12
Vapor-Phase Epitaxy of Group III-V Compound Optoelectronic Devices
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on January 23, 2017 | http://pubs.acs.org Publication Date: October 2, 1985 | doi: 10.1021/bk-1985-0290.ch012
G. H. Olsen Epitaxx, Inc., Princeton, NJ 08540
The major types of VPE growth systems throughout the world are reviewed. Growth parameters and equipment sketches are included. Limitations and solutions to the "preheat problem" are discussed. Multibarrel reactors, which allow multilayer heteroepitaxial layers to be grown without interruption of c r y s t a l growth are also described. Novel growth phenomena such as "non-planar" VPE lasers, l a t e r a l growth over d i e l e c t r i c layers, growth on (311) and (511) InP substrates and combined VPE/LPE growth are discussed. I n - s i t u laser diagnostic probing and device results -- including the use of VPE for v i s i b l e lasers -- are also reviewed.
The vapor phase epitaxy (VPE) of III-V compounds -- whereby s o l i d e p i t a x i a l layers are deposited by passing chemical vapors over a substrate -- i s of great use i n the optoelectronics area. Commerc i a l devices which are synthesized by t h i s process include GaAsP LEDs, GaAs photocathodes, 1.06 µm InGaAs LEDs and lasers, 1.3 µm InGaAsP LEDs, 1.3 µm InGaAsP cw lasers and 0.9-1.7 µm InGaAs PIN detectors (1) (another important class of VPE grown components (2) -microwave devices -- w i l l not be discussed i n t h i s review). Annual sales of optoelectronic devices made by the VPE process undoubtedly run into the tens of millions of d o l l a r s . The two methods f o r the VPE growth o f I I I - V compounds have been the s o - c a l l e d " c h l o r i d e " method, whereby a group V c h l o r i d e ( e . g . , A s C l ) passes o v e r a m e t a l t o form t h e group I I I c h l o r i d e ( e . g . G a C l ) , whereas i n t h e s o - c a l l e d " h y d r i d e " t e c h n i q u e , t h e group V element i s i n t r o d u c e d as a h y d r i d e ( e . g . , A S H 3 ) and HC1 gas i s passed over a m e t a l t o form the group I I I c h l o r i d e . S t r i c t l y s p e a k i n g , t h e term " h a l i d e " s h o u l d be used r a t h e r t h a n " c h l o r i d e , " s i n c e I and B r have a l s o been used as t r a n s p o r t a g e n t s . The main advantage o f the c h l o r i d e system i s t h a t i t has produced v e r y low (— H
2
+ AsH
3
+PH
3
F i g u r e 3. VPE r e a c t o r d e s c r i b e d by Z i n k i e w i c z ( c o u r t e s y o f L. M. Z i n k i e w i c z ) .
Stroeve; Integrated Circuits: Chemical and Physical Processing ACS Symposium Series; American Chemical Society: Washington, DC, 1985.
12.
OLSEN
Group III-
V Compound
Optoelectronic
227
Devices
connected t o a s i n g l e l a r g e r growth tube. A l l gas f l o w s are cont r o l l e d a t the i n l e t end by e l e c t r o n i c mass-flow c o n t r o l l e r s . AsH and P H f l o w d i r e c t l y i n t o the growth tube w h i l e the HC1 i s passed over g r a p h i t e b o a t s c o n t a i n i n g l i q u i d i n d i u m and l i q u i d g a l l i u m . Dopants a r e added t h r o u g h the f o u r t h tube. M i x i n g o f the m e t a l c h l o r i d e s and the h y d r i d e s i s d e l a y e d by p a s s i n g the h y d r i d e gases through a n o z z l e . T h i s reduces w a l l d e p o s i t s upstream from the subs t r a t e , which may cause changes i n growth r a t e and c o m p o s i t i o n . The n o z z l e t i p i s p e r f o r a t e d t o enhance a c t i v e gax m i x i n g j u s t b e f o r e f l o w i n g over the s u b s t r a t e . The s u b s t r a t e i s pushed i n from the exhaust end t o a p o i n t about 5 cm downstream from the n o z z l e . The r e a c t o r i s mounted i n a h o r i z o n t a l f u r n a c e and heated t o a temperat u r e o f 840°C a t the source zone and 700°C a t the growth zone. 3
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on January 23, 2017 | http://pubs.acs.org Publication Date: October 2, 1985 | doi: 10.1021/bk-1985-0290.ch012
3
The system o f Sugiyama e t a l (18) i s shown i n F i g . 5. A s C l i s used as an HC1 s o u r c e . A r e s i d e n c e time o f over 4 s i s c l a i m e d between the m e t a l s and HC1 gas. No p r o v i s i o n f o r p-type doping i s specified. 3
The system o f Enda (8) employs a s e a l e d p r e h e a t chamber i n which the s u b s t r a t e temperature can be brought up t o growth temperature i n a group V h y d r i d e ambient (see F i g . 6 ) . The system o f Susa e t a l ( 1 9 ) , p r i m a r i l y f o r InP and InGaAs growth, uses A s C l as an HC1 source and a l s o uses a s l i d i n g q u a r t z boat t o p r o t e c t s u b s t r a t e s from d e c o m p o s i t i o n . Improved c r y s t a l l i n e q u a l i t y was a t t r i b u t e d t o t h i s b o a t . 3
V o h l (20) has grown a l l o y s by the t r i c h l o r i d e method which uses P C 1 and A s C l as s o u r c e s f o r P and As. Three compound s o u r c e s , InP, InAs, and GaAs — each i n a s e p a r a t e tube — a r e r e a c t e d w i t h a gas m i x t u r e c o n t a i n i n g the same group V element. Each r e a c t i o n i s independently c o n t r o l l e d . The d e p o s i t i o n o f the a l l o y s i s regarded as the d e p o s i t i o n o f a m i x t u r e o f GaAs, InP, and InAs. The a l l o y c o m p o s i t i o n i s o b t a i n e d by a d j u s t i n g the r e l a t i v e amounts o f the t h r e e compounds t h a t are d e p o s i t e d on the s u b s t r a t e . A s k e t c h o f the f u r n a c e i s shown i n F i g . 7. 3
3
L i m i t a t i o n s Imposed by the P r e h e a t P r o c e s s One drawback o f the s i n g l e - b a r r e l VPE p r o c e s s i s the p r e h e a t cycle. Here, s u b s t r a t e w a f e r s a r e heated up t o 650-700°C, p r i o r t o growth, u s u a l l y w i t h o u t d e p o s i t i o n o r e t c h i n g t a k i n g p l a c e . This temperature range e q u a l s o r exceeds the congruent e v a p o r a t i o n tempera t u r e (25) f o r most I I I - V compounds, and some p r e f e r e n t i a l evaporat i o n o f the group V clement i s bound t o t a k e p l a c e . InP i s p a r t i c u l a r l y s u s c e p t i b l e t o t h i s phenomenon, s i n c e i t s d e c o m p o s i t i o n tempera t u r e i s o n l y around 400°C. The damage can be reduced by p r e h e a t i n g
Stroeve; Integrated Circuits: Chemical and Physical Processing ACS Symposium Series; American Chemical Society: Washington, DC, 1985.
CHEMICAL AND PHYSICAL PROCESSING OF INTEGRATED CIRCUITS
HCI(5%)
-AsH •-PH - H
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on January 23, 2017 | http://pubs.acs.org Publication Date: October 2, 1985 | doi: 10.1021/bk-1985-0290.ch012
EXHAUST
SUBSTRATE
^
Go
3
3
2
Zn
t
MFC
t HCI(2%)
F i g u r e 4. VPE r e a c t o r o f Johnston and Strege ( c o u r t e s y o f W. D. J o h n s t o n , J r . ) .
F i g u r e 5. VPE r e a c t o r o f Sugiyama e t a l . ( c o u r t e s y o f K. Sugiyama).
Stroeve; Integrated Circuits: Chemical and Physical Processing ACS Symposium Series; American Chemical Society: Washington, DC, 1985.
12.
OLSEN
Group III-V
Compound
Optoelectronic
CHAMBER
229
Devices
SUBSTRATE
EXHAUST
j|
P U S H ROD
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on January 23, 2017 | http://pubs.acs.org Publication Date: October 2, 1985 | doi: 10.1021/bk-1985-0290.ch012
HCl+H2HCl+H2-
F i g u r e 6.
VPE r e a c t o r o f Enda ( c o u r t e s y o f H. Enda).
-6a
As r-InAs
F i g u r e 7.
VPE r e a c t o r of Vohl ( c o u r t e s y o f P. V o h l ) .
Stroeve; Integrated Circuits: Chemical and Physical Processing ACS Symposium Series; American Chemical Society: Washington, DC, 1985.
230
CHEMICAL AND PHYSICAL PROCESSING OF INTEGRATED CIRCUITS
the s u b s t r a t e i n the a p p r o p r i a t e PH ).
group V h y d r i d e
(1)
(i.e.,
ASH3
or
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on January 23, 2017 | http://pubs.acs.org Publication Date: October 2, 1985 | doi: 10.1021/bk-1985-0290.ch012
3
A l t h o u g h the s u r f a c e morphology of a p r e h e a t e d l a y e r i s o b v i o u s l y degraded by the p r e h e a t d e c o m p o s i t i o n , the m i c r o s t r u c t u r e o f the m a t e r i a l a l s o s u f f e r s . A h i g h d e n s i t y o f d e f e c t loops has been o b s e r v e d , (1) v i a t r a n s m i s s i o n e l e c t r o n m i c r o s c o p y , near the a c t i v e r e g i o n s of InGaP/GaAsP l a s e r s . The d i s l o c a t i o n l o o p s can be e l i m i nated by u s i n g h i g h f l o w s of the group V c a r r i e r - g a s and lower temperatures d u r i n g p r e h e a t . However, an excess p o i n t - d e f e c t concent r a t i o n may always be p r e s e n t t o some e x t e n t , and s h o u l d be viewed as a p o t e n t i a l f a i l u r e mechanism i n any I I I - V compound l i g h t - e m i t t i n g device prepared at elevated temperatures. Preheat decomposition can be reduced w i t h the use o f the " s l i d e r - b o a t " s u b s t r a t e h o l d e r whereby a q u a r t z " s l i d e r " i s used t o s h i e l d the s u b s t r a t e from gaseous ambients ( 1 0 ) . The NTT v e r s i o n (19) a l l o w s group V gases t o be t r a p p e d a l o n g w i t h the s u b s t r a t e . However, m i c r o s c o p i c d e c o m p o s i t i o n s t i l l p r o b a b l y o c c u r s .
M u l t i b a r r e l VPE
Reactors
The p r e h e a t problem, d i s c u s s e d i n the l a s t s e c t i o n , can be s o l v e d by e l i m i n a t i n g the need f o r i t . The use o f m u l t i b a r r e l r e a c t o r s a l l o w s s u c c e s s i v e h e t e r o e p i t a x i a l l a y e r s t o be grown by moving the s u s b s t r a t e from one growth chamber t o another w i t h o u t i n t e r r u p t i n g growth. A dual-growth-chamber GaAs VPE r e a c t o r was proposed by Watanabe e t a l (26) i n 1977 t o produce abrupt changes i n doping p r o f i l e . T h i s system was upgraded i n t o a GalnAsP d u a l - g r o w t h chamber r e a c t o r by M i z u t a n i e t a l ( 1 3 ) . Other types of m u l t i b a r r e l r e a c t o r s were i n d e p e n d e n t l y c o n c e i v e d t o grow (Ga,In)(As,P) by O l s e n and Zamerowski (15) (the " d o u b l e - b a r r e l " r e a c t o r ) and by Beuchet e t a l (7) (the f o u r - b a r r e l "multichamber" r e a c t o r ) . The t h r e e types of r e a c t o r s are shown i n F i g s . 8, 9, and 10. The "dual-growth-chamber" r e a c t o r o f M i z u t a n i (13) ( F i g . 8) c o n s i s t s of one h o r i z o n t a l chamber t o grow InP and another p a r a l l e l chamber t o grow a l l o y s o f ( G a , I n ) ( A s , P ) . The s u b s t r a t e i s supported by a rod mounted on a f l e x i b l e rubber b e l l o w s so t h a t t r a n s f e r between chambers i s a c c o m p l i s h e d by w i t h d r a w i n g and s h i f t i n g the rod. T r a n s f e r can be e f f e c t e d w i t h i n 2 s and h e t e r o i n t e r f a c e t r a n s i t i o n w i d t h s l e s s t h a n 50-60 & are c l a i m e d . A l t h o u g h ( i n the form shown) g a l l i u m - b e a r i n g a l l o y s can o n l y be grown i n one of the chambers, and no p r o v i s i o n s have been made f o r p-type doping, h i g h - q u a l i t y 1.3 |Jm cw l a s e r s have been s y n t h e s i z e d i n the system (Cd was d i f f u s e d i n a f t e r growth f o r p - c o n t a c t ) .
sists
The "multichamber" r e a c t o r of Beuchet e t a l (7) ( F i g . 9) cono f f o u r p a r a l l e l t u b e s , each w i t h a s p e c i f i c f u n c t i o n . The
Stroeve; Integrated Circuits: Chemical and Physical Processing ACS Symposium Series; American Chemical Society: Washington, DC, 1985.
OLSEN
Group III- V Compound
r
Optoelectronic
Devices
H2/HCl r HH2 2/ /HHCCi i RUBBER
r H 2 2//«s AsH n 33 /* P H ,
I
BELLOWS
-In -Go
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on January 23, 2017 | http://pubs.acs.org Publication Date: October 2, 1985 | doi: 10.1021/bk-1985-0290.ch012
-In 800°C
850°C
660-700°C
^ H ip2//r H C t H
2
/PH
3
/H
2
S
EXHAUST
F i g u r e 8, "Dual-growth-chamber" VPE r e a c t o r of M i z u t a n i ( c o u r t e s y o f T. M i z u t a n i ) .
F i g u r e 9. "Multichamber" VPE r e a c t o r o f Beuchet G. B e u c h e t ) .
(courtesy
InP SUBSTRATE HOLDER InGaAsP
H
T=700 ±0.5°C
F i g u r e 10. RCA " d o u b l e - b a r r e l " VPE r e a c t o r .
Stroeve; Integrated Circuits: Chemical and Physical Processing ACS Symposium Series; American Chemical Society: Washington, DC, 1985.
232
CHEMICAL AND PHYSICAL PROCESSING OF INTEGRATED CIRCUITS
system has been automated e f f e c t e d w i t h i n 1 s. The first: second: third: fourth:
so t h a t i n t e r c h a m b e r t r a n s f e r can be purpose o f each chamber i s as f o l l o w s :
p r e h e a t and s u b s t r a t e e t c h , growth o f n-InP growth o f n-GalnAs growth o f p-InP
M e t a l l i c z i n c i s used f o r p-type d o p i n g w h i l e H S dopant. Downloaded by UNIV OF CALIFORNIA SAN DIEGO on January 23, 2017 | http://pubs.acs.org Publication Date: October 2, 1985 | doi: 10.1021/bk-1985-0290.ch012
2
i s the n-type
The " d o u b l e - b a r r e l " VPE r e a c t o r (15) d e s i g n e d a t RCA i s shown i n F i g s . 10. The concept i n v o l v e s the use o f two c o n v e n t i o n a l VPE systems p l a c e d i n p a r a l l e l and f e e d i n g i n t o a s i n g l e - g r o w t h chamber. W i t h t h i s c o n s t r u c t i o n , d i f f e r e n t gases can be run t h r o u g h each t u b e , so t h a t d o u b l e - h e t e r o s t r u c t u r e l a s e r s ( e . g . , InP/InGaAsP/InP/InGaAsP) can be p r e p a r e d by s i m p l y s w i t c h i n g the s u b s t r a t e from one tube t o the o t h e r , thus removing the need f o r p r e h e a t c y c l e s , which may l i m i t d e v i c e performance s i n c e t h e y can i n t r o d u c e i n t e r f a c i a l d e f e c t s . I t i s i m p o r t a n t t o note here t h a t c r y s t a l growth i s not i n t e r r u p t e d d u r i n g the the s w i t c h o v e r from one l a y e r t o a n o t h e r . The substrate can e i t h e r be h e l d j u s t i n f r o n t of each t u b e , o r i n s e r t e d i n t o the tube i f any m i x i n g problems o c c u r . C o n v e r s e l y , by h o l d i n g the s u b s t r a t e a t the end of the q u a r t z p l a t e and r o t a t i n g i t , e x t r e m e l y t h i n m u l t i l a y e r s can be grown. I t i s e s t i m a t e d t h a t by r o t a t i n g the s u b s t r a t e a t 200-300 rpm under normal VPE growth c o n d i t i o n s , s i n g l e atomic l a y e r s o f each m a t e r i a l c o u l d be d e p o s i t e d . F i g u r e 11 c o n t a i n s an SEM photo o f a s t a i n e d a n g l e - l a p p e d s e c t i o n from a 5 0 - l a y e r InAsP/InP m u l t i l a y e r s t r u c t u r e — each w i t h a 200 X t h i c k n e s s . A l t h o u g h e x c i t i n g fundamental s t u d i e s may be performed w i t h s t r u c t u r e s p r e p a r e d i n the d o u b l e - b a r r e l r e a c t o r , i t s main p r a c t i c a l advantage i s a s a v i n g i n growth time and m a t e r i a l s , as w e l l as the possible attainment of h i g h l y - s u p e r i o r interfacial properties. Growth o f a t y p i c a l l a s e r s t r u c t u r e p r e s e n t l y t a k e s about 2 hours and i n v o l v e s f o u r p r e h e a t c y c l e s , i n c l u d i n g one a t each o f the two c a v i t y interfaces. InP i s p a r t i c u l a r l y s u s c e p t i b l e t o d e c o m p o s i t i o n e f f e c t s at e l e v a t e d t e m p e r a t u r e s . W i t h the new system, the t o t a l growth time i s reduced t o 30 min, and a l l p r e h e a t c y c l e s a r e e l i m i n a t e d ( e x c e p t f o r the o r i g i n a l one, which can be p o s i t i o n e d 1-10 pm below the l a s e r cavity). The reduced growth time would enable 15 o r more l a s e r wafers t o be grown i n a s i n g l e day. The e l i m i n a t i o n o f the p r e h e a t c y c l e s i s e x p e c t e d t o y i e l d c l e a n e r i n t e r f a c e s , which s h o u l d p r o v i d e l a s e r s w i t h lower t h r e s h o l d c u r r e n t d e n s i t i e s , h i g h e r e f f i c i e n c i e s , and b e t t e r r e l i a b i l i t y . Improved i n t e r f a c e s s h o u l d s i m i l a r l y enhance the performance o f a v a l a n c h e p h o t o d i o d e s , as d i s c u s s e d i n the p r e v i o u s s e c t i o n . These advantages are h i g h l i g h t e d i n T a b l e I I .
Stroeve; Integrated Circuits: Chemical and Physical Processing ACS Symposium Series; American Chemical Society: Washington, DC, 1985.
12.
OLSEN
Group III-V
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on January 23, 2017 | http://pubs.acs.org Publication Date: October 2, 1985 | doi: 10.1021/bk-1985-0290.ch012
Table I I .
Compound
Optoelectronic
Devices
233
Advantages o f D o u b l e - B a r r e l VPE R e a c t o r
•
Cleaner I n t e r f a c e s : C r y s t a l growth i s n o t i n t e r r u p t e d when growing m u l t i p l e ( h e t e r o e p i t a x i a l ) l a y e r s .
•
R a p i d D e v i c e Growth: A complete f o u r - l a y e r InGaAsP/InP/ InGaAsP/InP 1.3 fJm cw l a s e r s t r u c t u r e can be grown i n about 30 minutes. F i f t e e n o r more wafers o f t h i s type c o u l d be grown i n one day.
•
V e r y - t h i n L a y e r Growth: M u l t i p l e l a y e r s ( 1.4 pm i s d i f f i c u l t because o f d i s s o l u t i o n o f the a l l o y by the &P m e l t . A l t h o u g h t h i s problem can be c i r c u m v e n t e d by s p e c i a l growth t e c h n i q u e s , i t does l i m i t the f l e x i b i l i t y o f the LPE t e c h n i q u e s i n c e the u s u a l growth t e c h n i q u e s cannot be used h e r e . No such problems e x i s t f o r VPE, and m u l t i l a y e r h e t e r o s t r u c t u r e s w i t h bandgap wavelengths i n excess o f 2.0 |Jm can be f a b r i c a t e d u s i n g the same t e c h n i q u e s as f o r 1.3 |Jm d e v i c e s . This would i n c l u d e e m i t t e r s and d e t e c t o r s i n the 2-3.5 |Jm range ( u s i n g InGaAs/InAsP) and the 3-6 urn range ( u s i n g InGaSb/InAsSb). As l o n g wavelength GalnAsP l a s e r s , LEDs, and p h o t o d e t e c t o r s b e g i n t o r e p l a c e GaAs e m i t t e r s and S i d e t e c t o r s f o r l o w - l o s s f i b e r a p p l i c a t i o n s and as new a p p l i c a t i o n s a r i s e i n the 1.0-1.7 |Jm regime, l o o k f o r the VPE p r o c e s s t o p l a y an i n c r e a s i n g l y i m p o r t a n t r o l e i n the t e c h n o l o g y o f electronic devices.
Stroeve; Integrated Circuits: Chemical and Physical Processing ACS Symposium Series; American Chemical Society: Washington, DC, 1985.
12.
OLSEN
Group
III-V
Compound
Optoelectronic
Devices
239
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on January 23, 2017 | http://pubs.acs.org Publication Date: October 2, 1985 | doi: 10.1021/bk-1985-0290.ch012
Another i m p o r t a n t a p p l i c a t i o n concerns v i s i b l e l a s e r s . VPE can be used t o grow InGaP/GaAsP and InGaP/InGaAsP h e t e r o s t r u c t u r e s f o r l a s e r s which emit l i g h t near 7000 &. CW o p e r a t i o n a t 10°C was r e p o r t e d f o r 7050 8 InGaP/GaAsP l a s e r s by K r e s s e l (42) e t a l . U s u i e t a l (43) have r e p o r t e d cw room temperature o p e r a t i o n near 7600 & w i t h VPE InGaAsP/InGaP. (They a l s o r e p o r t e d reduced w a l l d e p o s i t s w i t h t h e a d d i t i o n o f s m a l l oxygen c o n c e n t r a t i o n s ) . As i n t e r e s t i n v i s i b l e l a s e r s i n c r e a s e s , d r i v e n by o p t i c a l r e c o r d i n g / p l a y b a c k and audio d i s c a p p l i c a t i o n s , VPE t e c h n o l o g y w i l l u n d o u b t e d l y become more w i d e s p r e a d i n o p t o e l e c t r o n i c a p p l i c a t i o n s . Acknowledgments T h i s paper was o r i g i n a l l y p r e s e n t e d a t t h e S p r i n g 1983 M e e t i n g o f The E l e c t r o c h e m i c a l S o c i e t y , I n c . h e l d i n San F r a n c i s c o , C a l i f . C o p y r i g h t 1983, The E l e c t r o c h e m i c a l S o c i e t y . Literature Cited 1. 2. 3.
4. 5. 6.
7.
8. 9.
10. 11.
12. 13. 14. 15.
G. H. Olsen, GaInAsP A l l o y Semiconductors, pp. 1-41, ed. T. P. P e a r s a l l , J. Wiley, London, 1982. RCA Review, 2, pp. 499-782 (1981) (Special Issue on Microwave Technology). R. D. Fairman, M. Omuri and F. B. Fauk, Gallium Arsenide and Related Compounds (St. Louis), 1976, Conf. Ser. No. 33b, Institute of Physics, London, 1977, pp. 45-54. J . J. Tietjen and J. A. Amick, J. Electrochem. Soc., 113, 724-728, 1966. G. H. Olsen and T. J . Zamerowski, IEEE J . Quantum Electron., QE-17, pp. 128-138, 1981. G. H. Olsen and M. Ettenberg, Crystal Growth: Theory and Technique, Vol. I I , ed. C. H. L. Goodman, New York, Plenum Press, 1978, pp. 1-56. G. Beuchet, M. Bonnet and J . P. Duchemin, Proc. 1980 NATO Conf. on InP, Rome A i r Development Center Tech. Memo, RADC-TM-80-07, Hanscom A i r Force Base, MA, 1980, p. 303. H. Enda, Jpn. J . Appl. Phys., 18, pp. 2167-2168, 1979. R. E. Enstrom, D. Richman, M. S. Abrahams, J. R. Appert, D. G. Fisher, A. H. Sommer and B. F. Williams, 3rd Int. Symp. on GaAs and Related Compounds, Institute of Physics, London, 1970, pp. 30-40. S. B. Hyder, R. R. Saxena and C. C. Cooper, Appl. Phys. Lett., 34, pp. 584-586, 1979. W. D. Johnston, J r . , and K. E. Strege, 38th Annual IEEE Device Research Conf. Abstracts, Cornell University, Vol. IVB-3, June 1980. H. Kanbe, Y. Yamauchi and N. Susa, Appl. Phys. Lett., 35, pp. 603-605, 1979. T. Mizutani, M. Yoshida, A. Usai, H. Watanabe, T. Yuasa and I. Hayashi, Jpn. J. Appl. Phys., 19, L113-L116, 1980. H. Nagai, J. Electrochem. Soc., 126, pp. 1400-1403, 1979. G. H. Olsen and T. J . Zamerowski, Progress i n Crystal Growth and Characterization, Vol. I I , ed. B. R. Pamplin, London, Pergamon, 1979 pp. 309-375.
Stroeve; Integrated Circuits: Chemical and Physical Processing ACS Symposium Series; American Chemical Society: Washington, DC, 1985.
240 16. 17. 18.
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on January 23, 2017 | http://pubs.acs.org Publication Date: October 2, 1985 | doi: 10.1021/bk-1985-0290.ch012
19. 20. 21. 22. 23. 24. 25. 26. 27. 28. 29. 30.
31. 32. 33. 34. 35. 36.
37. 38. 39. 40. 41. 42. 43.
CHEMICAL AND PHYSICAL PROCESSING OF INTEGRATED CIRCUITS R. R. Saxena, S. B. Hyder, P. E. Gregory and J . S. Escher, J . Crystal Growth, 50, pp. 481-484, 1980. H. Seki, A. Koukitu and M. Matsumura, J . Crystal Growth, 54, pp. 615-617, 1981. K. Sugiyama, H. Kojima, H. Enda and M. Shibata, Jpn. J . Appl. Phys., 16, pp. 2197-2203, 1977. N. Susa, Y. Yamauchi, H. Ando and H. Kanbe, Jpn. J . Appl. Phys., 19, L17-L20, 1980. P. Vohl, J . Crystal Growth, 54, pp. 101-108, 1981. L. M. Zinkiewicz, PhD Thesis, Univ. of I l l i n o i s (1981). K. Jones, J . Crystal Growth (to be published). R. A. Burmeister, J r . , G. P. Pighini and P. E. Greene, Trans. Met. Soc. AIME, 245, 587-591 (1969). W. O. Groves, A. H. Herzog and M. G. Crawford, Appl. Phys. Lett., 19, pp. 184-186 (1971). B. Goldstein, Semiannual Report #2, Contract No. DAAK02-74-C0081, Night Vision Lab, F t . Belvoir, Va. (1975). H. Watanabe, M. Yoshida and Y. Seki, 151st Electrochem. Soc. Ext. Abst., pp. 255-256 (May 1977). D. Botez, IEE Proc., 129, pp. 237-251 (1982). T. Zamerowski and G. H. Olsen, Late News Paper (May 1983 Electrochemical Society Meeting, San Francisco). G. H. Olsen, T. J . Zamerowski and N. J . DiGiuseppe, 1982 IEDM Extended Abstracts (IEEE Press, New York, 1982). F. J . Leonberger, C. O. Boyler, R. W. McClelland and L. Melngailis, Proc. Topical Mtg. on Integrated and Guided Wave Optics, Incline V i l l a g e , Nevada (1980). G. H. Olsen, T. J . Zamerowski and F. Z. Hawrylo, J . Crystal Growth, 59, pp. 654-658 (1982). G. H. Olsen, T. J . Zamerowski and N. J . DiGiuseppe, 8th IEEE Int. Semiconductor Laser Conf. Abstracts (Ottawa, 1982). N. Susa and Y. Yamauchi, J . Crystal Growth, 51, pp. 518-524 (1981). O. Mikami, H. Nakagome, Y. Yamauchi and H. Kanbe, Electron. Lett., 18, pp. 237-239 (1982). F. Z. Hawrylo and G. H. Olsen, U. S. Patent No. 4,355,396. T. R. Chen, L. C. Chiu, K. L. Yu, U. Koren, A. Hasson, S. Margalit and A. Yariv, Appl. Phys. Lett, 41, pp. 1115-1117 (1982). Z. L. Liau and J . N. Walpole, Appl. Phys. Lett., 40, pp. 568-569 (1982). V. M. Donnelly and R. F. Karlicek, J . Appl. Phys., 53, pp. 6399-6407 (1982). C. J . Nuese, H. Kressel and I. Ladany, IEEE Spectrum, 9, 28-38 (1972). N. Susa, Y. Yamauchi and H. Kanbe, Jpn. J . Appl. Phys., 20, pp. L253-L256 (1981). H. Ando, N. Susa and H. Kanbe, Jpn. J . Appl. Phys., 20, pp. L197-L199 (1981). H. Kressel, G. H. Olsen and C. J . Nuese, Appl. Phys. Lett., 30, pp. 249-252 (1977). A. Usui, Y. Matsumoto, T. Inoshita, T. Mizutani and H. Watanabe, GaAs and Rel. Comp., Inst. Phys. Conf. Ser. 63, London, pp. 137-142, (1981).
RECEIVED March 1, 1985
Stroeve; Integrated Circuits: Chemical and Physical Processing ACS Symposium Series; American Chemical Society: Washington, DC, 1985.