Vapor–Liquid Equilibrium and Excess Enthalpy Data for Systems

Aug 8, 2017 - DDBST (Dortmund Data Bank Software & Separation Technology) GmbH, Marie-Curie-Straße 10, D-26129 Oldenburg, Germany ... Isothermal P–...
55 downloads 11 Views 1MB Size
Article pubs.acs.org/jced

Vapor−Liquid Equilibrium and Excess Enthalpy Data for Systems Containing N,N‑Dimethylacetamide Sven Horstmann,*,† Dana Constantinescu,‡ and Jürgen Gmehling‡ †

LTP (Laboratory for Thermophysical Properties) GmbH, Associate Institute at the University of Oldenburg, Marie-Curie-Straße 10, D-26129 Oldenburg, Germany ‡ DDBST (Dortmund Data Bank Software & Separation Technology) GmbH, Marie-Curie-Straße 10, D-26129 Oldenburg, Germany

ABSTRACT: Isothermal P−x vapor−liquid equilibrium and excess enthalpy (HE) data were experimentally determined for the 10 binary systems hexane, heptane, 1-octene, benzene, toluene, ethanol, methanol, ethyl acetate, dibutyl ether, and dichloromethane with N,N- dimethylacetamide using the static synthetic method and isothermal flow calorimetry, respectively. The experimental data from this work together with data taken from literature were used for the extension of the group contribution method Modified UNIFAC (Dortmund).



INTRODUCTION For the accurate design and optimization of separation processes, a reliable knowledge of the phase equilibrium behavior is essential. In case of subcritical substances, gE models can be used for the calculation of multicomponent systems from binary data. If experimental data are missing, predictive methods like the group contribution method Modified UNIFAC (Dortmund) can be employed. The Modified UNIFAC (Dortmund) method has a wide application range, and overall 755 binary parameter sets between the different structural groups are published.1−6 Recently, the method has also been extended to ionic liquids.7

For the revision and extension of the method, systematic experiments are performed. In this work, vapor−liquid equilibrium (VLE) data were measured with the static synthetic method. Isothermal P−x data are obtained for the 10 binary systems hexane, heptane, 1-octene, benzene, toluene, ethanol, methanol, ethyl acetate, dibutyl ether, and dichloromethane with N,N-dimethylacetamide. Additionally, heat of mixing (excess enthalpy, HE) data for these 10 systems were measured with the help of an isothermal flow calorimeter. Excess enthalpy data are important for the description of the correct temperaturedependence of the activity coefficients following the Gibbs− Helmholtz equation8 ⎛ ∂ ln γi ⎞ H̅ iE ⎜ ⎟ = ⎝ ∂1/T ⎠ P , x R

Table 1. Properties of the Pure Components component

supplier

purity/%

water content/mass ppm

N,N-dimethylacetamide hexane heptane 1-octene benzene toluene ethanol methanol ethyl acetate dibutyl ether dichloromethane

Sigma-Aldrich Sigma-Aldrich Sigma-Aldrich Sigma-Aldrich Sigma-Aldrich Sigma-Aldrich Fisher-Scientific Sigma-Aldrich Sigma-Aldrich Sigma-Aldrich Sigma-Aldrich

>99.9 >99.8 >99.9 >99.8 >99.9 >99.9 >99.9 >99.9 >99.9 >99.9 >99.9

100 15 15 130 60 10 25 200 50 230 20

© 2017 American Chemical Society

(1)

Most of the published HE data are determined around ambient temperature. Therefore, systematic measurements at higher temperature (e.g., 363 and 413 K) are carried out in our laboratory as supporting data for the fitting of temperature-dependent parameters. Special Issue: Memorial Issue in Honor of Ken Marsh Received: January 31, 2017 Accepted: July 11, 2017 Published: August 8, 2017 2776

DOI: 10.1021/acs.jced.7b00119 J. Chem. Eng. Data 2017, 62, 2776−2786

Journal of Chemical & Engineering Data

Article

Table 4. continued

Table 2. Experimental Vapor−Liquid Equilibrium Data (P−x Data) for the Binary System Hexane (1) + N,N-Dimethylacetamide (2) at 353.15 Ka x1

P/kPa

x1

P/kPa

0.0000 0.0023 0.0047 0.0073 0.0104 0.0137 0.0224 0.0335 0.0470 0.0634 0.0822 0.1042 0.1293 0.1602 0.1941 0.2310 0.2700 0.3105 0.3521 0.3942 0.4355

5.37 7.48 9.74 12.06 14.84 17.81 25.06 33.47 42.97 52.94 62.95 72.79 82.08 91.16 98.82 105.12 110.06 113.89 116.83 119.11 120.89

0.4600 0.4762 0.5081 0.5586 0.6109 0.6641 0.7173 0.7685 0.8170 0.8570 0.8921 0.9215 0.9448 0.9631 0.9748 0.9825 0.9888 0.9929 0.9960 0.9984 1.0000

121.63 122.33 123.16 124.55 125.87 127.20 128.59 130.09 131.75 133.35 135.00 136.63 138.11 139.40 140.27 140.87 141.36 141.74 142.02 142.24 142.40

Table 3. Experimental Excess Enthalpy Data for the Binary System Hexane (1) + N,N-Dimethylacetamide (2) at 363. 15 K and 1.982 MPaa x1

HE/J mol−1

0.0358 0.0726 0.1106 0.1498 0.1902 0.2319 0.2750 0.3196 0.3657 0.4134

234 477 704 913 1098 1263 1410 1532 1634 1714

0.4627 0.5138 0.5668 0.6218 0.6788 0.7381 0.7997 0.8638 0.9305

1752 1782 1783 1748 1673 1549 1357 1080 657

HE/J mol−1

0.0179 0.0361 0.0733 0.1116 0.1510 0.1917 0.2337 0.2770

121 247 490 711 913 1097 1270 1415

0.4651 0.5163 0.5692 0.6241 0.6810 0.7400 0.8013 0.8649

1810 1847 1849 1814 1736 1616 1411 1106

1545 1657 1762

0.9311 0.9652

661 360

x1

P/kPa

x1

P/kPa

0.0000 0.0020 0.0040 0.0064 0.0087 0.0132 0.0193 0.0273 0.0379 0.0509 0.0669 0.0861 0.1084 0.1362 0.1672 0.2015 0.2381 0.2767 0.3168 0.3578 0.3887

5.32 6.24 7.12 8.15 9.15 10.98 13.37 16.19 19.70 23.48 27.49 31.49 35.28 38.98 42.07 44.58 46.52 48.01 49.14 50.01 50.43

0.3987 0.4325 0.4390 0.4802 0.5309 0.5839 0.6384 0.6936 0.7471 0.7985 0.8413 0.8792 0.9113 0.9369 0.9572 0.9704 0.9792 0.9865 0.9911 0.9958 1.0000

50.68 51.04 51.21 51.58 52.08 52.56 53.04 53.55 54.09 54.67 55.20 55.72 56.18 56.54 56.79 56.93 57.01 57.05 57.07 57.08 57.09

Table 6. Experimental Excess Enthalpy Data for the Binary System Heptane (1) + N,N-Dimethylacetamide (2) at 413. 15 K and 1.824 MPaa

Table 4. Experimental Excess Enthalpy Data for the Binary System Hexane (1) + N,N-Dimethylacetamide (2) at 413. 15 K and 1.824 MPaa x1

0.3217 0.3679 0.4157

Standard uncertainties are u(T) = 0.03 K, u(P) = 0.08 kPa, and u(xi) = 0.0001, absolute mean deviation (Pcalc (Mod. UNIFAC (Do.) − Pexp) = 2.24 kPa, relative mean deviation (Pcalc (Mod. UNIFAC (Do.) − Pexp)/Pexp = 0.0667.

Standard uncertainties are u(T) = 0.03 K, u(HE) = 2 J mol−1 + 0.01 (HE/(J mol−1)), and u(xi) = 0.0001, absolute mean deviation (HEcalc (Mod. UNIFAC (Do.) − HEexp) = 198 J mol−1, relative mean deviation (HEcalc (Mod. UNIFAC (Do.) − HEexp)/HEexp = 0.164.

HE/J mol−1

HE/J mol−1

a

a

x1

x1

Table 5. Experimental Vapor−Liquid Equilibrium Data (P−x Data) for the Binary System Heptane (1) + N,N-Dimethylacetamide (2) at 353.15 Ka

Standard uncertainties are u(T) = 0.03 K, u(P) = 0.08 kPa and u(xi) = 0.0001, absolute mean deviation (Pcalc (Mod. UNIFAC (Do.) − Pexp) = 3.21 kPa, relative mean deviation (Pcalc (Mod. UNIFAC (Do.) − Pexp)/Pexp = 0.0470.

HE/J mol−1

HE/J mol−1

a Standard uncertainties are u(T) = 0.03 K, u(HE) = 2 J mol−1 + 0.01 (HE/(J mol−1)), and u(xi) = 0.0001, absolute mean deviation (HEcalc (Mod. UNIFAC (Do.) − HEexp) = 662 J mol−1, relative mean deviation (HEcalc (Mod. UNIFAC (Do.) − HEexp)/HEexp = 0.546.

a

x1

x1

x1

HE/J mol−1

x1

HE/J mol−1

0.0160 0.0323 0.0659 0.1007 0.1370 0.1747 0.2139 0.2548 0.2974 0.3419 0.3883

129 259 510 742 956 1153 1333 1496 1644 1770 1880

0.4369 0.4878 0.5411 0.5970 0.6557 0.7175 0.7825 0.8511 0.9234 0.9612

1948 1991 2009 1982 1909 1786 1573 1251 756 418

Standard uncertainties are u(T) = 0.03 K, u(HE) = 2 J mol−1 + 0.01 (HE/(J mol−1)), and u(xi) = 0.0001, absolute mean deviation (HEcalc (Mod. UNIFAC (Do.) − HEexp) = 726 J mol−1, relative mean deviation (HEcalc (Mod. UNIFAC (Do.) − HEexp)/HEexp = 0.553. a

2777

DOI: 10.1021/acs.jced.7b00119 J. Chem. Eng. Data 2017, 62, 2776−2786

Journal of Chemical & Engineering Data

Article

Table 8. continued

Table 7. Experimental Vapor−Liquid Equilibrium Data (P−x Data) for the Binary System 1-Octene (1) + N,N-Dimethylacetamide (2) at 328.15 Ka x1

P/kPa

x1

P/kPa

0.0000 0.0010 0.0017 0.0026 0.0043 0.0073 0.0105 0.0130 0.0172 0.0243 0.0346 0.0468 0.0624 0.0828 0.1057 0.1308 0.1574 0.1866 0.2165 0.2478 0.2767 0.3055 0.3349 0.3636 0.3644 0.3902 0.3929

1.61 1.68 1.74 1.79 1.91 2.11 2.31 2.48 2.73 3.12 3.63 4.18 4.80 5.48 6.12 6.69 7.18 7.61 7.97 8.26 8.49 8.68 8.83 8.95 8.97 9.06 9.09

0.4163 0.4190 0.4462 0.4462 0.4746 0.5068 0.5437 0.5864 0.6258 0.6709 0.7229 0.7674 0.8072 0.8437 0.8835 0.9194 0.9427 0.9609 0.9707 0.9783 0.9845 0.9897 0.9936 0.9960 0.9978 0.9989 1.0000

9.15 9.18 9.27 9.24 9.33 9.41 9.50 9.60 9.69 9.79 9.90 10.00 10.10 10.18 10.27 10.34 10.36 10.35 10.33 10.30 10.27 10.23 10.20 10.18 10.15 10.14 10.12

P/kPa

0.0000 0.0014 0.0032 0.0050 0.0067 0.0089 0.0112 0.0150 0.0195 0.0284 0.0403 0.0550 0.0725 0.0943 0.1181 0.1424 0.1682 0.1967 0.2267 0.2572 0.2861 0.3142

8.46 8.76 9.12 9.47 9.80 10.22 10.65 11.32 12.11 13.51 15.26 17.20 19.18 21.41 23.49 25.30 26.93 28.44 29.77 30.92 31.86 32.65

0.4168 0.4467 0.4751 0.5073 0.5442 0.5870 0.6263 0.6714 0.7234 0.7680 0.8077 0.8441 0.8839 0.9186 0.9430 0.9612 0.9714 0.9791 0.9845 0.9897 0.9935 0.9961

34.65 35.11 35.52 35.93 36.41 36.90 37.34 37.81 38.34 38.78 39.15 39.46 39.75 39.91 39.93 39.85 39.77 39.67 39.58 39.47 39.38 39.31

P/kPa

0.9974 0.9987 1.0000

39.29 39.23 39.20

x1

HE/J mol−1

x1

HE/J mol−1

0.0300 0.0612 0.0938 0.1279 0.1636 0.2010 0.2401 0.2812 0.3244 0.3698

183 379 563 736 892 1042 1175 1297 1404 1494

0.4177 0.4682 0.5215 0.5779 0.6377 0.7013 0.7688 0.8408 0.9177

1548 1586 1604 1592 1540 1441 1274 1018 625

Standard uncertainties are u(T) = 0.03 K, u(HE) = 2 J mol−1 + 0.01 (HE/(J mol−1)), and u(xi) = 0.0001, absolute mean deviation (HEcalc (Mod. UNIFAC (Do.) − HEexp) = 257 J mol−1, relative mean deviation (HEcalc (Mod. UNIFAC (Do.) − HEexp)/HEexp = 0.233. a

Table 10. Experimental Vapor−Liquid Equilibrium Data (P−x Data) for the Binary System Benzene (1) + N,N-Dimethylacetamide (2) at 328.15 Ka

Table 8. Experimental Vapor−Liquid Equilibrium Data (P−x Data) for the Binary System 1-Octene (1) + N,N-Dimethylacetamide (2) at 363.15 Ka x1

x1

33.35 33.72 34.21

Table 9. Experimental Excess Enthalpy Data for the Binary System 1-Octene (1) + N,N-Dimethylacetamide (2) at 363. 15 K and 1.858 MPaa

Standard uncertainties are u(T) = 0.03 K, u(P) = 0.08 kPa, and u(xi) = 0.0001, absolute mean deviation (Pcalc (Mod. UNIFAC (Do.) − - Pexp) = 0.46 kPa, relative mean deviation (Pcalc (Mod. UNIFAC (Do.) − Pexp)/Pexp = 0.0585.

P/kPa

P/kPa

a Standard uncertainties are u(T) = 0.03 K, u(P) = 0.08 kPa, and u(xi) = 0.0001, absolute mean deviation (Pcalc (Mod. UNIFAC (Do.) − Pexp) = 1.27 kPa, relative mean deviation (Pcalc (Mod. UNIFAC (Do.) − Pexp)/Pexp = 0.0399.

a

x1

x1 0.3433 0.3641 0.3907

2778

x1

P/kPa

x1

P/kPa

0.0000 0.0013 0.0029 0.0045 0.0065 0.0095 0.0128 0.0176 0.0257 0.0402 0.0595 0.0827 0.1107 0.1450 0.1819 0.2193 0.2594 0.2994 0.3399 0.3793 0.4139 0.4432 0.4466 0.4618 0.4821 0.5043

1.64 1.71 1.78 1.86 1.96 2.12 2.29 2.52 2.88 3.54 4.42 5.47 6.73 8.27 9.91 11.58 13.35 15.12 16.90 18.62 20.12 21.39 21.54 22.13 22.95 23.86

0.5323 0.5596 0.5897 0.6212 0.6530 0.6845 0.7166 0.7518 0.7857 0.8195 0.8505 0.8797 0.9069 0.9311 0.9497 0.9641 0.9753 0.9825 0.9875 0.9915 0.9945 0.9964 0.9979 0.9989 1.0000

25.02 26.15 27.39 28.66 29.96 31.23 32.50 33.89 35.22 36.53 37.72 38.85 39.89 40.83 41.56 42.15 42.63 42.93 43.12 43.30 43.45 43.52 43.58 43.62 43.65

DOI: 10.1021/acs.jced.7b00119 J. Chem. Eng. Data 2017, 62, 2776−2786

Journal of Chemical & Engineering Data

Article

Table 10. continued

Table 13. continued

a

Standard uncertainties are u(T) = 0.03 K, u(P) = 0.08 kPa, and u(xi) = 0.0001, absolute mean deviation (Pcalc (Mod. UNIFAC (Do.) − Pexp) = 0.57 kPa, relative mean deviation (Pcalc (Mod. UNIFAC (Do.) − Pexp)/Pexp = 0.0252.

Table 11. Experimental Excess Enthalpy Data for the Binary System Benzene (1) + N,N-Dimethylacetamide (2) at 413. 15 K and 1.824 MPaa x1

HE/J mol−1

x1

HE/J mol−1

0.0261 0.0522 0.1042 0.1817 0.2586 0.3604 0.4361 0.5114

−13.8 −25.8 −48.4 −78.3 −99.8 −116 −115 −101

0.5861 0.6603 0.7584 0.8315 0.9040 0.9521 0.9761

−80.7 −54.1 −14.9 13.0 29.4 26.3 17.2

Table 12. Experimental Vapor−Liquid Equilibrium Data (P−x Data) for the Binary System Toluene (1) + N,N-Dimethylacetamide (2) at 353.15 Ka P/kPa

x1

P/kPa

5.29 5.38 5.46 5.58 5.79 6.03 6.45 6.99 7.70 8.55 9.58 10.79 12.13 13.72 15.39 17.11 18.83 20.52 22.14 23.46 23.66 24.85

0.4733 0.5134 0.5155 0.5614 0.6108 0.6607 0.7104 0.7589 0.8046 0.8469 0.8812 0.9109 0.9355 0.9548 0.9698 0.9793 0.9856 0.9903 0.9940 0.9966 0.9987 1.0000

25.10 26.27 26.41 27.69 29.08 30.42 31.71 32.92 34.03 35.05 35.87 36.59 37.19 37.68 38.06 38.32 38.48 38.62 38.72 38.78 38.85 38.92

x1

0.0436 0.0878 0.1327

15.8 28.7 42.5

0.5144 0.5652 0.6168

0.1781 0.2242 0.2709 0.3182 0.3662 0.4149 0.4643

55.9 68.1 80.9 97.0 110 122 133

0.6691 0.7222 0.7761 0.8308 0.8864 0.9428

159 161 157 146 121 74.5

x1

HE/J mol−1

x1

HE/J mol−1

0.0220 0.0441 0.0887 0.1338 0.1796 0.2259 0.2728 0.3204 0.3686 0.4174 0.4668

10.5 22.1 40.3 58.7 77.9 94.2 111 130 148 170 188

0.5169 0.5677 0.6192 0.6714 0.7243 0.7779 0.8323 0.8874 0.9433 0.9715

203 219 232 239 241 233 208 170 103 56.1

Standard uncertainties are u(T) = 0.03 K, u(HE) = 2 J mol−1 + 0.01 (HE/(J mol−1)), and u(xi) = 0.0001, absolute mean deviation (HEcalc (Mod. UNIFAC (Do.) − HEexp) = 39.4 J mol−1, relative mean deviation (HEcalc (Mod. UNIFAC (Do.) − HEexp)/HEexp = 0.343.

Table 15. Experimental Vapor−Liquid Equilibrium Data (P−x Data) for the Binary System Ethanol (1) + N,N-Dimethylacetamide (2) at 353.15 Ka

Table 13. Experimental Excess Enthalpy Data for the Binary System Toluene (1) + N,N-Dimethylacetamide (2) at 363. 15 K and 1.955 MPaa HE/J mol−1

HE/J mol−1

a

a Standard uncertainties are u(T) = 0.03 K, u(P) = 0.08 kPa, and u(xi) = 0.0001, absolute mean deviation (Pcalc (Mod. UNIFAC (Do.) − Pexp) = 0.32 kPa, relative mean deviation (Pcalc (Mod. UNIFAC (Do.) − Pexp)/Pexp = 0.0192.

x1

x1

Table 14. Experimental Excess Enthalpy Data for the Binary System Toluene (1) + N,N-Dimethylacetamide (2) at 413. 15 K and 1.824 MPaa

Standard uncertainties are u(T) = 0.03 K, u(HE) = 2 J mol−1 + 0.01 (HE/(J mol−1)), and u(xi) = 0.0001, absolute mean deviation (HEcalc (Mod. UNIFAC (Do.) − HEexp) = 21.0 J mol−1, relative mean deviation (HEcalc (Mod. UNIFAC (Do.) − HEexp)/HEexp = 0.349.

x1

HE/J mol−1

a Standard uncertainties are u(T) = 0.03 K, u(HE) = 2 J mol−1 + 0.01 (HE/(J mol−1)), and u(xi) = 0.0001, absolute mean deviation (HEcalc (Mod. UNIFAC (Do.) − HEexp) = 22.8 J mol−1, relative mean deviation (HEcalc (Mod. UNIFAC (Do.) − HEexp)/HEexp = 0.256.

a

0.0000 0.0014 0.0027 0.0050 0.0087 0.0131 0.0208 0.0308 0.0445 0.0613 0.0821 0.1068 0.1355 0.1709 0.2094 0.2512 0.2947 0.3395 0.3847 0.4251 0.4297 0.4681

x1

HE/J mol−1 144 151 154 2779

x1

P/kPa

x1

P/kPa

0.0000 0.0047 0.0115 0.0201 0.0278 0.0351 0.0516 0.0720 0.0982 0.1288 0.1642 0.2040 0.2477 0.2979 0.3494 0.4015 0.4522 0.5014 0.5483 0.5737 0.5922 0.6155

5.35 5.61 5.97 6.44 6.87 7.29 8.23 9.41 10.97 12.91 15.25 18.03 21.32 25.40 29.90 34.84 40.00 45.36 50.75 53.61 56.06 58.74

0.6324 0.6574 0.6697 0.6994 0.7403 0.7796 0.8166 0.8509 0.8818 0.9092 0.9305 0.9485 0.9629 0.9741 0.9826 0.9879 0.9919 0.9947 0.9966 0.9984 0.9991 1.0000

61.07 64.13 65.91 69.61 75.05 80.29 85.17 89.80 93.88 97.38 100.08 102.29 104.00 105.33 106.36 106.93 107.42 107.73 107.98 108.22 108.32 108.42

DOI: 10.1021/acs.jced.7b00119 J. Chem. Eng. Data 2017, 62, 2776−2786

Journal of Chemical & Engineering Data

Article

Table 15. continued

Table 18. Experimental Excess Enthalpy Data for the Binary System Methanol (1) + N,N-Dimethylacetamide (2) at 413. 15 K and 1.824 MPaa

a

Standard uncertainties are u(T) = 0.03 K, u(P) = 0.08 kPa, and u(xi) = 0.0001, absolute mean deviation (Pcalc (Mod. UNIFAC (Do.) − Pexp) = 0.58 kPa, relative mean deviation (Pcalc (Mod. UNIFAC (Do.) − Pexp)/Pexp = 0.0206.

Table 16. Experimental Excess Enthalpy Data for the Binary System Ethanol (1) + N,N-Dimethylacetamide (2) at 413. 15 K and 1.824 MPaa x1

HE/J mol−1

x1

HE/J mol−1

0.0774 0.1505 0.2528 0.3471 0.4620 0.5410 0.6146

−176 −322 −486 −600 −683 −704 −695

0.6833 0.7476 0.8271 0.8826 0.9349 0.9681

−645 −577 −454 −337 −205 −108

x1

HE/J mol−1

x1

HE/J mol−1

0.1079 0.2034 0.2885 0.3648 0.4337 0.4961 0.5530 0.6050 0.6527 0.6967

−313 −543 −712 −822 −889 −921 −924 −906 −866 −823

0.7374 0.7751 0.8101 0.8428 0.8733 0.9019 0.9287 0.9539 0.9776

−756 −684 −606 −523 −439 −355 −265 −177 −89.2

Standard uncertainties are u(T) = 0.03 K, u(HE) = 2 J mol−1 + 0.01 (HE/(J mol−1)), and u(xi) = 0.0001, absolute mean deviation (HEcalc (Mod. UNIFAC (Do.) − HEexp) = 123 J mol−1, relative mean deviation (HEcalc (Mod. UNIFAC (Do.) − HEexp)/HEexp = 0.208. a

Standard uncertainties are u(T) = 0.03 K, u(HE) = 2 J mol−1 + 0.01 (HE/(J mol−1)), and u(xi) = 0.0001, absolute mean deviation (HEcalc (Mod. UNIFAC (Do.) − HEexp) = 137 J mol−1, relative mean deviation (HEcalc (Mod. UNIFAC (Do.) − HEexp)/HEexp = 0.309. a

Table 19. Experimental Vapor−Liquid Equilibrium Data (P−x Data) for the Binary System Ethyl Acetate (1) + N,N-Dimethylacetamide (2) at 353.15 Ka

Table 17. Experimental Vapor−Liquid Equilibrium Data (P−x Data) for the Binary System Methanol (1) + N,N-Dimethylacetamide (2) at 343.15 Ka x1

P/kPa

x1

P/kPa

0.0000 0.0068 0.0141 0.0214 0.0286 0.0376 0.0467 0.0557 0.0730 0.0986 0.1333 0.1730 0.2179 0.2695 0.3218 0.3721 0.4203 0.4679 0.5117 0.5532 0.5881 0.6199 0.6498 0.6565 0.6776 0.6813 0.7026

3.39 3.76 4.15 4.55 4.94 5.44 5.93 6.45 7.45 9.03 11.28 14.08 17.54 21.91 26.81 32.02 37.51 43.40 49.22 55.08 60.26 65.18 69.93 70.96 74.43 74.99 78.55

0.7045 0.7239 0.7294 0.7447 0.7546 0.7791 0.8025 0.8255 0.8499 0.8726 0.8944 0.9138 0.9316 0.9477 0.9617 0.9723 0.9803 0.9866 0.9905 0.9931 0.9952 0.9967 0.9978 0.9988 0.9994 0.9997 1.0000

78.83 82.10 82.97 85.59 87.18 91.30 95.21 99.05 103.05 106.75 110.22 113.24 115.97 118.34 120.40 121.88 123.03 123.86 124.39 124.74 125.00 125.23 125.38 125.49 125.52 125.57 125.65

x1

P/kPa

x1

P/kPa

0.0000 0.0025 0.0048 0.0073 0.0096 0.0127 0.0157 0.0220 0.0285 0.0398 0.0553 0.0743 0.0976 0.1264 0.1577 0.1908 0.2259 0.2630 0.2996 0.3367 0.3701 0.4023 0.4343 0.4428 0.4656 0.4706 0.4946

5.31 5.67 6.02 6.39 6.73 7.19 7.65 8.57 9.52 11.11 13.31 15.92 19.07 22.86 26.86 30.97 35.18 39.50 43.64 47.70 51.27 54.64 57.90 58.82 61.03 61.59 63.89

0.4980 0.5206 0.5288 0.5470 0.5615 0.5950 0.6288 0.6637 0.7027 0.7411 0.7799 0.8161 0.8510 0.8838 0.9135 0.9369 0.9555 0.9700 0.9794 0.9859 0.9902 0.9934 0.9960 0.9977 0.9988 0.9994 1.0000

64.27 66.40 67.16 68.94 70.27 73.42 76.56 79.78 83.34 86.86 90.40 93.74 96.99 100.11 102.99 105.33 107.20 108.70 109.66 110.30 110.76 111.08 111.35 111.52 111.62 111.69 111.76

a

a Standard uncertainties are u(T) = 0.03 K, u(P) = 0.08 kPa, and u(xi) = 0.0001, absolute mean deviation (Pcalc (Mod. UNIFAC (Do.) − Pexp) = 0.33 kPa, relative mean deviation (Pcalc (Mod. UNIFAC (Do.) − Pexp)/Pexp = 0.0099.

For the parameter fitting of group interaction parameters, all available data types like VLE or HE together with liquid−liquid equilibrium (LLE) and solid−liquid equilibrium (SLE) data,

azeotropic data (AZD), activity coefficients at infinite dilution (γ∞), and excess heat capacities (cPE) can simultaneously be used. The Modified UNIFAC (Dortmund) method allows the use of linear or quadratic temperature-dependent interaction parameters and thus enables the reliable extrapolation of activity coefficients over a wide temperature range.

Standard uncertainties are u(T) = 0.03 K, u(P) = 0.08 kPa, and u(xi) = 0.0001, absolute mean deviation (Pcalc (Mod. UNIFAC (Do.) − Pexp) = 0.60 kPa, relative mean deviation (Pcalc (Mod. UNIFAC (Do.) − Pexp)/Pexp = 0.0162.

2780

DOI: 10.1021/acs.jced.7b00119 J. Chem. Eng. Data 2017, 62, 2776−2786

Journal of Chemical & Engineering Data

Article

Table 20. Experimental Excess Enthalpy Data for the Binary System Ethyl Acetate (1) + N,N-Dimethylacetamide (2) at 323. 15 K and 1.307 MPaa

Table 22. Experimental Excess Enthalpy Data for the Binary System Dibutyl Ether (1) + N,N-Dimethylacetamide (2) at 323. 15 K and 1.272 MPaa

x1

HE/J mol−1

x1

HE/J mol−1

x1

HE/J mol−1

x1

HE/J mol−1

0.0476 0.0954 0.1435 0.1918 0.2404 0.2892 0.3383 0.3876 0.4372 0.4870

28.0 52.7 78.6 100 119 137 151 164 173 180

0.5371 0.5875 0.6381 0.6890 0.7401 0.7916 0.8433 0.8952 0.9475

184 183 180 171 160 144 120 88.8 49.9

0.0281 0.0575 0.0883 0.1206 0.1546 0.1904 0.2281 0.2678 0.3098 0.3543

162 316 470 614 751 874 979 1079 1160 1235

0.4014 0.4515 0.5047 0.5615 0.6221 0.6870 0.7566 0.8316 0.9125

1287 1328 1344 1327 1288 1200 1055 831 501

a

Standard uncertainties are u(T) = 0.03 K, u(HE) = 2 J mol−1 + 0.01 (HE/(J mol−1)), and u(xi) = 0.0001, absolute mean deviation (HEcalc (Mod. UNIFAC (Do.) − HEexp) = 487 J mol−1, relative mean deviation (HEcalc (Mod. UNIFAC (Do.) − HEexp)/HEexp = 3.781.

Standard uncertainties are u(T) = 0.03 K, u(HE) = 2 J mol−1 + 0.01 (HE/(J mol−1)), and u(xi) = 0.0001, absolute mean deviation (HEcalc (Mod. UNIFAC (Do.) − HEexp) = 487 J mol−1, relative mean deviation (HEcalc (Mod. UNIFAC (Do.) − HEexp)/HEexp = 0.521.

Table 21. Experimental Vapor−Liquid Equilibrium Data (P−x Data) for the Binary System Dibutyl Ether (1) + N,N-Dimethylacetamide (2) at 353.15 Ka

Table 23. Experimental Vapor−Liquid Equilibrium Data (P−x Data) for the Binary System Dichloromethane (1) + N,N-Dimethylacetamide (2) at 333.15 Ka

x1 0.0000 0.0014 0.0026 0.0039 0.0053 0.0070 0.0086 0.0116 0.0147 0.0208 0.0297 0.0406 0.0544 0.0723 0.0919 0.1133 0.1371 0.1632 0.1901 0.2185 0.2449 0.2715 0.2985 0.3151 0.3260 0.3399 0.3528

P/kPa 5.37 5.46 5.53 5.61 5.69 5.79 5.88 6.04 6.21 6.53 6.96 7.44 7.99 8.61 9.21 9.76 10.28 10.77 11.19 11.56 11.86 12.12 12.35 12.47 12.56 12.65 12.74

x1 0.3650 0.3774 0.3941 0.4034 0.4261 0.4602 0.4958 0.5341 0.5788 0.6249 0.6737 0.7215 0.7697 0.8170 0.8617 0.8974 0.9262 0.9490 0.9638 0.9747 0.9825 0.9876 0.9929 0.9960 0.9977 0.9988 1.0000

a

P/kPa

x1

P/kPa

x1

P/kPa

12.81 12.89 12.98 13.04 13.15 13.31 13.46 13.62 13.78 13.92 14.06 14.18 14.28 14.36 14.37 14.34 14.29 14.22 14.15 14.10 14.05 14.01 13.97 13.95 13.93 13.92 13.90

0.0000 0.0048 0.0092 0.0136 0.0237 0.0450 0.0931 0.1465 0.2120 0.2863 0.3693 0.4510 0.5265

2.23 2.54 2.90 3.24 3.98 5.58 9.47 14.41 21.50 30.96 43.78 58.86 74.94

0.5956 0.6539 0.7050 0.7669 0.8226 0.8917 0.9305 0.9596 0.9834 0.9933 0.9981 1.0000

91.59 106.79 120.63 138.11 153.67 172.73 182.64 189.62 194.77 196.66 197.69 197.94

a

Standard uncertainties are u(T) = 0.03 K, u(P) = 0.08 kPa, and u(xi) = 0.0001, absolute mean deviation (Pcalc (Mod. UNIFAC (Do.) − Pexp) = 0.62 kPa, relative mean deviation (Pcalc (Mod. UNIFAC (Do.) − Pexp)/Pexp = 0.0200.

Table 24. Experimental Excess Enthalpy Data for the Binary System Dichloromethane (1) + N,N-Dimethylacetamide (2) at 323. 15 K and 1.273 MPaa

a Standard uncertainties are u(T) = 0.03 K, u(P) = 0.08 kPa, and u(xi) = 0.0001, absolute mean deviation (Pcalc (Mod. UNIFAC (Do.) − Pexp) = 0.06 kPa, relative mean deviation (Pcalc (Mod. UNIFAC (Do.) − Pexp)/Pexp = 0.0067.

The new experimental VLE and HE data from this work were used to implement the new structural group “dialkylated amides”.4 The data from this work are presented together with the predicted results and compared to available literature data.

x1

HE/J mol−1

x1

HE/J mol−1

0.0709 0.1387 0.2037 0.2659 0.3257 0.3831 0.4383 0.4914 0.5425 0.5917

−424 −788 −1108 −1374 −1587 −1722 −1834 −1898 −1916 −1907

0.6391 0.6849 0.7291 0.7718 0.8130 0.8529 0.8914 0.9288 0.9650

−1842 −1745 −1614 −1456 −1267 −1055 −815 −554 −285

Standard uncertainties are u(T) = 0.03 K, u(HE) = 2 J mol−1 + 0.01 (HE/(J mol−1)), and u(xi) = 0.0001, absolute mean deviation (HEcalc (Mod. UNIFAC (Do.) − HEexp) = 523 J mol−1, relative mean deviation (HEcalc (Mod. UNIFAC (Do.) − HEexp)/HEexp = 0.435. a

2781

DOI: 10.1021/acs.jced.7b00119 J. Chem. Eng. Data 2017, 62, 2776−2786

Journal of Chemical & Engineering Data

Article

Table 25. Mod. UNIFAC (Do.) Group Interaction Parameters Used for This Project main group n 1 1 1 1 1 1 1 1 1a 2a 3 3a 4a 5a 6a 11a 13a 22a a

CH2 CH2 CH2 CH2 CH2 CH2 CH2 CH2 CH2 CC ACH ACH ACCH2 OH CH3OH CCOO CH2O CCL2

anm/K

bnm

cnm/(1/K)

amn/K

bmn

cmn/(1/K)

189.66 114.2 7.339 2777 2409.4 98.656 233.1 −233.66 1529.52 249.184 139.2 92.4984 76.7251 1627.81 210.909 611.468 1321.52 102.805

−0.27232 0.0933 −0.4538 −4.674 −3.0099 1.9294 −0.3155 1.2561 −6.20254 0 −0.65 1.4186 0.9394 −5.85981 −2.49529 −2.47826 0 −0.0879

0 0 0 0.001551 0 −0.0031331 0 0 0.009754 0 0 0.000018 −0.00045 0.005497 0.0048 0 0 0

−95.418 16.07 47.2 1606 82.593 632.22 −9.654 311.55 82.5982 −81.7858 −45.33 −14.889 246.084 −808.395 −132.927 −1031.78 −361.25 −446.861

0.06171 −0.2998 0.3575 −4.746 −0.48575 −3.3912 −0.03242 −1.1856 −0.614986 0 0.4223 −0.8126 −0.8198 3.83207 0.658405 3.99058 0 0.4276

0 0 0 0.0009181 0 0.0039282 0 0 −0.000623 0 0 0.000002 −0.000137 −0.005877 −0.00208 0 0 0

main group m 2 3 4 5 6 11 13 22 48 48 4 48 48 48 48 48 48 48

CC ACH ACCH2 OH CH3OH CCOO CH2O CCL2 CONR2 CONR2 CONR2 CONR2 CONR2 CONR2 CONR2 CONR2 CONR2 CONR2

Experimental data from this work included in parameter fitting.

Table 26. Antoine Coefficients Ai, Bi, and Ci for the Pure Components Used for the Mod. UNIFAC (Do.) Calculations: log(PiS/kPa) = Ai − (Bi/(Ci + T/K)) component

Ai

Bi/K

Ci/K

N,N-dimethylacetamide hexane heptane 1-octene benzene toluene ethanol methanol ethyl acetate dibutyl ether dichloromethane

6.55624 6.13541 6.11735 5.95277 6.09049 6.21486 7.06739 7.11794 6.25057 6.24840 6.22962

1752.24 1246.33 1319.60 1273.95 1243.66 1428.11 1508.82 1527.79 1255.16 1506.28 1131.89

−52.963 −40.162 −50.603 −71.638 −48.791 −44.416 −53.496 −38.833 −54.495 −60.439 −44.608

Table 28. van der Waals Properties (Rk and Qk) and Group Assignment for the Used Mod. UNIFAC (Do.) Groups main group 1 1 2 3 4 5 6 11 13 22 48

increments

N,N-dimethylacetamide hexane heptane 1-octene benzene toluene ethanol methanol ethyl acetate dibutyl ether dichloromethane

1 × CH3, 1 × AM(CH3)2 2 × CH3, 4 × CH2 2 × CH3, 5 × CH2 1 × CH3, 5 × CH2, 1 × CH2CH 6 × ACH 5 × ACH, 1 × ACCH3 1 × CH3, 1 × CH2, 1 × OH 1 × CH3OH 1 × CH3, 1 × CH2, 1 × CH3COO 2 × CH3, 5 × CH2, 1 × OCH2 1 × CH2CL2

1 2 5 9 11 14 15 21 25 47 101

CH3 CH2 CH2CH ACH ACCH3 OH CH3OH CH3COO OCH2 CH2CL2 AM(CH3)2

Rk

Qk

0.6325 0.6325 1.2832 0.3763 0.9100 1.2302 0.8585 1.2700 1.1434 1.8000 2.47481

1.0608 0.7081 1.6016 0.4321 0.9490 0.8927 0.9938 1.6286 1.2495 2.5000 1.96427

Apparatus and Procedures. The VLE measurements (isothermal P−x data) were carried out in a computer operated static device following the principle proposed by Gibbs and Van Ness.10 The apparatus was described earlier.11,12 “The thermostated, purified, and degassed compounds are filled into the thermoregulated equilibrium cell by means of precise piston injectors. The injectors are driven by stepping motors. The pressure inside the equilibrium cell is measured with a calibrated pressure sensor (Model 245A, Paroscientific) or a dead weight pressure balance (Model 80005, Desgranges & Huot), respectively. For the temperature measurement a Pt100 resistance thermometer (Model 1506, Hart Scientific) is used. The feed compositions are determined from the known quantities of liquids injected into the equilibrium cell by piston injectors. The liquid phase compositions in equilibrium are obtained by solving mass and volume balance equations which are also taking the vapor-liquid equilibrium into account.”13 The estimated standard uncertainties of the experimental data are u(T) = 0.03 K, u(P) = 0.08 kPa, and u(xi) = 0.0001. For the determination of the excess enthalpy data a commercial isothermal flow calorimeter (Model 7501, Hart Scientific) described earlier by Gmehling14 was used. “In this apparatus, two syringe pumps (Model LC-2600, ISCO) provide a flow of constant composition through a calorimeter cell

Table 27. Mod. UNIFAC (Do.) Increments of the Pure Components component

CH2 CH2 CC ACH ACCH2 OH CH3OH CCOO CH2O CCL2 CONR2

sub group



EXPERIMENTAL SECTION Chemicals. The chemicals were purchased from a commercial sources. They were dried over molecular sieves and afterward distilled and degassed as described by Fischer and Gmehling.9 The final purity and water content were determined by gas chromatography and Karl Fischer titration and are given in Table 1. 2782

DOI: 10.1021/acs.jced.7b00119 J. Chem. Eng. Data 2017, 62, 2776−2786

Journal of Chemical & Engineering Data

Article

Figure 1. Experimental and predicted VLE data for the system benzene (1) + N,N-dimethylacetamide (2): (a) ⧫, P−x data at 328.15 K this work; ―, Mod. UNIFAC (Do.). (b) ⧫◊, T−xy data at 101.33 kPa;17 ―, Mod. UNIFAC (Do.).

Figure 2. Experimental and predicted HE and SLE data for the system benzene (1) + N,N-dimethylacetamide (2): (a) HE data ◊ at 298.15 K,18 □ at 303.15 K,19 ■ at 363.15 K,20 and ⧫ at 413.15 K this work; Mod. UNIFAC (Do.) - - - at 298.15 K, ····· at 303.15 K, - · - at 363.15 K, and ― at 413.15; (b) SLE data ⧫21 and ◊;22 ―, Mod. UNIFAC (Do.).

Figure 3. Experimental and predicted VLE and HE data for the system toluene (1) + N,N-dimethylacetamide (2): (a) ⧫ P−x data at 353.15 K this work, ―, Mod. UNIFAC (Do.). (b) HE data ◊ at 298.15 K,18 □ at 303.15 K,19 ■ at 363.15 K this work, and ⧫ at 413.15 K this work; Mod. UNIFAC (Do.) - - - at 298.15 K, ····· at 303.15 K, - · - at 363.15 K, and ― at 413.15.

(placed in a thermostat) equipped with a pulsed heater and a Peltier cooler. The Peltier cooler is working at constant power causing a constant heat loss from the calorimeter cell. To keep the temperature constant this heat flow is compensated by the pulsed heater. The heat of mixing effects are obtained from the change of frequency of the pulsed heater between the base line (pure components) and the investigated mixture. Endothermal heat effects cause an increase and exothermal heat effects cause a

decrease in frequency. A back-pressure regulator serves to keep the pressure at a constant level at which evaporation and degassing effects can be prevented.”15 The estimated standard uncertainties of this device are u(T) = 0.03 K, u(HE) = 2 J mol−1 + 0.01 (HE/(J mol−1)), and u(xi) = 0.0001. For the data treatment procedure of both experimental methods, pure component liquid saturation densities are required. 2783

DOI: 10.1021/acs.jced.7b00119 J. Chem. Eng. Data 2017, 62, 2776−2786

Journal of Chemical & Engineering Data

Article

Figure 4. Experimental and predicted VLE and HE data for the system ethanol (1) + N,N-dimethylacetamide (2): (a) P−xy data ■□ at 313.15 K,23 P−x data ⧫ at 353.15 K this work, ―, Mod. UNIFAC (Do.); (b) HE data ◊ at 298.15 K,24 △ at 298.15 K,25 □ at 313.15 K,26 ■ at 363.15 K,20 and ⧫ at 413.15 K this work; Mod. UNIFAC (Do.) - - - at 298.15 K, ····· at 313.15 K, - · - at 363.15 K, and ― at 413.15.

Figure 5. Experimental and predicted VLE and HE data for the system methanol (1) + N,N-dimethylacetamide (2): (a) P−xy data ■□ at 313.15 K,27 P−x data ⧫ at 343.15 K this work, ―, Mod. UNIFAC (Do.); (b) HE data ◊ at 298.15 K,24 △ at 298.15 K,25 □ at 313.15 K,26 and ⧫ at 413.15 K this work; Mod. UNIFAC (Do.) - - - at 298.15 K, ····· at 313.15 K, and ― at 413.15.

Figure 6. Experimental and predicted VLE data for the system ethyl acetate (1) + N,N-dimethylacetamide (2): (a) ⧫ −-x data at 353.15 K this work; (b) ⧫ T−x data at 101.325 kPa;28 ―, Mod. UNIFAC (Do.).

They were calculated using polynomial fits to available literature data taken from the Dortmund Data Bank (DDB).16

the group contribution method Modified UNIFAC (Dortmund). They were published before4 and are listed in Table 25 together with the already existing required interaction parameters for other included structural groups. The required coefficients of the Antoine equation for pure component vapor pressures were taken from the DDB14 and are listed in Table 26. In order to account only for the excess energy of the mixture behavior, the parameter A of the Antoine equation was adjusted



RESULTS Experimental VLE and excess enthalpy data were measured for 10 binary systems with N,N-dimethylacetamide. The experimental data are listed in Tables 2−24. The experimental data were included in the fitting of group interaction parameters for 2784

DOI: 10.1021/acs.jced.7b00119 J. Chem. Eng. Data 2017, 62, 2776−2786

Journal of Chemical & Engineering Data

Article

Figure 7. Experimental and predicted VLE (P−x) data: (a) for the system dibutyl ether (1) + N,N-dimethylacetamide (2) ⧫ at 353.15 K this work; (b) for the system dichloromethane (1) + N,N-dimethylacetamide (2) ⧫ at 333.15 K this work; ―, Mod. UNIFAC (Do.).

to the experimental vapor pressures during the fitting procedure and in the figures. The group increments of the pure components are listed in Table 27, and Table 28 contains the group assignment and the required van der Waals properties (relative volumes Rk and surfaces Qk). In the data in Tables 2 to 24, the absolute and relative mean deviation between the calculated data using the Modified UNIFAC (Dortmund) model and the experimental values are included. As can be seen, all VLE data can be described accurately with the model. The maximum relative mean deviation is 6.67% for toluene + N,N-dimethylacetamide. The most accurate description is achieved for dibutyl ether + N,N-dimethylacetamide with 0.67%. The deviations between calculated and experimental excess enthalpy data are commonly much higher, as they just indicate the temperature dependence of the phase equilibrium. Here, some systems can only be predicted qualitatively. Some experimental results are graphically shown together with predictions of Modified UNIFAC (Dortmund) model and other available experimental data from literature in Figures 1−7. Figures 1 and 2 underline the consistency of the different data types (isothermal and isobaric VLE, excess enthalpy, and SLE data) for the system benzene + N,N-dimethylacetamide. The established interactions parameters are applicable over a wide temperature range proven by experimental data in the temperature range from about 230 to 413 K. In Figures 3−5 the new VLE and HE data are compared to the data of other authors for the systems toluene, ethanol, and methanol. While most of the data of these systems are in correspondence with the new data and the calculations, the data of Iloukhani and Zarei25 do not agree in case of the binary systems with ethanol and methanol. In Figure 6, the isothermal P−x data for ethyl acetate + N,N-dimethylacetamide are compared to an isobaric data set from literature. For this system, both data sources are in good agreement with the model calculations. In Figure 7, the new VLE data are graphically shown for dibutyl ether and dichloromethane + N,N-dimethylacetamide.

presented together with experimental data from other authors. As can be seen from the different diagrams good agreement is achieved between the new experimental data, the available literature data and the predicted results using Modified UNIFAC (Dortmund). Thus, the method can be used to accurately predict the phase equilibrium behavior of these systems in a wide temperature and pressure range.



AUTHOR INFORMATION

Corresponding Author

*E-mail: [email protected]. Tel.: +49 441 36 11 19 0. ORCID

Sven Horstmann: 0000-0001-7285-8880 Dana Constantinescu: 0000-0003-2119-7837 Notes

The authors declare no competing financial interest.

■ ■

ACKNOWLEDGMENTS The technical assistance of Rainer Bölts is gratefully acknowledged. REFERENCES

(1) Weidlich, U.; Gmehling, J. A Modified UNIFAC Model. 1. Prediction of VLE, hE and γ∞. Ind. Eng. Chem. Res. 1987, 26, 1372−1381. (2) Gmehling, J.; Li, J.; Schiller, M. A Modified UNIFAC Model. 2. Present Parameter Matrix and Results for Different Thermodynamic Properties. Ind. Eng. Chem. Res. 1993, 32, 178−193. (3) Gmehling, J.; Lohmann, J.; Jakob, A.; Li, J.; Joh, R. A Modified UNIFAC (Dortmund) Model. 3. Revision and Extension. Ind. Eng. Chem. Res. 1998, 37, 4876−4882. (4) Gmehling, J.; Wittig, R.; Lohmann, J.; Joh, R. A Modified UNIFAC (Dortmund) Model. 4. Revision and Extension. Ind. Eng. Chem. Res. 2002, 41, 1678−1688. (5) Jakob, A.; Grensemann, H.; Lohmann, J.; Gmehling, J. Further Development of Modified UNIFAC (Dortmund): Revision and Extension 5. Ind. Eng. Chem. Res. 2006, 45, 7924−7933. (6) Constantinescu, D.; Gmehling, J. Further Development of Modified UNIFAC (Dortmund): Revision and Extension 6. J. Chem. Eng. Data 2016, 61, 2738−2748. (7) Hector, T.; Gmehling, J. Present Status of the Modified UNIFAC Model for the Prediction of Phase Equilibria and Excess Enthalpies for Systems with Ionic Liquids. Fluid Phase Equilib. 2014, 371, 82−92. (8) Gmehling, J.; Kolbe, B.; Kleiber, M.; Rarey, J. Chemical Thermodynamics for Process Simulation; Wiley-VCH, 2012. (9) Fischer, K.; Gmehling, J. P-x and γ∞ data for the Different Binary Butanol-Water Systems at 50 °C. J. Chem. Eng. Data 1994, 39, 309−315.



CONCLUSIONS Isothermal P−x and excess enthalpy (HE) data were experimentally determined for 10 binary systems containing N,N-dimethylacetamide. These data were used for the extension of the group contribution method Modified UNIFAC (Dortmund). New group interaction parameters were established for the structural group “dialkylated amides”. The data are 2785

DOI: 10.1021/acs.jced.7b00119 J. Chem. Eng. Data 2017, 62, 2776−2786

Journal of Chemical & Engineering Data

Article

(10) Gibbs, R. E.; Van Ness, H. C. Vapor-liquid Equilibria From TotalPressure Measurements. A new apparatus. Ind. Eng. Chem. Fundam. 1972, 11, 410−413. (11) Rarey, J.; Gmehling, J. Computer-Operated Differential Static Apparatus for the Measurement of Vapor-Liquid Equilibrium Data. Fluid Phase Equilib. 1993, 83, 279−287. (12) Rarey, J.; Horstmann, S.; Gmehling, J. Vapor-Liquid Equilibria and Vapor Pressure Data for the System Ethyl tert-butyl ether + Ethanol and Ethyl tert-butyl ether + Water. J. Chem. Eng. Data 1999, 44, 532− 538. (13) Brandt, S.; Horstmann, S.; Steinigeweg, S.; Gmehling, J. Phase Equilibria and Excess Properties for Binary Systems in Reactive Distillation Processes. Part II. Ethyl Acetate Systhesis. Fluid Phase Equilib. 2014, 376, 48−54. (14) Gmehling, J. Excess Enthalpies for 1,1,1-Trichloroethane with Alkanes, Ketones, and Esters. J. Chem. Eng. Data 1993, 38, 143−146. (15) Thiede, S.; Horstmann, S.; Meisel, T.; Sinnema, J.; Gmehling, J. Experimental Determination of Vapor-Liquid-Equilibria and Excess Enthalpy Data for the Binary System 2-Methyl-1-butanol + 3-Methyl-1butanol as a Test Mixture for Distillation Collums. Ind. Eng. Chem. Res. 2010, 49, 1844−1847. (16) Dortmund Data Bank (DDB), DDBST (Dortmund Data Bank Software & Separation Technology) GmbH, 2017, www.ddbst.de. (17) Mi, W.; Tong, R.; Hua, C.; Yue, K.; Jia, D.; Lu, P.; Bai, F. VaporLiquid Equilibrium Data for Binary Systems of N,N-Dimethylacetamide with Cyclohexene, Cyclohexane, and Benzene Separately at Atmospheric Pressure. J. Chem. Eng. Data 2015, 60, 3063−3068. (18) Ukibe, H.; Tanaka, R.; Murakami, S.; Fujishiro, R. Excess Enthalpies of N,N-Dialkyl Amides + Cyclohexane, + Benzene, and + Toluene at 298.15 K. J. Chem. Thermodyn. 1974, 6, 201−206. (19) Tomas, G.; Artal, M.; Otin, S. Excess Enthalpies of (N,Ndimethylformamide or N,N-dimethylacetamide + Hexane or Benzene or Toluene or p-Xylene or Mesitylene). J. Chem. Thermodyn. 1992, 24, 1167−1170. (20) Wittig, R.; Lohmann, J.; Joh, R.; Horstmann, S.; Gmehling, J. Vapor-Liquid Equilibria and Enthalpies of Mixing in a Temperature Range from 298.15 to 413.15 K for the Further Development of Modified UNIFAC (Dortmund). Ind. Eng. Chem. Res. 2001, 40, 5831− 5838. (21) Ahlers, J.; Lohmann, J.; Gmehling, J. Binary Solid-Liquid Equilibria of Organic Systems Containing Different Amides and Sulfolane. J. Chem. Eng. Data 1999, 44, 727−730. (22) Nilov, O. V.; Chesnokov, V. F.; Bokhovkin, I. M. PhysicalChemical Analysis of ternary Systems of Dimethylformamide, Dimethylacetamide, Dimethyl sulfoxide with Phenol in BenzeneMedia (original Russian language). Zh.Obshch.Khim. 1974, 44, 1661− 1665. (23) Zielkiewicz, J. Vapour + Liquid) Equilibrium in (N,NDimethylacetamide + Ethanol + Water) at the Temperature 313.15 K. J. Chem. Thermodyn. 2006, 38, 701−706. (24) Oba, M.; Murakami, S.; Fujishiro, R. Excess Enthalpies and Volumes for N,N-Dimethylacetamide + n-Alcohols at 298.15 K. J. Chem. Thermodyn. 1977, 9, 407−414. (25) Iloukhani, H.; Zarei, H. A. Excess Thermodynamic Properties of Binary Liquid Mixtures Containing N,N-Dimethylacetamide with some Alkan-1-ols (C1 C6) at 298.15 K. Phys. Chem. Liq. 2002, 40, 449−455. (26) Pikkarainen, L. Excess Enthalpies of Binary Solvent Mixtures of N,N-Dimethylacetamide with Aliphatic Alcohols. J. Solution Chem. 1986, 15, 473−479. (27) Zielkiewicz, J. (Vapour + Liquid) Equilibrium in (N,Ndimethylacetamide + Methanol + Water) at the Temperature 313.15 K. J. Chem. Thermodyn. 2003, 35, 1993−2001. (28) Marchenko, I. M.; Polyakova, L. V.; Shaganova, S. B.; Chervova, O. V.; Garber, Yu.N. Selection of Additives in Extractive Rectification (original Russian language). Zh. Prikl. Khim. 1991, 64, 2665−2668.

2786

DOI: 10.1021/acs.jced.7b00119 J. Chem. Eng. Data 2017, 62, 2776−2786