geim, A.; Ferrari, A. Nat. Nanotechnol. 2008, 3, 210−215. (31) Chen, C.-F.; Park, C.-H.; Boudouris, B. W.; Horng, J.; Geng, B.; Girit, C.; Zettl, A.; Crommie, M. F.; Segalman, R. A.; Louie, S. G. Nature 2011, 471, 617−620. (32) Bao, W.; Wan, J.; Han, X.; Cai, X.; Zhu, H.; Kim, D.; Ma, D.; Xu, Y.; Munday, J. N.; Drew, H. D. Nat. Commun. 2014, 5, 4224− 4224. (33) Wan, J.; Gu, F.; Bao, W.; Dai, J.; Shen, F.; Luo, W.; Han, X.; Urban, D.; Hu, L. Nano Lett. 2015, 15, 3763−3769. (34) Dresselhaus, M.; Dresselhaus, G. Adv. Phys. 1981, 30 (2), 139− 326. (35) Zhao, W.; Tan, P. H.; Liu, J.; Ferrari, A. C. J. Am. Chem. Soc. 2011, 133, 5941−5946. (36) Chacon-Torres, J. C.; Wirtz, L.; Pichler, T. ACS Nano 2013, 7, 9249−9259. (37) Inaba, M.; Yoshida, H.; Ogumi, Z.; Abe, T.; Mizutani, Y.; Asano, M. J. Electrochem. Soc. 1995, 142, 20−26. (38) Holzwarth, N.; Louie, S. G.; Rabii, S. Phys. Rev. B: Condens. Matter Mater. Phys. 1983, 28, 1013. (39) Dimiev, A. M.; Bachilo, S. M.; Saito, R.; Tour, J. M. ACS Nano 2012, 6, 7842−7849. (40) Pollak, E.; Geng, B.; Jeon, K.-J.; Lucas, I. T.; Richardson, T. J.; Wang, F.; Kostecki, R. Nano Lett. 2010, 10, 3386−3388. (41) Wang, F.; Zhang, Y.; Tian, C.; Girit, C.; Zettl, A.; Crommie, M.; Shen, Y. R. Science 2008, 320, 206−209. (42) Ohzuku, T.; Iwakoshi, Y.; Sawai, K. J. Electrochem. Soc. 1993, 140, 2490−2498. (43) Chacon-Torres, J.; Ganin, A.; Rosseinsky, M.; Pichler, T. Phys. Rev. B: Condens. Matter Mater. Phys. 2012, 86, 075406.

with corresponding galvanostatic charge−discharge measurement, (vii) in situ Raman characterization of the 2D mode during staging, and (viii) analysis and methodology of determining the staging sequences (PDF) Video S1 showing colors observed through optical microscope during in situ intercalation of Na+ into fewlayered graphene (AVI)

AUTHOR INFORMATION

Corresponding Author

*E-mail: [email protected]. Notes

The authors declare no competing financial interest.



ACKNOWLEDGMENTS We thank William Erwin for machine shop assistance, Dhiraj Prasai, Bradly Baer, Nitin Muralidharan and Anna Douglas for useful discussions, and Rizia Bardhan for use of Raman microscope critical for this work. This work was supported in part by National Science Foundation grant EPS 1004083 and Vanderbilt start-up funds. A.P.C. and K. S. are supported in part by the National Science Foundation Graduate Research Fellowship under Grant No. 1445197.



REFERENCES

(1) Ge, P.; Fouletier, M. Solid State Ionics 1988, 28, 1172−1175. (2) Slater, M. D.; Kim, D.; Lee, E.; Johnson, C. S. Adv. Funct. Mater. 2013, 23, 947−958. (3) Yabuuchi, N.; Kubota, K.; Dahbi, M.; Komaba, S. Chem. Rev. 2014, 114, 11636−11682. (4) Sun, J.; Lee, H.-W.; Pasta, M.; Yuan, H.; Zheng, G.; Sun, Y.; Li, Y.; Cui, Y. Nat. Nanotechnol. 2015, 10, 980−985. (5) Seh, Z. W.; Sun, J.; Sun, Y.; Cui, Y. ACS Cent. Sci. 2015, 1, 449− 455. (6) Bommier, C.; Surta, T. W.; Dolgos, M.; Ji, X. Nano Lett. 2015, 15, 5888−5892. (7) Wen, Y.; He, K.; Zhu, Y.; Han, F.; Xu, Y.; Matsuda, I.; Ishii, Y.; Cumings, J.; Wang, C. Nat. Commun. 2014, 5, 4033−4042. (8) Cao, Y.; Xiao, L.; Sushko, M. L.; Wang, W.; Schwenzer, B.; Xiao, J.; Nie, Z.; Saraf, L. V.; Yang, Z.; Liu, J. Nano Lett. 2012, 12, 3783− 3787. (9) Tang, K.; Fu, L.; White, R. J.; Yu, L.; Titirici, M. M.; Antonietti, M.; Maier, J. Adv. Energy Mater. 2012, 2, 873−877. (10) Wang, H. g.; Wu, Z.; Meng, F. l.; Ma, D. l.; Huang, X. l.; Wang, L. m.; Zhang, X. b. ChemSusChem 2013, 6, 56−60. (11) Lin, M.-C.; Gong, M.; Lu, B.; Wu, Y.; Wang, D.-Y.; Guan, M.; Angell, M.; Chen, C.; Yang, J.; Hwang, B.-J. Nature 2015, 520, 324− 328. (12) Jache, B.; Adelhelm, P. Angew. Chem., Int. Ed. 2014, 53, 10169− 10173. (13) Kim, H.; Hong, J.; Park, Y. U.; Kim, J.; Hwang, I.; Kang, K. Adv. Funct. Mater. 2015, 25, 534−541. (14) Kim, H.; Hong, J.; Yoon, G.; Kim, H.; Park, K.-Y.; Park, M.-S.; Yoon, W.-S.; Kang, K. Energy Environ. Sci. 2015, 8, 2963−2969. (15) Zhu, Z.; Cheng, F.; Hu, Z.; Niu, Z.; Chen, J. J. Power Sources 2015, 293, 626−634. (16) Abe, T.; Fukuda, H.; Iriyama, Y.; Ogumi, Z. J. Electrochem. Soc. 2004, 151, A1120−A1123. (17) Chen, Z.; Ren, W.; Gao, L.; Liu, B.; Pei, S.; Cheng, H.-M. Nat. Mater. 2011, 10, 424−428. (18) Cohn, A. P.; Oakes, L.; Carter, R.; Chatterjee, S.; Westover, A. S.; Share, K.; Pint, C. L. Nanoscale 2014, 6, 4669−4675. (19) Malard, L.; Pimenta, M.; Dresselhaus, G.; Dresselhaus, M. Phys. Rep. 2009, 473, 51−87. (20) Ferrari, A. C.; Basko, D. M. Nat. Nanotechnol. 2013, 8, 235−246. F

DOI: 10.1021/acs.nanolett.5b04187 Nano Lett. XXXX, XXX, XXX−XXX