Use of Microorganisms and Microbial Systems in the Degradation of

Jul 23, 2009 - In both cases the gene is carried on plasmid DNA. While the genes are identical DNA-DNA hybridization and restriction enzyme mapping of...
0 downloads 0 Views 1MB Size
C h a p t e r 13 Use of in

Microorganisms the

and

Degradation

Microbial of

Systems

Pesticides

Downloaded by CALIFORNIA INST OF TECHNOLOGY on September 17, 2017 | http://pubs.acs.org Publication Date: March 18, 1987 | doi: 10.1021/bk-1987-0334.ch013

Jeffrey S. Karns, Mark T. Muldoon, Walter W. Mulbry, Myra K. Derbyshire, and Philip C. Kearney Pesticide Degradation Laboratory, Agricultural Research Service, U.S. Department of Agriculture, Beltsville, MD 20705 Numerous agricultural chemicals have been shown to be degraded to varying degrees by microorganisms isolated from soil and water. By studying the biochemical and genetic basis of pesticide metabolism in bacteria we hope to be able to maximize the efficiency of these biochemical degradation processes so that feasible biological waste disposal methods can be developed. Hydrolase enzymes which degrade methyl-carbamate insecticides or organophosphorus insecticides have been isolated from several bacteria and have been partially characterized. One of these, parathion hydrolase, has proven useful in waste processing. The gene encoding parathion hydrolase has been shown to be identical in two very different bacteria. In both cases the gene is carried on plasmid DNA. While the genes are identical DNA-DNA hybridization and restriction enzyme mapping of the plasmid DNA have shown that the DNA outside the gene for parathion hydrolase differs markedly between the two bacteria. One bacterium which produces parathion hydrolase has proven useful in the elimination of the insecticide coumaphos, used extensively in cattle dipping operations.

The e f f e c t i v e d i s p o s a l o f s m a l l v o l u m e s o f a q u e o u s p e s t i c i d e w a s t e s i s one o f t h e major p r a c t i c a l p r o b l e m s f a c i n g A m e r i c a n a g r i c u l t u r e today. P u b l i c c o n c e r n f o r t h e s t a t e o f groundwater p u r i t y and t h e broad r e g u l a t i o n s embodied i n t h e Resource C o n s e r v a t i o n and Recovery A c t (RCRA) h a v e s t i m u l a t e d renewed a n d i n c r e a s e d i n t e r e s t i n t h e u s e of microorganisms w i t h unique biodegradative p r o p e r t i e s f o r the safe disposal of agrochemical wastes. As d e m o n s t r a t e d b y t h e b r o a d r a n g e o f t o p i c s p r e s e n t e d d u r i n g the c o u r s e o f t h i s symposium, b i o t e c h n o l o g y o f f e r s tremendous p o t e n t i a l f o r s i g n i f i c a n t a d v a n c e m e n t s i n many a r e a s o f a g r i c u l t u r e . Our l a b o r a t o r y i s i n v e s t i g a t i n g t h e r o l e t h a t b i o t e c h n o l o g y c a n p l a y i n t h e management o f p e s t i c i d e r e s i d u e s i n t h e e n v i r o n m e n t . One s u c h

This chapter not subject to U.S. copyright. Published 1987 American Chemical Society

LeBaron et al.; Biotechnology in Agricultural Chemistry ACS Symposium Series; American Chemical Society: Washington, DC, 1987.

Downloaded by CALIFORNIA INST OF TECHNOLOGY on September 17, 2017 | http://pubs.acs.org Publication Date: March 18, 1987 | doi: 10.1021/bk-1987-0334.ch013

13.

KARNSETAL.

Use of Microorganisms and Microbial Systems

157

r o l e i s i n the e l i m i n a t i o n of p e s t i c i d e r e s i d u e s i n aqueous wastes g e n e r a t e d a f t e r a p p l i c a t i o n and r i n s i n g o p e r a t i o n s . Another i s i n removing r e s i d u a l p e s t i c i d e from c o n t a i n e r s p r i o r to t h e i r d i s p o s a l . Our h o p e i s t h a t t h e t e c h n i q u e s c o m m o n l y a s s o c i a t e d w i t h b i o t e c h n o l o g y w i l l f a c i l i t a t e the development of e f f i c i e n t , low-cost b i o l o g i c a l methods t h a t f a r m e r s o r p e s t i c i d e a p p l i c a t o r s can u s e o n - s i t e f o r e f f e c t i v e w a s t e management. Yet another area of a c t i v e i n t e r e s t i s i n u s i n g b i o t e c h n o l o g y to c o n t r o l the r a t e of m i c r o b i a l d e g r a d a t i o n of a p e s t i c i d e i n t h e f i e l d so t h a t an e f f e c t i v e c o n c e n t r a t i o n of p e s t i c i d e i s m a i n t a i n e d l o n g enough to c o n t r o l target pests. P e s t i c i d e c o n t a m i n a t i o n o f g r o u n d w a t e r may o c c u r a s a c o n s e q u e n c e o f t w o t y p e s o f s i t u a t i o n . F i r s t , t h e r e may be p r o b l e m s r e s u l t i n g from the a p p l i c a t i o n of p e s t i c i d e s under f i e l d c o n d i t i o n s f o r the c o n t r o l of a c t i v e p e s t s . Most s o i l a p p l i e d p e s t i c i d e s e x e r t t h e i r e f f e c t s i n the root zone. Once a p e s t i c i d e e s c a p e s t h i s z o n e i t becomes a w a s t e m a t e r i a l . Movement o f some c o m p o u n d s o u t o f t h e r o o t z o n e , t h r o u g h t h e v a d o s e zone and i n t o g r o u n d w a t e r i s o f particular concern. In r e a l i t y , o n l y a f r a c t i o n of a percentage of any p e s t i c i d e a p p l i e d t o s o i l a c t u a l l y r e a c h e s groundwater (1). N e v e r t h e l e s s , w i t h modern a n a l y t i c a l c a p a b i l i t i e s , t h e s e s m a l l but detectable concentrations of p e s t i c i d e residues are the b a s i s for the present concern f o r groundwater q u a l i t y . The s e c o n d p r o b l e m i s t h e d i s p o s a l of waste w a t e r s g e n e r a t e d by f a r m e r s , c o m m e r c i a l a p p l i c a t o r s , and i n d u s t r y from e x c e s s o r unused aqueous p e s t i c i d e solutions. I f i m p r o p e r l y h a n d l e d , t h e s e w a s t e s may a l s o l e a d t o groundwater p o l l u t i o n . T h i s s i t u a t i o n i s e s p e c i a l l y a c u t e where u n l i n e d waste d i s p o s a l p i t s are used f o r d i s p o s a l . Here, a c c u m u l a t i o n o f p e s t i c i d e r e s i d u e s may o v e r w h e l m t h e i n h e r e n t b i n d i n g and b i o d e g r a d a t i v e c a p a c i t y of the s o i l s , l e a d i n g t o r a p i d m i g r a t i o n o f r e l a t i v e l y l a r g e amounts o f p e s t i c i d e t h r o u g h t h e s o i l and i n t o the groundwater. T h e r e i s a p r e p o n d e r a n c e o f e v i d e n c e t h a t most a g r i c u l t u r a l p e s t i c i d e s a r e s u b j e c t t o some d e g r e e o f m i c r o b i a l m e t a b o l i s m . It is b e y o n d t h e s c o p e o f t h i s a r t i c l e t o a t t e m p t t o r e v i e w t h e more t h a n t h r e e decades of r e s e a r c h on the r o l e of microorganisms i n p e s t i c i d e metabolism. A number o f e x c e l l e n t r e v i e w s on t h i s s u b j e c t a r e available (2,3,4,5). A m a j o r m e s s a g e t h a t c a n be d e r i v e d f r o m p a s t r e s e a r c h i s t h a t t h e r e e x i s t s i n the s o i l m i c r o b i a l community a w e a l t h o f g e n e t i c m a t e r i a l t h a t c o u l d be e x p l o i t e d f o r t h e c o n t r o l l e d d e g r a d a t i o n of p e s t i c i d e s and t h e i r p r o d u c t s i n w a s t e d i s p o s a l efforts. We w i l l d e s c r i b e o u r e f f o r t s t o e l u c i d a t e some o f t h e b i o c h e m i c a l and g e n e t i c mechanisms of p e s t i c i d e m e t a b o l i s m by s o i l b a c t e r i a and t o e x p l o i t b i o l o g i c a l d e g r a d a t i o n of p e s t i c i d e s i n a waste d i s p o s a l s i t u a t i o n . Biochemical B a s i s of

P e s t i c i d e Degradation i n Microorganisms

Numerous b i o c h e m i c a l r e a c t i o n s d i r e c t l y a f f e c t i n g p e s t i c i d e s have been d e s c r i b e d u s i n g pure c u l t u r e s of b a c t e r i a . Enzymes w h i c h c a t a l y z e t h e c o n v e r s i o n o f p e s t i c i d e s t e n d t o f a l l i n t o two c l a s s e s ; h y d r o l a s e s ( e s t e r a s e s , a m i d a s e s , h a l i d o h y d r o l a s e s ) and o x y g e n a s e s (mono o r dioxygenases).

LeBaron et al.; Biotechnology in Agricultural Chemistry ACS Symposium Series; American Chemical Society: Washington, DC, 1987.

Downloaded by CALIFORNIA INST OF TECHNOLOGY on September 17, 2017 | http://pubs.acs.org Publication Date: March 18, 1987 | doi: 10.1021/bk-1987-0334.ch013

158

BIOTECHNOLOGY IN AGRICULTURAL CHEMISTRY

H y d r o l a s e s have a number of p r o p e r t i e s t h a t make them a t t r a c t i v e f o r use i n waste d i s p o s a l s t r a t e g i e s . They r e q u i r e no c o f a c t o r s f o r a c t i v i t y , are s t a b l e over a wide range o f pH and t e m p e r a t u r e , and have a broad s u b s t r a t e s p e c i f i c i t y . Examples of p r e v i o u s l y d e s c r i b e d h y d r o l a s e s a f f e c t i n g p e s t i c i d e s are the h a l i d o h y d r o l a s e s w h i c h d e h a l o g e n a t e d a l a p o n ( 2 , 2 , - d i c h l o r o p r o p i o n i c a c i d ) and a number o f o t h e r h a l o g e n a t e d a l i p h a t i c a c i d s ( 6 , 7 , 8 ) ; t h e amidase d e s c r i b e d by W a l l n o f e r eit al ( 9 , 1 0 ) w h i c h r a p i d l y degrades the a c y l a n i l i d e h e r b i c i d e p r o p a n i l and s e v e r a l u r e a h e r b i c i d e s ( l i n u r o n , d i u r o n ) ; and p a r a t h i o n h y d r o l a s e ( p h o s p h o d i e s t e r a s e ) ( 1 1 , 1 3 ) which degrades p a r a t h i o n and a number of r e l a t e d 0 , 0 - d i e t h y l t h i o p h o s p h o r a t e i n s e c t i c i d e s . Munnecke ( 1 2 , 1 3 ) has demonstrated t h a t the p a r a t h i o n h y d r o l a s e from Pseudomonas d i m i n u t a can be used e f f e c t i v e l y i n t h e d e g r a d a t i o n o f οrganophosphate i n s e c t i c i d e w a s t e s , r a n g i n g from i n d u s t r i a l p r o c e s s wastewaters t o r e s i d u a l m a t e r i a l l e f t i n containers. Oxygenases tend t o be more complex enzymes and can be d i v i d e d i n t o two groups; mono-oxygenases ( p r e v i o u s l y c a l l e d m i x e d - f u n c t i o n o x i d a s e s ) w h i c h r e q u i r e reduced p y r i d i n e n u c l e o t i d e s as c o f a c t o r s , and d i o x y g e n a s e s w h i c h do not r e q u i r e reduced compounds as c o f a c t o r s . A l l oxygenases r e q u i r e m o l e c u l a r oxygen as a s u b s t r a t e , and tend t o be l e s s s t a b l e t h a n h y d r o l a s e s . An example of an oxygenase which d i r e c t l y a f f e c t s a p e s t i c i d e i s the enzyme w h i c h i s r e s p o n s i b l e f o r 2,4-D ( 2 , 4 - d i c h l o r o p h e n o x y a c e t i c a c i d ) d e g r a d a t i o n i n pure c u l t u r e s of A l c a l i g e n e s and A r t h r o b a c t e r . ( 1 4 , 1 5 ) . Presumably a s i m i l a r enzyme i s r e s p o n s i b l e f o r t h e f i r s t s t e p i n the d e g r a d a t i o n o f 2 , 4 , 5 - T ( 2 , 4 , 5 - t r i c h l o r o p h e n o x y a c e t i c a c i d ) by a pure c u l t u r e of Pseudomonas c e p a c i a ( 1 6 ) . A l t h o u g h i t i s u n l i k e l y t h a t oxygenase enzymes themselves w i l l be u s e f u l i n waste d e g r a d a t i o n systems, i t has been demonstrated t h a t t h e 2 , 4 , 5 - T d e g r a d i n g £ . c e p a c i a can e f f e c t i v e l y remove the h e r b i c i d e from h e a v i l y contaminated s o i l s (17,18).

Recent r e p o r t s have demonstrated t h a t the w h i t e r o t fungus Phanerochaete c h r y s o s p o r i u m produces a p e r o x i d a s e - l i k e l i g n i n d e g r a d i n g enzyme which can a t t a c k r e c a l c i t r a n t p e s t i c i d e s such as DDT and p e s t i c i d e r e l a t e d compounds such as d i o x i n (2,3,7,8-tetrachlorodibenzo-p-dioxin) (19). The f u n g i c e r t a i n l y e x h i b i t a broad range of dégradâtive c a p a b i l i t i e s which d e s e r v e a t t e n t i o n i n f u t u r e r e s e a r c h e f f o r t s on b i o l o g i c a l e l i m i n a t i o n o f p e s t i c i d e wastes. U s i n g a m o d i f i e d enrichment t e c h n i q u e , we i s o l a t e d a b a c t e r i u m w h i c h was v e r y p r o f i c i e n t i n d e g r a d i n g t h e i n s e c t i c i d e and nematocide c a r b o f u r a n w h i l e u t i l i z i n g i t as a s o u r c e o f n i t r o g e n ( 2 0 ) . This o r g a n i s m i s c a p a b l e o f r a p i d l y d e g r a d i n g a number o f o t h e r r e l a t e d N-methylcarbamate i n s e c t i c i d e s ( F i g u r e 1 ) . We have i s o l a t e d and p a r t i a l l y p u r i f i e d an enzyme from t h i s Achromobacter s p . which r a p i d l y c l e a v e s the N-methylcarbamate s i d e c h a i n o f c a r b o f u r a n (Figure 2) y i e l d i n g the 7-phenol m e t a b o l i t e ( 2 , 3 - d i h y d r o - 2 - d i m e t h y l - 7 - b e n z o f u r a n o l ) . T h i s enzyme seems t o f a l l i n t o t h e h y d r o l a s e c l a s s o f enzymes. I t was a c t i v e over a broad range of pH and t e m p e r a t u r e , and once p a r t i a l l y p u r i f i e d i t was r e l a t i v e l y s t a b l e a t 4 C . E x t e n s i v e d i a l y s i s of the enzyme d i d not a f f e c t i t s a b i l i t y to cleave carbofuran, i n d i c a t i n g that s o l u b l e

LeBaron et al.; Biotechnology in Agricultural Chemistry ACS Symposium Series; American Chemical Society: Washington, DC, 1987.

13.

KARNS ET AL.

159

Λ

Downloaded by CALIFORNIA INST OF TECHNOLOGY on September 17, 2017 | http://pubs.acs.org Publication Date: March 18, 1987 | doi: 10.1021/bk-1987-0334.ch013

ιοο

Use of Microorganisms and Microbial Systems

F i g u r e 1· Hydrolysis of several N-methylcarbamate i n s e c t i c i d e s by r e s t i n g c e l l s o f Achromobacter sp WM 1 1 1 . E a c h c o m p o u n d w a s a d d e d t o 100 u g / m l a n d t h e y a n d t h e i r h y d r o l y s i s p r o d u c t s were r e s o l v e d b y HPLC o n a C 1 8 c o l u m n in a solvent of a c e t o n i t r i l e and p h o s p h o r i c a c i d . Key: (•), a l d i c a r b ; ( Δ ) , baygon; ( · ) , carbofuran; ( A ) , carbaryl; (•), 3,5-dimethylphenyl-N-methyl carbamate ; and ( Ο ) , o - n i t r o p h e n y1dimethy1carbamate. (Reproduced w i t h p e r m i s s i o n from r e f e r e n c e 20· C o p y r i g h t 1986, Academic P r e s s . )

c "c5 Ε α> k_

hosphate d e g r a d a t i o n ) f r o m £ · d i m i n u t a a n d F l a v o b a c t e r i u m i n d i c a t e d t h a t t h e g e n e s f r o m t h e s e two s o u r c e s were v e r y s i m i l a r , i f not i d e n t i c a l . R e s t r i c t i o n mapping of cloned DNA f r a g m e n t s f r o m b o t h o r g a n i s m s a l s o s u g g e s t e d t h a t t h e DNA e n c o d i n g t h e opd gene i t s e l f i s v e r y s i m i l a r i n t h e s e two o r g a n i s m s . H o w e v e r , t h i s m a p p i n g h a s a l s o shown t h a t t h e p l a s m i d DNA o u t s i d e o f t h e opd c o d i n g r e g i o n i s v e r y d i f f e r e n t i n t h e two o r g a n i s m s ( F i g u r e 4). The o b s e r v a t i o n t h a t t h e p a r a t h i o n h y d r o l a s e i n two t e m p o r a l l y , g e o g r a p h i c a l l y , a n d b i o l o g i c a l l y d i s t i n c t i s o l a t e s o f b a c t e r i a was encoded by i d e n t i c a l genes c a r r i e d on n o n - i d e n t i c a l p l a s m i d s s u g g e s t s t h a t t h e g e n e may be p a r t o f a m o b i l e g e n e t i c e l e m e n t o r t r a n s p o s o n (26). Coumaphos;

A model p e s t i c i d e

degradation

system

The A n i m a l a n d P l a n t H e a l t h I n s p e c t i o n s e r v i c e ( A P H I S ) o f t h e USDA i n c o o p e r a t i o n w i t h the s t a t e of Texas c a r r i e s out e x t e n s i v e c a t t l e - d i p p i n g o p e r a t i o n s a l o n g t h e b o r d e r o f Texas and M e x i c o . The program i s designed to prevent the r e i n t r o d u c t i o n of the c a t t l e f e v e r t i c k (Boophilus) i n t o the United States. The i n s e c t i c i d e c u r r e n t l y u s e d i n t h i s o p e r a t i o n i s coumaphos [ 0 , 0 - d i e t h y l 0 - ( 3 - c h l o r o - 4 methyl-2-oxo-2H-l-benzopyran-7-yl) phosphorothioate]· Annually, this o p e r a t i o n g e n e r a t e s o v e r 5 7 0 , 0 0 0 L o f aqueous w a s t e s c o n t a i n i n g 1500 t o 3000 ug/ml o f coumaphos. C u r r e n t l y t h i s waste i s placed i n concrete l i n e d evaporation p i t s . S i n c e coumaphos h a s a v e r y l o n g

LeBaron et al.; Biotechnology in Agricultural Chemistry ACS Symposium Series; American Chemical Society: Washington, DC, 1987.

Downloaded by CALIFORNIA INST OF TECHNOLOGY on September 17, 2017 | http://pubs.acs.org Publication Date: March 18, 1987 | doi: 10.1021/bk-1987-0334.ch013

13.

KARNS ET AL.

Use of Microorganisms and Microbial Systems

161

F i g u r e 3 , Agarose g e l e l e c t r o p h o r e s i s o f DNA o b t a i n e d from the c a r b o f u r a n d e g r a d i n g Achromobacter s p , WM111. Lane 1 - Eco RI d i g e s t e d ; Lane 2 - Bam HI d i g e s t e d ; Lane 3 - Hind I I I d i g e s t e d ; and Lane 4 - u n t r e a t e d . The numbers t o the l e f t i n d i c a t e the m i g r a t i o n d i s t a n c e o f the fragments i n a H i n d I I I d i g e s t o f phage lambda i n c l u d e d i n the same g e l and i n d i c a t e the s i z e o f the fragments i n k i l o b a s e pairs·

LeBaron et al.; Biotechnology in Agricultural Chemistry ACS Symposium Series; American Chemical Society: Washington, DC, 1987.

Downloaded by CALIFORNIA INST OF TECHNOLOGY on September 17, 2017 | http://pubs.acs.org Publication Date: March 18, 1987 | doi: 10.1021/bk-1987-0334.ch013

162

B I O T E C H N O L O G Y IN A G R I C U L T U R A L C H E M I S T R Y

h a l f - l i f e (A/ 300 d a y s ) i n s o i l a n d w a t e r ( 2 7 ) , a d i s p o s a l m e t h o d w h i c h a s s u r e s t h e s a f e and e f f e c t i v e c o n v e r s i o n o f coumaphos t o l e s s e n v i r o n m e n t a l l y h a r m f u l p r o d u c t s was s o u g h t . The p r o c e s s o f U V - o z o n a t i o n , w h e r e b y a q u e o u s p e s t i c i d e suspensions are p r e t r e a t e d w i t h i n t e n s e u l t r a - v i o l e t r a d i a t i o n i n the p r e s e n c e o f o x y g e n p r i o r t o s o i l d i s p o s a l , was s h o w n t o be e f f e c t i v e i n a c c e l e r a t i n g t h e d e g r a d a t i o n o f s e v e r a l commonly u s e d h e r b i c i d e s (28). Coumaphos was r e s i s t a n t t o a n y d e g r a d a t i o n b y U V - o z o n a t i o n , w i t h o n l y 25% d e g r a d e d o v e r a 5 h p e r i o d ( 2 9 ) . E x p o s u r e o f coumaphos c a t t l e - d i p suspensions to l a r g e concentrations of mechanically g e n e r a t e d o z o n e i n d i c a t e d t h a t t h i s compound was v e r y r e s i s t a n t t o o x i d a t i o n by o z o n e . The p a r a t h i o n h y d r o l a s e enzyme p r o d u c e d by F l a v o b a c t e r i u m s p ATCC 2 7 5 5 1 was a b l e t o r a p i d l y h y d r o l y z e c o u m a p h o s y i e l d i n g chlorferon (3-chloro-4-methyl-7-hydroxycoumarin) and d i e t h y l t h i o p h o s p h o r i c a c i d as p r o d u c t s ( F i g u r e 5 ) . Resting c e l l s u s p e n s i o n s of the F l a v o b a c t e r i u m were v e r y e f f e c t i v e i n d e g r a d i n g coumaphos ( F i g u r e 6 A ) . These s m a l l s c a l e experiments used a dense s u s p e n s i o n of c e l l s (10^ c e l l s / m l ) to a c c o m p l i s h t h e d e g r a d a t i o n of t h e coumaphos w i t h i n a s h o r t p e r i o d o f t i m e . T h i s p r a c t i c e may be i m p r a c t i c a l i n the a c t u a l use of organisms f o r p r o c e s s i n g l a r g e volumes of waste. The c h l o r f e r o n p r o d u c e d a s a r e s u l t o f t h e m i c r o b i a l h y d r o l y s i s o f c o u m a p h o s was v e r y s u s c e p t i b l e t o f u r t h e r d e g r a d a t i o n by UV-ozonation (Figure 6B). The e n t i r e combined p r o c e s s o f m i c r o b i a l h y d r o l y s i s f o l l o w e d by U V - o z o n a t i o n r e q u i r e d l e s s t h a n 7 h o u r s t o a f f e c t the s a f e d e s t r u c t i o n of coumaphos. Although the c h l o r f e r o n had c o m p l e t e l y d i s a p p e a r e d a f t e r t h i s p r o c e s s , most o f t h e ^ C l a b e l o r i g i n a l l y p r e s e n t i n t h e b e n z e n e m o e i t y o f c o u m a p h o s was s t i l l p r e s e n t i n aqueous s o l u t i o n ( F i g u r e 6 B ) . Gas c h r o m a t o g r a p h y / m a s s s p e c t r o m e t r y of the o r g a n i c p r o d u c t s i n s o l u t i o n has i n d i c a t e d t h a t 2 , 4 - d i h y d r o x y a c e t o p h e n o n e and s h o r t c h a i n a l k a n o i c a c i d s a r e detectable products. These more p o l a r o r g a n i c s were v e r y s u s c e p t i b l e to c o m p l e t e d e g r a d a t i o n by s o i l m i c r o o r g a n i s m s ( F i g u r e 7 ) . In c o n t r a s t , n e i t h e r coumaphos n o r c h l o r f e r o n were a p p r e c i a b l y d e g r a d e d by i n d i g e n o u s s o i l m i c r o o r g a n i s m s . M o r e o v e r , coumaphos s u b j e c t e d t o U V - o z o n a t i o n w i t h o u t p r i o r m i c r o b i a l h y d r o l y s i s underwent very l i m i t e d metabolism. The U V - o z o n a t i o n p r o c e s s r a p i d l y k i l l e d t h e F l a v o b a c t e r i u m c e l l s t h a t were added t o t h e d i p - v a t w a s t e . T h i s was e x p e c t e d s i n c e many European communities use U V - o z o n a t i o n or d i r e c t o z o n a t i o n to t r e a t d r i n k i n g water ( i n s t e a d of c h l o r i n a t i o n ) f o r the c o n t r o l of h a r m f u l microbes. T h u s , the end r e s u l t o f t h i s p r o c e s s i s an aqueous p r o d u c t t h a t c o n t a i n s o n l y r e a d i l y biodegradable organic m a t e r i a l . T h i s p r o c e s s was f i e l d - t e s t e d o n 2 4 7 0 L o f c o u m a p h o s c a t t l e - d i p w a s t e a t t h e APHIS v a t s i n L a r e d o , T e x a s . To o v e r c o m e t h e n e e d t o d e l i v e r a n e x t r e m e l y l a r g e number o f F l a v o b a c t e r i u m c e l l s t o t h e s i t e , t h e o r g a n i s m s w e r e a d d e d a s a 1% i n o c u l u m ( 2 2 . 8 L o f c u l t u r e grown i n n u t r i e n t b r o t h p l u s x y l o s e ) a l o n g w i t h 9 . 5 k g o f x y l o s e as a c a r b o n s o u r c e a n d 4 . 5 k g o f ammonium s u l f a t e f e r t i l i z e r a s a n i t r o g e n s o u r c e , i n o r d e r to a l l o w growth of the organisms i n t h e w a s t e . The p H o f t h e m a t e r i a l i n t h e t a n k was a d j u s t e d t o b e t w e e n 6 . 8 a n d 7 . 0 b y t h e a d d i t i o n o f 1.4 k g o f m o n o b a s i c p o t a s s i u m p h o s p h a t e a n d 1.8 k g o f

LeBaron et al.; Biotechnology in Agricultural Chemistry ACS Symposium Series; American Chemical Society: Washington, DC, 1987.

Downloaded by CALIFORNIA INST OF TECHNOLOGY on September 17, 2017 | http://pubs.acs.org Publication Date: March 18, 1987 | doi: 10.1021/bk-1987-0334.ch013

163

Use of Microorganisms and Microbial Systems

KARNS E T AL.

E B pWWM44~"L-l

S E B I LJ

S H LJ

ESP

PCMS29

;

i K b

-5"

B P I I

X I

S H S X

B X P S B PHE Ν [_J_ j_Jj>"

XH

• • » ι

U

B X P S

Β

'.Ll-L-i

PHE

U >

opd

.

F i g u r e 4. R e s t r i c t i o n endonuclease maps o f c l o n e d Eco R l fragments c o n t a i n i n g t h e opd genes from diminuta (from Serdar and G i b s o n [ 3 3 ] ) , and F l a v o b a c t e r i u m s p . ATCC 27551. The t h i c k l i n e s r e p r e s e n t t h e a d j a c e n t p o r t i o n s o f v e c t o r DNA; t h e t h i n l i n e s r e p r e s e n t i n s e r t e d p l a s m i d DNA from F l a v o b a c t e r i u m sp. (top) and J?, d i m i n u t a (bottom). The u n d e r l i n e d area d e l i n e a t e s t h e 2.1 k i l o b a s e r e g i o n o f t h e two c l o n e d fragments where t h e r e s t r i c t i o n maps a r e i d e n t i c a l . R e s t r i c t i o n endonucleases : B. Bam H I ; E. Eco R I ; H. H i n d I I I ; P. P s t I ; S. S a l I ; X. Xho I . (Reproduced w i t h p e r m i s s i o n from r e f e r e n c e 25. C o p y r i g h t 1985, American S o c i e t y f o r M i c r o b i o l o g y . )

CI CH

3

Coumaphos

CH

3

Chlorferon

F i g u r e 5. H y d r o l y s i s o f coumaphos t o y i e l d c h l o r f e r o n and d i e t h y l t h i o p h o s p h o r i c a c i d as c a t a l y z e d by p a r a t h i o n h y d r o l a s e enzymes from F l a v o b a c t e r i u m sp. ATCC 27551 and Pseudomonas d i m i n u t a .

LeBaron et al.; Biotechnology in Agricultural Chemistry ACS Symposium Series; American Chemical Society: Washington, DC, 1987.

Downloaded by CALIFORNIA INST OF TECHNOLOGY on September 17, 2017 | http://pubs.acs.org Publication Date: March 18, 1987 | doi: 10.1021/bk-1987-0334.ch013

164

B I O T E C H N O L O G Y IN A G R I C U L T U R A L C H E M I S T R Y

Time (hours) Figure

6.

S p e n t c o u m a p h o s d i p - v a t s o l u t i o n was s u p p l e m e n t e d w i t h U - B e n z y l - ^ C - c o u m a p h o s and F l a v o b a c t e r i u m c e l l s w e r e a d d e d t o a d e n s i t y o f 10^ c e l l s / m l ( P a n e l A). The h y d r o l y s e d m a t e r i a l was t h e n s u b j e c t e d to U.V.-ozonation (Panel B). Samples were t a k e n at v a r i o u s t i m e s and remaining i n the m a t e r i a l was d e t e r m i n e d by l i q u i d s c i n t i l l a t i o n c o u n t i n g . Samples were d i l u t e d 1:10 w i t h m e t h a n o l and s u b j e c t e d t o HPLC i n a s o l v e n t s y s t e m o f m e t h a n o l i n p h o s p h o r i c a c i d t o d e t e r m i n e coumaphos (A) and c h l o r f e r o n (B) levels.

LeBaron et al.; Biotechnology in Agricultural Chemistry ACS Symposium Series; American Chemical Society: Washington, DC, 1987.

Downloaded by CALIFORNIA INST OF TECHNOLOGY on September 17, 2017 | http://pubs.acs.org Publication Date: March 18, 1987 | doi: 10.1021/bk-1987-0334.ch013

13.

KARNS ET AL.

165

Use of Microorganisms and Microbial Systems

A

Metabolism and U V - O ,

Δ

Metabolism and U V - O , Control



U V - O , No Metabolism

ο

U V - O , No Metabolism Control



No Treatments

20\

10 12 14 Time (days) Figure 7.

16

18

20

22

S o i l metabolism of the products r e s u l t i n g from U . V . - o z o n a t i o n o f coumaphos a n d m i c r o b i a l l y hydrolyzed/U.V. ozonated coumaphos. ^CC>2 r e l e a s e d f r o m U - b e n z y l - ^ C - c o u m a p h o s was measured i n biometer f l a s k s by t r a p p i n g i n potassium hydroxide and c o u n t i n g i n a l i q u i d s c i n t i l l a t i o n c o u n t e r . C o n t r o l s c o n t a i n e d s o i l t h a t h a d been a u t o c l a v e d one time but were not k e p t s t e r i l e .

LeBaron et al.; Biotechnology in Agricultural Chemistry ACS Symposium Series; American Chemical Society: Washington, DC, 1987.

166

B I O T E C H N O L O G Y IN A G R I C U L T U R A L C H E M I S T R Y

Downloaded by CALIFORNIA INST OF TECHNOLOGY on September 17, 2017 | http://pubs.acs.org Publication Date: March 18, 1987 | doi: 10.1021/bk-1987-0334.ch013

d i b a s i c potassium phosphate. The t e m p e r a t u r e o f t h e l i q u i d v a r i e d b e t w e e n 36°C a n d 3 3 ° C . T h e t a n k was v i g o r o u s l y a e r a t e d . Samples were t a k e n a t v a r i o u s t i m e s and d i l u t e d w i t h m e t h a n o l f o r l a t e r a n a l y s i s o f coumaphos and c h l o r f e r o n . O n - s i t e d e t e r m i n a t i o n of c o u m a p h o s l e v e l s i n t h e t a n k was p e r f o r m e d u s i n g a c o l o r i m e t r i c a s s a y k i t ( B a y v e t , Shawnee, K S ) . The m i c r o b i a l h y d r o l y s i s o f coumaphos i n t h e t r e a t e d c o m p a r t m e n t was e s s e n t i a l l y c o m p l e t e w i t h i n 4 8 h r s ( F i g u r e 8 ) . As e x p e c t e d , the chlorferon hydrolysis product accumulated. At t h i s p o i n t a e r a t i o n of t h e t a n k was s t o p p e d a n d o z o n e ( g e n e r a t e d u s i n g a G r i f f i n o z o n e g e n e r a t o r ) was i n t r o d u c e d i n t o t h e t a n k f o r a b o u t 20 h r s . Subsequent a n a l y s e s i n d i c a t e d t h a t o v e r 50% o f t h e c h l o r f e r o n was d e g r a d e d during ozonation. L a b o r a t o r y a n a l y s e s on s m a l l e r volumes o f m a t e r i a l h a d i n d i c a t e d t h a t c h l o r f e r o n was v e r y s u s c e p t i b l e t o o x i d a t i o n b y m e c h a n i c a l l y generated ozone i n the absence of U . V . l i g h t . The r e s u l t s o f t h e f i r s t L a r e d o f i e l d t r i a l i n d i c a t e t h a t t h e m e t h o d o f m i c r o b i a l h y d r o l y s i s - o z o n a t i o n was v e r y e f f e c t i v e i n t h e e l i m i n a t i o n of waste coumaphos. A s e c o n d , more e x t e n s i v e f i e l d trial i s planned f o r the l a t e s p r i n g of 1986. Among t h e i t e m s t o be t e s t e d a r e a l t e r n a t i v e methods f o r t h e d e l i v e r y of a c t i v e c u l t u r e s t o a remote l o c a t i o n . The d e l i v e r y o f a d e q u a t e amounts o f o z o n e i n t o t h e h y d r o l y z e d m a t e r i a l was a l s o a p r o b l e m d u r i n g t h e f i r s t f i e l d t r i a l . However, t h i s i s s t r i c t l y a problem of e n g i n e e r i n g e x i s t i n g t e c h n o l o g y t o f i t t h i s u n i q u e p u r p o s e a n d s h o u l d p o s e no g r e a t d i f f i c u l t y to the development of the o v e r a l l p r o c e s s . As n o t e d above, l a r g e s c a l e U . V . - o z o n a t i o n u n i t s f o r the treatment of e x t r e m e l y l a r g e volumes of d r i n k i n g water a l r e a d y e x i s t . The t e c h n o l o g y b e h i n d s u c h s y s t e m s s h o u l d be d i r e c t l y a p p l i c a b l e t o o u r purposes. D i s c u s s i o n and

Prospects

I n d i g e n o u s s o i l a n d w a t e r m i c r o b i a l p o p u l a t i o n s c o n t a i n many members w h i c h have the p o t e n t i a l f o r c a r r y i n g out the b i o c o n v e r s i o n of p e s t i c i d e molecules to n o n t o x i c p r o d u c t s . The i s o l a t i o n o f i n d i v i d u a l c u l t u r e s c a p a b l e of a l t e r i n g p e s t i c i d e s and the b i o c h e m i c a l c h a r a c t e r i z a t i o n o f p e s t i c i d e d e g r a d i n g enzymes a r e t h e f i r s t steps i n d e v e l o p i n g b i o t e c h n o l o g y f o r the s a f e d i s p o s a l of waste p e s t i c i d e s . The m o l e c u l a r c h a r a c t e r i z a t i o n o f t h e g e n e s encoding p e s t i c i d e degradation provide background i n f o r m a t i o n for f u t u r e m o l e c u l a r g e n e t i c m a n i p u l a t i o n o f these genes f o r use i n waste disposal techniques. I t a l s o p r o v i d e s b a s i c i n f o r m a t i o n on t h e o r i g i n , e v o l u t i o n , and t r a n s m i s s i o n o f p e s t i c i d e d e g r a d a t i v e genes i n microorganisms· One r e c e n t a g r i c u l t u r a l p h e n o m e n o n t h a t may be e l u c i d a t e d b y s u c h b a s i c r e s e a r c h i s t h e manner i n w h i c h p r o b l e m s o i l s a r i s e . In these s o i l s , the m i c r o b i a l p o p u l a t i o n degrades a p p l i e d p e s t i c i d e s so r a p i d l y that p e s t i c i d e efficacy i s l o s t (30). Presumably, the r e p e a t e d a p p l i c a t i o n of a p a r t i c u l a r p e s t i c i d e a c t s as an e n r i c h m e n t p r o c e d u r e , c o n s t a n t l y s e l e c t i n g f o r i n c r e a s e d numbers o f the p a r t i c u l a r m i c r o o r g a n i s m s t h a t c a n m e t a b o l i z e t h e p e s t i c i d e and d e r i v e some n u t r i t i o n a l b e n e f i t f r o m i t . Several basic questions t h a t n e e d t o be a n s w e r e d i n o r d e r t o u n d e r s t a n d t h i s p r o c e s s . First, w h e r e do t h e g e n e s t h a t e n c o d e t h e p e s t i c i d e d e g r a d a t i o n e n z y m e s

LeBaron et al.; Biotechnology in Agricultural Chemistry ACS Symposium Series; American Chemical Society: Washington, DC, 1987.

Downloaded by CALIFORNIA INST OF TECHNOLOGY on September 17, 2017 | http://pubs.acs.org Publication Date: March 18, 1987 | doi: 10.1021/bk-1987-0334.ch013

13.

KARNS ET AL.

Use of Microorganisms and Microbial Systems

167

3.0 A

Time (hours) Figure 8.

M e t a b o l i s m a n d o z o n a t i o n o f coumaphos i n a f i e l d t r i a l on 2470 L o f m a t e r i a l i n L a r e d o , T e x a s . Coumaphos a n d c h l o r f e r o n m e a s u r e m e n t s w e r e made b y H P L C a s i n l e g e n d to Figure 7 . E r r a t i c c h l o r f e r o n measurements a t 4 0 h and 48h were due t o p r e c i p i t a t i o n o f t h e c h l o r f e r o n a n d s e t t l i n g o u t when a e r a t i o n w a s s t o p p e d .

LeBaron et al.; Biotechnology in Agricultural Chemistry ACS Symposium Series; American Chemical Society: Washington, DC, 1987.

Downloaded by CALIFORNIA INST OF TECHNOLOGY on September 17, 2017 | http://pubs.acs.org Publication Date: March 18, 1987 | doi: 10.1021/bk-1987-0334.ch013

168

B I O T E C H N O L O G Y IN A G R I C U L T U R A L C H E M I S T R Y

o r i g i n a t e ? Second, a r e raacromolecular events such as m u t a t i o n , gene d u p l i c a t i o n , and gene movement between s p e c i e s necessary f o r t h e development o f problem s o i l s ? The r o l e s p l a y e d by p l a s m i d s and transposons i n the o r i g i n and p r o p a g a t i o n o f p e s t i c i d e d e g r a d a t i o n genes a l s o need t o be i n v e s t i g a t e d . As the coumaphos d e g r a d a t i o n process shows, b i o l o g i c a l p e s t i c i d e d e g r a d a t i o n agents can be i n c o r p o r a t e d i n t o v i a b l e waste d i s p o s a l schemes. T h i s p a r t i c u l a r process combines b i o l o g i c a l h y d r o l y s i s w i t h c h e m i c a l o x i d a t i o n f o l l o w e d by c h e m i c a l o x i d a t i o n t o a c c o m p l i s h the complete d e g r a d a t i o n o f a p e s t i c i d e m o l e c u l e . The combination o f s i n g l e - s t e p (or l i m i t e d step) b i o l o g i c a l degradation with a p h y s i c a l / c h e m i c a l process such as U.V. i r r a d i a t i o n , U.V.-ozonation o r o z o n a t i o n can p r o v i d e s a f e , easy, and c o s t e f f e c t i v e d e g r a d a t i o n o f e x t r e m e l y r e c a l c i t r a n t p e s t i c i d e s . The use o f h y d r o l a s e enzymes such as p a r a t h i o n h y d r o l a s e o r c a r b o f u r a n h y d r o l a s e as a f i r s t s t e p i n waste e l i m i n a t i o n i s p a r t i c u l a r l y p r o m i s i n g . These enzymes a r e a c t i v e over a wide range o f e n v i r o n m e n t a l c o n d i t i o n s and t h e r e a c t i o n s they c a t a l y z e g r e a t l y d i m i n i s h the acute t o x i c i t i e s o f t h e i n s e c t i c i d e s . Thus, t h e i r use i s c o n v e n i e n t and c a n render waste s a f e t o s t o r e u n t i l i t can be f u r t h e r p r o c e s s e d . T h i s may be p a r t i c u l a r l y i m p o r t a n t s i n c e the c a p i t a l c o s t s o f d e v i c e s such as U.V.-ozonators c o u l d be p r o h i b i t i v e f o r i n d i v i d u a l farmers. H y d r o l y z e d wastes c o u l d be s t o r e d u n t i l a c o o p e r a t i v e l y owned o r p r i v a t e l y r e n t e d p r o c e s s o r c o u l d be brought around t o f i n i s h the j o b . An a d d i t i o n a l s a f e t y f a c t o r i n c o r p o r a t e d i n t o such a m u l t i s t e p process i s t h a t the organisms t h a t produce these enzymes d e r i v e l i t t l e o r no n u t r i t i o n a l b e n e f i t from the metabolism o f t h e p e s t i c i d e . S i n c e they cannot grow on the p e s t i c i d e they s h o u l d n o t propagate i n f i e l d s i t u a t i o n s where some p e s t i c i d e " s t a y i n g power" i s r e q u i r e d . Thus, use o f such microorganisms does not t h r e a t e n t o c r e a t e new problem s o i l s s i t u a t i o n s . B i o t e c h n o l o g y o f f e r s the p o t e n t i a l f o r many advances i n p e s t i c i d e waste d i s p o s a l . Gene c l o n i n g t e c h n i q u e s o f f e r the methodology by which the genes encoding p e s t i c i d e d e g r a d a t i v e genes can be moved i n t o i n d u s t r i a l l y u s e f u l microorganisms. Thus, important d e g r a d a t i v e enzymes can be produced i n g r e a t q u a n t i t i e s and p r o v i d e d a t r e a s o n a b l e p r i c e s . Enzyme o r organism p r e p a r a t i o n s might be i m m o b i l i z e d t o c r e a t e c a r t r i d g e type d i g e s t o r s t h a t can have l o n g s h e l f - l i v e s and l o n g u s e f u l l i v e s . Knowledge o f gene sequences, p r o t e i n s t r u c t u r e s and r e a c t i o n mechanisms w i l l enable r e s e a r c h e r s t o use t e c h n i q u e s such as s i t e d i r e c t e d mutagenesis (31) t o a l t e r o r i n c r e a s e the c h e m i c a l s u b s t r a t e range o f p e s t i c i d e d e g r a d i n g enzymes. I t i s v e r y c l e a r , t h a t i f pursued v i g o r o u s l y , and u t i l i z e d i n t e l l i g e n t l y , b i o t e c h n o l o g y can o f f e r v i a b l e s o l u t i o n s f o r t h e treatment o f a g r i c u l t u r a l wastes and e n v i r o n m e n t a l h a z a r d s .

Literature Cited 1. 2.

Helling, C. S. and Gish, T. J . Soil Characteristics Affecting Pesticide Movement into Groundwater. ACS Symposium Series. (In press) American Chemical Society, Washington, D.C. 1986. Munnecke, D. M . , L . M. Johnson, H. W. Talbot and S. Barik. "Microbial Metabolism and Enzymology of Selected Pesticides" in;

LeBaron et al.; Biotechnology in Agricultural Chemistry ACS Symposium Series; American Chemical Society: Washington, DC, 1987.

13. KARNS ET AL.

3. 4.

Downloaded by CALIFORNIA INST OF TECHNOLOGY on September 17, 2017 | http://pubs.acs.org Publication Date: March 18, 1987 | doi: 10.1021/bk-1987-0334.ch013

5. 6.

7. 8.

9. 10.

11. 12. 13. 14. 15.

16.

17.

Use ofMicroorganisms and Microbial Systems

Biodegradation and Detoxification of Environmental Pollutants, A. M. Chakrabarty (ed.) CRC Press, Boca Raton, FL. 1982. Bollag, J . M. Microbial Metabolism of Pesticides. In; Microbial Transformations of Bioactive Compounds, Vol. II. J . P. Rosazza (ed.) CRC Press, Boca Raton, FL. 1982. Matsumura, F. and H. J. Benezet. "Microbial Degradation of Insecticides" in: Pesticide Microbiology, I. R. H i l l and S. J . L. Wright (eds.) Academic Press, London. 1978. Cripps, R. E. and T. R. Roberts. "Microbial Degradation of Herbicides" in: Pesticide Microbiology, I. R. H i l l and G. J. L. Wright (eds.) Academic Press, London. 1978. Berry, Ε. Κ. Μ., N. Allison, A. J. Skinner and R. A. Cooper. Degradation of the selective herbicide 2,2-dichloropropionate (Dalapon) by a soil bacterium. J . Gen. Micro. 110:39-46. 1979. Weightman, A. J., J . H. Slater and A. T. Bull. The partial purification of two dehalogenases from Pseudomonas putida pp-3. FEMS Microbial Lett. 6:231. 1980. Kawasaki, Η., N. Tone and K. Tonomura. Purification of properties of haloacetate halidohydrolase specified by plasmid from Moraxella sp strain B. Agric. Biol. Chem. 45:35-42. 1981. Wallnofer, P. R. and J. Bader. Degradation of urea herbicices by cell-free extracts of Bacillus sphaericus. Appl. Microbiol. 19:714-719. 1970. Engelhardt, G . , P. R. Wallnofer and R. Plapp. Purification and properties of an aryl acylamidase of Bacillus sphaericus catalyzing the hydrolysis of various phenylamide herbicides and fungicides. Appl. Microbiol 26:709-716. 1973. Brown, Κ. Α., Phosphotriesterases of Flavobacterium sp. Soil Biol. Biochem. 12:105-111. 1980. Munnecke, D. M. Enzymatic detoxification of waste organophosphate pesticides. J . Agric. Food Chem. 28:105-110. 1980. Munnecke, D. M. Enzymatic hydrolysis of organophosphate insecticides, a possible pesticide disposal method. Appl. Environ. Microbiol. 32:7-15. 1976. Evans, W. C . , B. S. W. Smith, Η. N. Fernley and J. I. Davies. Bacterial metabolism of 2,4-dichlorophenoxyacetate. Biochem. J . 122_:543-548. 1971. Loos, M. A. R. N. Roberts and M. Alexander. Formation of 2,4-dichlorophenol and 2,4-dichloroanisole from 2,4-dichlorophenoxyacetate by Arthobacter sp. Can J. Microbiol. 13:691-695. 1967. Kilbane, J . J., D. K. Chatterjee, J . S. Karns, S. T. Kellog and A. M. Chakrabarty. Biodegradation of 2,4,5-trichlorophenoxyacetic acid by a pure culture of Pseudomonas cepacia. Appl. Environ. Microbiol. 44:72-78. 1982. Chatterjee, D. Κ., J . J . Kilbane and A. M. Chakrabarty. Biodegradation of 2,4,5-trichlorophenoxyacetic acid in soil by a pure culture of Pseudomonas cepacia. Appl. Environ. Microbiol. 44:514-516. 1982.

LeBaron et al.; Biotechnology in Agricultural Chemistry ACS Symposium Series; American Chemical Society: Washington, DC, 1987.

169

170 18.

19. 11th

Downloaded by CALIFORNIA INST OF TECHNOLOGY on September 17, 2017 | http://pubs.acs.org Publication Date: March 18, 1987 | doi: 10.1021/bk-1987-0334.ch013

20. 21. 22. 23. 24. 25.

26. 27. 28.

29. 30. 31.

32.

33.

BIOTECHNOLOGY IN AGRICULTURAL CHEMISTRY Kilbane, J . J., D. K. Chatterjee and A. M. Chakrabarty. Detoxification of 2,4,5-trichlorophenoxyacetic acid from contaminated soil by Pseudomonas cepacia. Appl. Environ. Microbiol. 45:1697-1700. 1983. Bumpus, J . Α., M. Tien, D. S. Wright, and S. Aust. Biodegradation of environmental pollutants by the white rot fungus Phanerochaete chrysosporium. In: Proceedings of the Annual Research Symposium on Incineration and Treatment of Hazardous Waste. EPA/600/9-85/028. 1985. Karns, J . S., W. W. Mulbry, J . O. Nelson and P. C. Kearney. Metabolism of carbofuran by a pure bacterial culture. Pesticide Biochemistry and Physiology 25:211-217. 1986. Chakrabarty, A. M. Plasmids in Pseudomonas. Annu. Rev. Genet. 10:7-30. 1976 Fisher, P. R., J . Appleton and J. M. Pemberton. Isolation and characterization of the pesticide degrading plasmid pJP1 from Alcaligenes paradoxus. J . Bacterlol. 135:798-804. 1978. Kawasaki, Η., N. Tone and and K. Tonomura. Plasmid-detemined dehalogenation of haloacetates in Moroxella sp. Agric. Biol. Chem. 45:29-34. 1981. Sethunathan, N. and T. Yoshida. A Flavobacterium that degrades diazinon and parathion. Can. J. Microbiol. 19:873-875. 1973. Mulbry, W. W., J . S. Karns, P. C. Kearney, J . O. Nelson, C. S. McDaniel and J. R. Wild. Identification of a plasmid-borne parathion hydrolase gene in Flavobacterium sp. by Southern hybridization with opd from Pseudomonas diminuta. Appl. Environ. Microbiol. 51:926-930. 1986. Strarlinger, P., ISelements and transposons. Plasmid 2:241-259. 1980. Waggoner, T. B. Personal communication, 1985. Kearney, P. C . , J. R. Plimmer and A. M. Li. UV-ozonation and land disposal of aqueous pesticide wastes. In: Pesticide Chemistry-Human Welfare and the Environment. J . Miyamoto (ed.) Vol. 4. Pergamon Press, Oxford. 1983. Kearney, P. C . , J. S. Karns, M. T. Muldoon and J. M. Ruth. Coumaphos disposal by combined microbial and U.V.-ozonation reactions. J . Agric. Food Chem. (in press). Read, D. L. Enhanced microbial degradation of carbofuran and fensulfothion after repeated applications to acid mineral soil. Agric. Ecosys. Environ. 10:37-45. 1983. Smith, M. and S. Gilliam. Constructed mutants using synthetic oligodeoxyribonucleotides as site-specific mutagens. In: Genetic Engineering Vol. 3. J . Setlow and A. Hollaender (eds.). Plenum, New York. 1981. Serdar, C. M., D. T . , Gibson, D. M. Munnecke, and J. H. Lancaster. Plasmid involvement in parathion hydrolysis by Pseudonomas diminuta. Appl. Environ. Microbiol. 44:246-249. 1982. Serdar, C. M. and D. T. Gibson. Enzymatic hydrolysis of organophosphates: cloning and expression of a parathion hydrolase gene from Pseudomonas diminuta. Biotechnology 3:567-571. 1985.

RECEIVED September 16, 1986

LeBaron et al.; Biotechnology in Agricultural Chemistry ACS Symposium Series; American Chemical Society: Washington, DC, 1987.