Article pubs.acs.org/jced
Volumetric and Viscometric Studies of Amino Acids in Vitamin B6 Aqueous Solutions at Various Temperatures Daofan Ma,† Xiaofeng Jiang,‡ Guoqiang Wei,*,† and Chunying Zhu*,‡ †
School of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024, P. R. China School of Chemical Engineering and Technology, Collaborative Innovation Center of Chemical Science and Engineering, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, P. R. China
‡
S Supporting Information *
ABSTRACT: The densities and viscosities of glycine, L-alanine, L-valine, L-threonine, and L-arginine in (0.1 to 0.4) mol·kg−1 vitamin B6 aqueous solutions were measured and studied over the entire molality range at (293.15, 303.15, 313.15, and 323.15) K and atmospheric pressure. The apparent molar volume (Vϕ), limiting partial molar volume (V0ϕ), and limiting partial molar volume of transfer (ΔtrV0ϕ) were obtained according to the experimental density data. The viscosity data were employed to 0⇌ determine the viscosity B coefficients, the free energies of activation per mole of solvent (Δμ0⇌ 1 ) and solute (Δμ2 ). The influences of temperature, molality, and solute structure on these parameters were discussed in terms of molecular interactions. The contributions of the charged end group (NH3+, COO−) and CH2 group to the limiting partial molar volumes and viscosity B coefficients were obtained through their linear correlation as a function of the number of carbon atoms in the alkyl chains of the studied amino acids. widely studied by many researchers.12−17 However, to our best knowledge, so far no experimental work has been devoted to the thermodynamic properties of amino acids in vitamin B6 aqueous solutions. As a continuation of volumetric and viscometric studies on amino acids in vitamin aqueous solutions,18−21 we present here the densities and viscosities of glycine, L-alanine, L-valine, Lthreonine, and L-arginine in vitamin B6 aqueous solutions at T = (293.15 to 323.15) K with 10 K intervals, covering the entire composition range expressed by the molality of solute and solvent. Meanwhile, the apparent molar volume, limiting partial molar volume, and limiting partial molar volume of transfer were calculated from the density data, and the viscosity B coefficients and free energies of activation per mole of solvent (Δμ0⇌ 1 ) and solute (Δμ20⇌) were obtained by the viscosity data. The influences of the concentration and the temperature on these parameters were analyzed and discussed from the viewpoint of
1. INTRODUCTION The vitamin B complexes as essential micronutrients play a vital role in the metabolism of human and animals. Usually, they are water-soluble and are based mainly on the pyridine ring as their molecular structures.1 An improper intake of vitamin B could affect detrimentally the metabolism of sugar, fat, and protein, and even bring about neurologic disorders2 and the decay of the immune function.3,4 As is well-known, vitamin B6, a general name given to pyridoxine, pyridoxamine, pyridoxal, and their phosphorylated derivatives,5,6 is one of the most important vitamins among all vitamin B complexes because of its wide functions in various systems of the body (immune system, nervous system, lipid metabolism, gluconeogenesis, hormone modulation, niacin formation, gene expression).7 It participates in more than 100 enzymatic reactions in which the most striking function lies in its service as a cofactor for enzymes during the biosynthesis process of amino acid.8,9 Accordingly the study on the vitamin B6 system has become an interesting subject. Banipal10 and Dhondge11 have studied the volumetric and viscometric properties of vitamin B6 aqueous solutions, respectively. As an ideal model of protein, amino acid has been © XXXX American Chemical Society
Received: October 21, 2014 Accepted: March 31, 2015
A
DOI: 10.1021/je500975a J. Chem. Eng. Data XXXX, XXX, XXX−XXX
Journal of Chemical & Engineering Data
Article
the efflux time. Until thermal equilibrium was reached, the efflux time of the liquids was automatically recorded in triplicate with a precision of ± 0.01 s. The average of at least three experiments reproducible values within 0.2 s was pinpointed as the final efflux time for each sample. Each capillary was calibrated by using double-distilled water (deionized and degassed) before the measurements. The viscosity values of pure water for calibration were (1.002, 0.7977, 0.6532, and 0.5470) mPa·s at temperatures of (293.15, 303.15, 313.15, and 323.15) K, respectively.23 The viscosities η of the solutions were calculated from the following equation:24,25
solute−solvent interactions. On the basis of the group analyses scheme, the limiting partial molar volumes and viscosity B coefficients were split into contributions from the zwitterionic end groups (NH3+, COO−) and CH2 group.
2. EXPERIMENTAL SECTION 2.1. Materials. The vitamin B6 (3-hydroxy-4,5-bis(hydroxymethyl)2-methylpyridine hydrochloride), was of analytical reagent grade and supplied by Aladdin, P. R. China. Glycine, L-alanine, L-valine, L-threonine, and L-arginine were purchased from Zhengzhou Jianda Chemicals, Inc., and their mass purities are all better than 99 %. The detailed specifications of these compounds are shown in Table 1. Prior to measurement,
η /ηw = ρt /ρw tw
where η, ρ, t and ηw, ρw, tw are viscosities, densities, and flow times of the solutions and pure water, respectively. The uncertainty of the experimental viscosities is ± 1 % mPa·s.
Table 1. Specification of Studied Chemicals
a
chemical name
CAS No.
molar wt/(g·mol )
source
vitamin B6
58-56-0
205.64
glycine
56-40-6
75.07
L-alanine
56-41-7
89.09
L-valine
72-18-4
117.15
L-threonine
72-19-5
119.12
L-arginine
74-79-3
174.20
Aladdin Chemical Reagent Co., Ltd. Zhengzhou Jianda Chemicals Inc. Zhengzhou Jianda Chemicals, Inc. Zhengzhou Jianda Chemicals, Inc. Zhengzhou Jianda Chemicals, Inc. Zhengzhou Jianda Chemicals, Inc.
−1
(1)
mass fraction puritya
3. RESULTS AND DISCUSSION 3.1. Density Correlation. The experimental densities of glycine, L-alanine, L-valine, L-threonine, and L-arginine in vitamin B6 aqueous solutions at T = (293.15, 303.15, 313.15 and 323.15) K are listed in Table 2. The comparison between experimental densities and viscosities of vitamin B6 aqueous solutions and the literature values is given in the Supporting Information (Figure S1). The variation tendencies of experimental densities and viscosities with molality show good agreement with literature values. It could be seen from Table 2 that the densities of all solutions increase with the molality of glycine, L-alanine, L-valine, Lthreonine, and L-arginine but decrease with increasing temperature. For the same solute, the densities increase monotonously with the molality of vitamin B6. While for the same molality of vitamin B6, the densities of all solutions increase with the molar weight of amino acids (see Figure 1). Figure 1 vividly presents the relationship of the densities of glycine, L-alanine, L-valine, L-threonine, and L-arginine versus temperature and solute molar concentration. It could be observed that from Figure 1, the densities of solutions show a very good linear relationship to the molar concentration of amino acids. Thus, the Guimarães equation26 was applied to correlate the experimental density data, ρ = A1 + A 2 T + A3C (2)
≥ 0.99 ≥ 0.99 ≥ 0.99 ≥ 0.99 ≥ 0.99 ≥ 0.99
Declared by the supplier.
the studied chemicals were subjected to vacuum at moderate temperature (T = 313.15 K) for 48 h in order to remove water. Doubly distilled water was used in the experiment. All solutions of the desired compositions were prepared by mass at room temperature, using an analytical balance (FA2204B, Shanghai Jingke, P.R. China) with uncertainty of ± 0.0001 g. The molality range of vitamin B6 is from (0.1 to 0.4) mol·kg−1 and the solutes (glycine, L-alanine, L-threonine, and L-arginine) are from 0.0 to 0.7 mol·kg−1, both with an interval of 0.1 mol·kg−1. L-Valine determinations were conducted in the molality range of (0.0 to 0.5) mol·kg−1, considering the low solubility of this material. 2.2. Density Measurement. An anton-Paar DMA 4500 M vibrating tube densimeter22 was employed to measure the densities of binary mixtures (glycine/L-alanine/L-valine/Lthreonine/L-arginine + water) and ternary mixtures (glycine/Lalanine/L-valine/L-threonine/L-arginine + vitamin B6 + water). The temperature in the measurement cell was automatically regulated to ± 0.02 K, and the accuracy in the density measurement was ± 5·10−5 g·cm−3. The apparatus was calibrated once a day with double-distilled water (deionized and degassed) and dry air for the temperature range investigated. Triplicate measurements were performed for each sample at each mentioned temperature. 2.3. Viscosity Measurement. The viscosity measurements of mixtures were operated through an iVsic capillary viscometer (LAUDA, Germany). The viscometer filled with experimental solutions was vertically immersed in a DLK thermostat (LAUDA, Germany) and the environmental temperature of the capillary was maintained constantly within ± 0.02 K. The equipment was connected to a PC-controlled Processor Viscosity System (PVS) unit for the precise measurement of
where T is the temperature, and A1, A2, and A3 are the empirical constants. C is the molar concentration of amino acids in vitamin B6 aqueous solutions at 293.15 K, converted from molality (m) by means of density. The fitting parameters, A1, A2, and A3 are shown in Table 3 alongside the values of standard deviation (SD) and the average deviation (AD). The standard deviation (SD) and the average deviation (AD) were calculated as follows: n
SD = [∑ (yexp, i − ycal, i )2 /(n − m)]1/2 i=1
AD =
1 n
(3)
n
∑ |(yexp,i − ycal,i )/yexp,i | i=1
(4)
where n is the total number of experimental data points and m is the number of parameters. yexp,i and ycal,i refer to the experimental values and the calculated values, respectively. From Table 3, the maximum values of AD and SD are 0.060 % and 0.0007 g·cm−3, respectively. B
DOI: 10.1021/je500975a J. Chem. Eng. Data XXXX, XXX, XXX−XXX
Journal of Chemical & Engineering Data
Article
Table 2. Densities (ρ), Viscosities (η), and Apparent Molar Volumes (Vϕ) of Glycine, L-Alanine, L-Valine, L-Threonine, and LArginine in Vitamin B6 Aqueous Solutions at T = (293.15, 303.15, 313.15 and 323.15) K and Pressure p = 101.3 kPaa T/K = 293.15 m mol·kg
ρ
C −1
mol·L
−1
T/K = 303.15
η −3
g·cm
mPa·s
ρ
Vϕ cm ·mol 3
−1
T/K = 313.15
η −3
g·cm
mPa·s
ρ
Vϕ cm ·mol 3
−1
T/K = 323.15
η −3
ρ
Vϕ −1
−3
η
Vϕ
mPa·s
cm ·mol−1
mPa·s
cm ·mol
0.99807 1.00118 1.00418 1.00718 1.01013 1.01303 1.01589 1.01872
0.680 0.689 0.698 0.708 0.718 0.728 0.739 0.749
44.18 44.25 44.34 44.42 44.52 44.60 44.68
0.99382 0.99689 0.99986 1.00282 1.00575 1.00863 1.01147 1.01429
0.568 0.576 0.584 0.592 0.601 0.610 0.618 0.627
44.65 44.71 44.77 44.84 44.90 44.96 45.02
1.00369 1.00675 1.00976 1.01273 1.01565 1.01853 1.02138 1.02420
0.703 0.713 0.723 0.734 0.745 0.756 0.768 0.780
44.36 44.44 44.52 44.59 44.66 44.74 44.82
0.99939 1.00240 1.00537 1.00831 1.01120 1.01405 1.01688 1.01968
0.587 0.596 0.605 0.614 0.624 0.633 0.643 0.652
44.87 44.92 44.98 45.02 45.08 45.13 45.18
1.00918 1.01219 1.01517 1.01809 1.02097 1.02380 1.02662 1.02937
0.729 0.741 0.752 0.763 0.775 0.786 0.798 0.809
44.65 44.73 44.82 44.92 45.02 45.08 45.16
1.00486 1.00782 1.01076 1.01365 1.01649 1.01931 1.02209 1.02481
0.607 0.617 0.627 0.637 0.647 0.656 0.666 0.675
45.18 45.23 45.30 45.38 45.42 45.50 45.57
1.01448 1.01747 1.02041 1.02331 1.02618 1.02902 1.03179 1.03454
0.755 0.768 0.780 0.793 0.807 0.818 0.831 0.843
44.91 44.96 45.02 45.07 45.13 45.20 45.26
1.01006 1.01300 1.01591 1.01877 1.02160 1.02443 1.02718 1.02991
0.628 0.639 0.650 0.661 0.672 0.683 0.694 0.704
45.41 45.44 45.48 45.52 45.54 45.59 45.62
0.99811 1.00088 1.00360 1.00629 1.00889 1.01144 1.01399 1.01644
0.679 0.694 0.709 0.725 0.741 0.758 0.777 0.794
61.31 61.39 61.43 61.54 61.67 61.72 61.83
0.99387 0.99662 0.99931 1.00196 1.00453 1.00707 1.00958 1.01202
0.568 0.579 0.591 0.604 0.617 0.631 0.645 0.659
61.69 61.79 61.88 61.98 62.08 62.16 62.24
1.00373 1.00646 1.00915 1.01177 1.01436 1.01689 1.01940 1.02184
0.703 0.719 0.735 0.753 0.770 0.789 0.809 0.828
61.47 61.55 61.66 61.74 61.83 61.89 61.97
0.99936 1.00207 1.00473 1.00733 1.00991 1.01242 1.01490 1.01733
0.587 0.599 0.612 0.626 0.640 0.655 0.670 0.685
61.89 61.97 62.05 62.11 62.20 62.27 62.34
g·cm
3
g·cm
3
Glycine in Vitamin B6 Aqueous Solution 0.0000 0.1009 0.1999 0.3001 0.4003 0.5002 0.6000 0.7003
0.0000 0.1009 0.1990 0.2975 0.3951 0.4915 0.5870 0.6822
1.00422 1.00744 1.01053 1.01361 1.01663 1.01959 1.02250 1.02537
1.047 1.059 1.072 1.086 1.101 1.116 1.132 1.149
43.05 43.19 43.33 43.48 43.62 43.76 43.89
1.00158 1.00474 1.00779 1.01083 1.01381 1.01675 1.01962 1.02246
0.0000 0.1002 0.2001 0.3003 0.4000 0.4999 0.6000 0.7003
0.0000 0.1008 0.2003 0.2994 0.3970 0.4940 0.5903 0.6860
1.01005 1.01321 1.01631 1.01936 1.02235 1.02528 1.02817 1.03102
1.083 1.097 1.112 1.128 1.144 1.161 1.178 1.195
43.25 43.39 43.52 43.66 43.79 43.93 44.06
1.00729 1.01040 1.01345 1.01647 1.01942 1.02232 1.02519 1.02803
0.0000 0.0999 0.2000 0.3000 0.4001 0.5000 0.6003 0.6999
0.0000 0.1010 0.2013 0.3007 0.3992 0.4966 0.5936 0.6891
1.01552 1.01864 1.02171 1.02473 1.02771 1.03062 1.03350 1.03631
1.128 1.144 1.160 1.176 1.192 1.209 1.225 1.242
43.49 43.62 43.74 43.85 43.98 44.09 44.22
1.01281 1.01588 1.01891 1.02188 1.02480 1.02768 1.03051 1.03329
43.76 43.91 44.06 44.22 44.36 44.51 44.66
1.01820 1.02124 1.02423 1.02716 1.03005 1.03290 1.03568 1.03843
0.0000 0.1002 0.2002 0.3000 0.4000 0.5006 0.6000 0.6998 L-Alanine
0.0000 0.1019 0.2026 0.3022 0.4012 0.4998 0.5964 0.6925 in Vitamin
1.02112 1.02422 1.02725 1.03021 1.03312 1.03600 1.03879 1.04153 B6 Aqueous
1.169 1.187 1.205 1.222 1.241 1.259 1.277 1.295 Solution
0.0000 0.1003 0.2002 0.3005 0.4001 0.5005 0.6005 0.6998
0.0000 0.1002 0.1986 0.2964 0.3922 0.4872 0.5817 0.6739
1.00423 1.00709 1.00987 1.01262 1.01530 1.01793 1.02054 1.02307
1.047 1.071 1.098 1.124 1.151 1.180 1.210 1.240
60.35 60.45 60.55 60.63 60.72 60.81 60.88
1.00159 1.00441 1.00715 1.00986 1.01250 1.01510 1.01767 1.02016
0.0000 0.1003 0.2002 0.3000 0.4002 0.5002 0.6004 0.7002
0.0000 0.1004 0.1998 0.2975 0.3945 0.4902 0.5848 0.6780
1.01005 1.01286 1.01562 1.01832 1.02098 1.02359 1.02616 1.02867
1.083 1.109 1.138 1.168 1.199 1.230 1.263 1.297
60.50 60.60 60.69 60.77 60.85 60.93 61.01
1.00730 1.01007 1.01279 1.01544 1.01807 1.02063 1.02317 1.02564
ma = 0.1000 0.832 0.843 0.853 0.865 0.877 0.889 0.902 0.915 ma = 0.2000 0.860 0.872 0.884 0.897 0.910 0.924 0.938 0.952 ma = 0.3000 0.895 0.908 0.921 0.934 0.948 0.961 0.975 0.989 ma = 0.4000 0.925 0.941 0.955 0.970 0.985 1.000 1.014 1.029
mol·kg−1
ma = 0.1000 0.832 0.850 0.870 0.890 0.911 0.934 0.955 0.979 ma = 0.2000 0.861 0.881 0.902 0.924 0.948 0.972 0.997 1.024
mol·kg−1
C
43.61 43.72 43.83 43.95 44.06 44.18 44.30 mol·kg−1 43.80 43.90 44.01 44.12 44.23 44.33 44.42 mol·kg−1 44.05 44.16 44.28 44.38 44.48 44.60 44.70 mol·kg−1 44.31 44.42 44.53 44.64 44.76 44.86 44.96
60.83 60.92 61.01 61.11 61.19 61.28 61.37 mol·kg−1 60.99 61.08 61.19 61.25 61.35 61.43 61.51
DOI: 10.1021/je500975a J. Chem. Eng. Data XXXX, XXX, XXX−XXX
Journal of Chemical & Engineering Data
Article
Table 2. continued T/K = 293.15
T/K = 303.15
T/K = 313.15
T/K = 323.15
m
C
ρ
η
Vϕ
ρ
η
Vϕ
ρ
η
Vϕ
ρ
η
Vϕ
mol·kg−1
mol·L−1
g·cm−3
mPa·s
cm3·mol−1
g·cm−3
mPa·s
cm3·mol−1
g·cm−3
mPa·s
cm3·mol−1
g·cm−3
mPa·s
cm3·mol−1
1.00919 1.01190 1.01454 1.01712 1.01966 1.02215 1.02461 1.02700
0.729 0.746 0.764 0.781 0.800 0.819 0.838 0.857
61.68 61.76 61.86 61.94 62.04 62.10 62.18
1.00484 1.00752 1.01013 1.01268 1.01520 1.01767 1.02010 1.02248
0.607 0.620 0.634 0.648 0.662 0.676 0.691 0.706
62.16 62.23 62.30 62.38 62.45 62.53 62.60
1.01454 1.01720 1.01981 1.02235 1.02485 1.02732 1.02973 1.03209
0.755 0.773 0.792 0.812 0.832 0.852 0.873 0.895
61.89 61.97 62.06 62.14 62.22 62.28 62.37
1.01010 1.01273 1.01531 1.01783 1.02030 1.02273 1.02512 1.02747
0.628 0.643 0.658 0.673 0.689 0.705 0.721 0.738
62.34 62.42 62.50 62.59 62.67 62.75 62.80
0.99815 1.00069 1.00317 1.00558 1.00792 1.01020
0.680 0.706 0.731 0.757 0.785 0.814
91.59 91.71 91.82 91.94 92.07
0.99388 0.99638 0.99882 1.00119 1.00350 1.00575
0.568 0.587 0.607 0.628 0.648 0.670
92.35 92.44 92.52 92.62 92.74
1.00372 1.00621 1.00862 1.01095 1.01324 1.01545
0.703 0.729 0.757 0.785 0.814 0.845
91.78 91.94 92.11 92.23 92.34
0.99936 1.00181 1.00418 1.00649 1.00874 1.01091
0.587 0.608 0.629 0.650 0.672 0.694
92.56 92.66 92.76 92.89 93.03
1.00918 1.01163 1.01398 1.01627 1.01849 1.02064
0.729 0.757 0.786 0.816 0.847 0.879
91.93 92.08 92.22 92.38 92.52
1.00479 1.00719 1.00951 1.01177 1.01397 1.01610
0.608 0.630 0.653 0.676 0.700 0.724
92.68 92.81 92.91 93.03 93.14
1.01452 1.01690 1.01921 1.02145 1.02362 1.02572
0.754 0.784 0.816 0.848 0.882 0.916
92.15 92.28 92.43 92.56 92.70
1.01008 1.01241 1.01468 1.01687 1.01901 1.02108
0.628 0.652 0.676 0.701 0.727 0.753
92.91 93.05 93.17 93.30 93.41
0.99807 1.00215 1.00614 1.01006 1.01389 1.01765 1.02133 1.02496
0.680 0.700 0.722 0.744 0.766 0.790 0.813 0.838
78.14 78.24 78.33 78.41 78.50 78.59 78.68
0.99378 0.99783 1.00179 1.00568 1.00948 1.01321 1.01686 1.02045
0.567 0.584 0.601 0.619 0.637 0.655 0.674 0.693
78.62 78.70 78.80 78.89 78.99 79.09 79.17
0.0000 0.1005 0.2006 0.3001 0.4000 0.5004 0.6002 0.6997
0.0000 0.1015 0.2012 0.2992 0.3966 0.4925 0.5877 0.6810
1.01563 1.01842 1.02115 1.02381 1.02644 1.02901 1.03155 1.03401
1.129 1.158 1.187 1.218 1.251 1.284 1.318 1.353
0.0000 0.0000 1.02116 1.169 0.1003 0.1018 1.02390 1.202 0.2006 0.2023 1.02660 1.234 0.3003 0.3010 1.02922 1.268 0.4001 0.3986 1.03180 1.302 0.5004 0.4955 1.03435 1.337 0.6003 0.5908 1.03683 1.375 0.7000 0.6848 1.03926 1.413 L-Valine in Vitamin B6 Aqueous Solution
60.61 60.71 60.79 60.87 60.96 61.05 61.14
1.01283 1.01558 1.01826 1.02087 1.02345 1.02597 1.02846 1.03088
60.82 60.91 61.01 61.10 61.18 61.27 61.35
1.01823 1.02093 1.02358 1.02616 1.02869 1.03118 1.03363 1.03601
ma = 0.3000 0.896 0.917 0.941 0.962 0.987 1.012 1.038 1.063 ma = 0.4000 0.926 0.949 0.973 0.999 1.024 1.052 1.080 1.108
mol·kg−1
mol·kg−1
mol·kg−1
0.0000 0.1000 0.2001 0.3001 0.4000 0.5000
0.0000 0.0995 0.1974 0.2934 0.3876 0.4802
1.00426 1.00689 1.00946 1.01195 1.01437 1.01673
1.047 1.089 1.135 1.183 1.235 1.289
90.33 90.45 90.58 90.69 90.81
1.00162 1.00421 1.00673 1.00918 1.01155 1.01386
0.0000 0.1002 0.2001 0.2999 0.4002 0.5001
0.0000 0.1003 0.1985 0.2948 0.3899 0.4829
1.01003 1.01261 1.01512 1.01756 1.01994 1.02225
1.083 1.127 1.177 1.230 1.286 1.344
90.48 90.60 90.70 90.82 90.93
1.00728 1.00982 1.01228 1.01466 1.01699 1.01921
0.0000 0.1005 0.2002 0.3000 0.4002 0.4999
0.0000 0.1011 0.1997 0.2965 0.3919 0.4852
1.01558 1.01812 1.02057 1.02294 1.02526 1.02750
1.129 1.177 1.229 1.283 1.341 1.402
90.59 90.75 90.89 91.02 91.16
1.01284 1.01534 1.01774 1.02006 1.02232 1.02449
90.80 90.94 91.08 91.22 91.35
1.01822 1.02065 1.02300 1.02528 1.02749 1.02962
ma = 0.1000 0.832 0.865 0.898 0.933 0.970 1.009 ma = 0.2000 0.860 0.894 0.931 0.969 1.009 1.051 ma = 0.3000 0.896 0.932 0.970 1.010 1.052 1.095 ma = 0.4000 0.925 0.964 1.005 1.048 1.093 1.139
76.80 76.92 77.04 77.16 77.26 77.38 77.48
1.00156 1.00569 1.00973 1.01370 1.01757 1.02136 1.02508 1.02873
ma = 0.1001 0.832 0.858 0.886 0.914 0.944 0.974 1.005 1.037
0.0000 0.0000 1.02116 1.170 0.0999 0.1011 1.02363 1.221 0.2002 0.2007 1.02604 1.277 0.3002 0.2982 1.02836 1.337 0.4003 0.3941 1.03062 1.399 0.5001 0.4879 1.03281 1.464 L-Threonine in Vitamin B6 Aqueous Solution 0.0000 0.1001 0.2000 0.3003 0.4001 0.5001 0.6000 0.7001
0.0000 0.0998 0.1978 0.2947 0.3897 0.4835 0.5757 0.6667
1.00418 1.00837 1.01247 1.01649 1.02041 1.02426 1.02802 1.03173
1.047 1.082 1.118 1.157 1.195 1.236 1.278 1.321
D
61.16 61.26 61.36 61.44 61.55 61.62 61.71 mol·kg−1 61.37 61.47 61.57 61.65 61.75 61.82 61.92
90.88 91.02 91.15 91.30 91.43 mol·kg−1 91.07 91.22 91.37 91.52 91.70 mol·kg−1 91.19 91.37 91.55 91.71 91.89 mol·kg−1 91.41 91.57 91.72 91.88 92.04
77.46 77.59 77.70 77.81 77.92 78.03 78.13
DOI: 10.1021/je500975a J. Chem. Eng. Data XXXX, XXX, XXX−XXX
Journal of Chemical & Engineering Data
Article
Table 2. continued T/K = 293.15
T/K = 303.15
T/K = 313.15
T/K = 323.15
m
C
ρ
η
Vϕ
ρ
η
Vϕ
ρ
η
Vϕ
ρ
η
Vϕ
mol·kg−1
mol·L−1
g·cm−3
mPa·s
cm3·mol−1
g·cm−3
mPa·s
cm3·mol−1
g·cm−3
mPa·s
cm3·mol−1
g·cm−3
mPa·s
cm3·mol−1
1.00368 1.00771 1.01167 1.01554 1.01934 1.02307 1.02673 1.03032
0.703 0.725 0.748 0.772 0.796 0.821 0.847 0.872
78.33 78.42 78.50 78.59 78.66 78.74 78.82
0.99933 1.00333 1.00725 1.01110 1.01487 1.01856 1.02220 1.02576
0.587 0.605 0.623 0.641 0.661 0.680 0.699 0.719
78.83 78.91 78.96 79.05 79.15 79.22 79.29
1.00920 1.01319 1.01710 1.02093 1.02469 1.02838 1.03199 1.03553
0.729 0.753 0.777 0.802 0.828 0.854 0.881 0.908
78.55 78.64 78.71 78.79 78.86 78.97 79.04
1.00485 1.00880 1.01268 1.01646 1.02019 1.02381 1.02741 1.03089
0.608 0.626 0.646 0.665 0.685 0.705 0.726 0.747
79.15 79.21 79.30 79.37 79.50 79.54 79.65
1.01446 1.01841 1.02228 1.02606 1.02978 1.03344 1.03702 1.04054
0.755 0.780 0.806 0.832 0.859 0.888 0.916 0.945
78.78 78.86 78.93 79.01 79.07 79.13 79.19
1.01010 1.01401 1.01784 1.02159 1.02528 1.02889 1.03244 1.03592
0.628 0.648 0.668 0.689 0.710 0.732 0.754 0.776
79.34 79.41 79.48 79.54 79.61 79.67 79.73
0.99809 1.00355 1.00859 1.01330 1.01772 1.02187 1.02575 1.02943
0.680 0.712 0.750 0.786 0.828 0.869 0.913 0.958
119.21 120.62 121.80 122.85 123.87 124.81 125.66
0.99385 0.99921 1.00420 1.00884 1.01317 1.01724 1.02113 1.02487
0.568 0.595 0.623 0.652 0.685 0.717 0.753 0.787
120.47 121.69 122.87 123.96 125.01 125.80 126.49
1.00373 1.00911 1.01424 1.01907 1.02367 1.02806 1.03216 1.03612
0.703 0.737 0.776 0.819 0.864 0.909 0.958 1.008
119.45 120.12 120.95 121.68 122.30 123.04 123.62
0.99936 1.00465 1.00970 1.01451 1.01908 1.02344 1.02758 1.03155
0.587 0.614 0.646 0.678 0.712 0.749 0.786 0.825
120.67 121.29 121.94 122.59 123.14 123.73 124.26
1.00920 1.01455 1.01966 1.02451 1.02914 1.03359 1.03782 1.04182
0.729 0.766 0.808 0.851 0.900 0.950 1.002 1.056
119.56 120.10 120.67 121.27 121.76 122.30 122.87
1.00484 1.01010 1.01512 1.01991 1.02452 1.02892 1.03315 1.03721
0.607 0.637 0.670 0.705 0.742 0.782 0.823 0.864
120.77 121.32 121.80 122.24 122.73 123.16 123.57
1.01448 1.01975
0.755 0.796
119.94
1.01008 1.01525
0.628 0.661
121.15
0.0000 0.1000 0.2000 0.3000 0.3999 0.4998 0.6001 0.7001
0.0000 0.1002 0.1989 0.2961 0.3917 0.4858 0.5789 0.6703
1.01000 1.01415 1.01821 1.02218 1.02606 1.02987 1.03360 1.03724
1.083 1.121 1.160 1.202 1.245 1.289 1.336 1.383
76.98 77.09 77.22 77.34 77.45 77.58 77.70
1.00727 1.01136 1.01536 1.01928 1.02311 1.02686 1.03053 1.03419
0.0000 0.1001 0.2002 0.2999 0.4000 0.5000 0.6001 0.7000
0.0000 0.1008 0.2002 0.2976 0.3938 0.4885 0.5819 0.6736
1.01556 1.01968 1.02371 1.02763 1.03148 1.03524 1.03893 1.04253
1.128 1.169 1.211 1.254 1.300 1.347 1.395 1.445
77.10 77.23 77.37 77.50 77.63 77.75 77.87
1.01280 1.01685 1.02082 1.02469 1.02848 1.03221 1.03584 1.03941
0.0000 0.1002 0.2001 0.2999 0.4000 0.5001 0.6001 0.7000 L-Arginine
0.0000 0.1015 0.2012 0.2992 0.3959 0.4911 0.5848 0.6769 in Vitamin
1.02110 1.169 1.02517 1.212 1.02914 1.258 1.03302 1.303 1.03682 1.352 1.04055 1.402 1.04419 1.453 1.04774 1.506 B6 Aqueous Solution
77.39 77.52 77.64 77.77 77.88 78.00 78.12
1.01818 1.02219 1.02611 1.02994 1.03371 1.03741 1.04102 1.04456
0.0000 0.1002 0.2002 0.3001 0.4000 0.5003 0.6000 0.7003
0.0000 0.0995 0.1964 0.2909 0.3831 0.4735 0.5611 0.6470
1.00426 1.00992 1.01515 1.02006 1.02457 1.02887 1.03282 1.03659
1.047 1.103 1.163 1.229 1.299 1.369 1.446 1.523
116.86 118.24 119.38 120.68 121.72 122.79 123.70
1.00162 1.00717 1.01230 1.01716 1.02161 1.02578 1.02962 1.03343
0.0000 0.0999 0.1999 0.3001 0.4004 0.5002 0.6001 0.6999
0.0000 0.0998 0.1972 0.2926 0.3857 0.4762 0.5646 0.6509
1.01006 1.01565 1.02094 1.02592 1.03063 1.03506 1.03931 1.04330
1.083 1.141 1.210 1.282 1.361 1.445 1.528 1.622
116.99 117.84 118.81 119.68 120.50 121.18 121.90
1.00731 1.01278 1.01798 1.02288 1.02755 1.03191 1.03603 1.03999
0.0000 0.1002 0.2003 0.3000 0.4000 0.5000 0.6000 0.6999
0.0000 0.1006 0.1987 0.2941 0.3875 0.4787 0.5678 0.6545
1.01562 1.02117 1.02645 1.03148 1.03628 1.04083 1.04517 1.04929
1.129 1.191 1.263 1.342 1.424 1.515 1.608 1.706
117.22 117.84 118.44 119.04 119.67 120.28 120.88
1.01284 1.01828 1.02346 1.02839 1.03309 1.03758 1.04185 1.04590
0.0000 0.1000
0.0000 0.1009
1.02112 1.02658
1.170 1.239
117.62
1.01820 1.02356
ma = 0.2000 0.861 0.889 0.918 0.949 0.981 1.013 1.047 1.081 ma = 0.3000 0.896 0.926 0.957 0.989 1.023 1.057 1.092 1.129 ma = 0.4000 0.925 0.957 0.991 1.026 1.061 1.098 1.136 1.174
mol·kg−1 77.63 77.79 77.86 78.00 78.12 78.25 78.27 mol·kg−1 77.82 77.94 78.05 78.17 78.26 78.40 78.49 mol·kg−1 78.08 78.18 78.27 78.35 78.43 78.53 78.61
ma = 0.1000 mol·kg−1 0.832 0.875 118.05 0.920 119.47 0.970 120.44 1.022 121.67 1.075 122.82 1.133 123.94 1.190 124.68 ma = 0.2000 mol·kg−1 0.861 0.905 118.29 0.955 119.06 1.010 119.94 1.069 120.69 1.128 121.48 1.195 122.28 1.257 122.93 ma = 0.3000 mol·kg−1 0.896 0.943 118.43 0.997 119.04 1.054 119.62 1.117 120.24 1.184 120.79 1.253 121.38 1.322 121.96 ma = 0.4000 mol·kg−1 0.926 0.979 118.78 E
DOI: 10.1021/je500975a J. Chem. Eng. Data XXXX, XXX, XXX−XXX
Journal of Chemical & Engineering Data
Article
Table 2. continued T/K = 293.15
T/K = 303.15
T/K = 313.15
T/K = 323.15
m
C
ρ
η
Vϕ
ρ
η
Vϕ
ρ
η
Vϕ
ρ
η
Vϕ
mol·kg−1
mol·L−1
g·cm−3
mPa·s
cm3·mol−1
g·cm−3
mPa·s
cm3·mol−1
g·cm−3
mPa·s
cm3·mol−1
g·cm−3
mPa·s
cm3·mol−1
1.02481 1.02966 1.03431 1.03878 1.04307 1.04719
0.844 0.895 0.953 1.016 1.079 1.151
120.33 120.78 121.23 121.58 121.98 122.37
1.02024 1.02504 1.02965 1.03410 1.03838 1.04253
0.698 0.739 0.787 0.836 0.887 0.943
121.44 121.77 122.17 122.46 122.79 123.07
0.2000 0.3001 0.4003 0.5000 0.6000 0.7000
0.1994 0.2957 0.3898 0.4812 0.5707 0.6581
1.03181 1.03683 1.04162 1.04620 1.05056 1.05476
1.319 1.408 1.502 1.606 1.722 1.839
118.11 118.57 119.09 119.56 120.09 120.54
1.02870 1.03363 1.03835 1.04289 1.04722 1.05136
ma = 0.4000 mol·kg−1 1.038 119.19 1.104 119.66 1.179 120.15 1.254 120.53 1.338 120.98 1.430 121.44
a m stands for the molality of glycine/L-alanine/L-threonine/L-valine/L-arginine in (vitamin B6 + water) mixture solvents. ma stands for the molality of vitamin B6 aqueous solutions. Standard uncertainty: in molality u(m) = ± 1·10−4 mol·kg−1; in density u(ρ) = ± 5·10−5 g·cm−3, u(T) = ± 0.02 K; in viscosities u(η) = ± 1%, u(T) = ± 0.02 K.
Table 3. Fitting Coefficients A1, A2, A3 of eq 2 for Amino Acids + Vitamin B6 + Water Ternary Solutions ma mol·kg
Figure 1. Density (ρ) of amino acids in 0.1 mol·kg−1 vitamin B6 aqueous solutions: ■, L-arginine; ▲, L-threonine; ▼, glycine; ★, L-alanine; ○, Lvaline.
3.2. Volumetric Properties. The apparent molar volumes, Vϕ of glycine, L-alanine, L-valine, L-threonine and L-arginine in vitamin B6 solutions were computed by the following relation:27−29 Vϕ = M /ρ − 1000(ρ − ρ0 )/mρρ0
(5)
where M is the molar weight of the solute, m is the molality of the solute in mixture solvent, and ρ and ρ0 are the densities of the mixture and the solvent, respectively. The calculated apparent molar volumes, Vϕ, are also included in Table 2. Figure 2 shows the plot of apparent molar volumes of glycine in (0.1 to 0.4) mol·kg−1 vitamin B6 aqueous solutions at 293.15 K. It could be easily found that the apparent molar volumes vary linearly with the molar concentration of the solute. Consequently, the limiting partial molar volumes, V0ϕ (i.e., apparent molar volumes at infinite dilution) could be obtained through the following equation:30 Vϕ = V ϕ0 + SvC
104A2
A1 −1
g·cm
−3
0.1000 0.2000 0.3000 0.4000
1.1106 1.1202 1.1251 1.1335
0.1000 0.2000 0.3000 0.4000
1.1096 1.1189 1.1253 1.1336
0.1000 0.2000 0.3000 0.4000
1.1094 1.1080 1.1249 1.1333
0.1001 0.2000 0.3000 0.4000
1.1111 1.1194 1.1135 1.1339
0.1000 0.2000 0.3000 0.4000
1.1156 1.1224 1.1299 1.1376
−3
g·cm ·K
A3 −1
SD −1
g·mol
Glycine −3.6040 0.0305 −3.7285 0.0300 −3.7285 0.0295 −3.8104 0.0291 L-Alanine −3.5734 0.0274 −3.6899 0.0270 −3.7195 0.0264 −3.8139 0.0258 L-Valine −3.5643 0.0253 −3.3598 0.0259 −3.7087 0.0239 −3.8052 0.0232 L-Threonine −3.6215 0.0406 −3.7079 0.0400 −3.3602 0.0406 −3.8264 0.0387 L-Arginine −3.7448 0.0487 −3.7909 0.0501 −3.8583 0.0503 −3.9366 0.0501
100AD
g·cm−3
0.039 0.038 0.039 0.037
0.0004 0.0004 0.0004 0.0004
0.039 0.038 0.036 0.035
0.0004 0.0004 0.0004 0.0004
0.040 0.057 0.040 0.036
0.0004 0.0007 0.0004 0.0004
0.039 0.038 0.060 0.034
0.0004 0.0004 0.0007 0.0004
0.048 0.038 0.036 0.034
0.0006 0.0005 0.0005 0.0005
Apparently, from Table 4, the V0ϕ of amino acids are all positive and increase with temperature, which gives an insight that there exists the solute−solvent interaction and higher temperature could facilitate this kind of interaction. When the molality of vitamin B6 aqueous solutions climbs, the corresponding values of V0ϕ will also go up under the specified temperature. Additionally, it could also be found that the V0ϕ of amino acids are in the order glycine < L-alanine < L-valine < L-threonine < L-arginine. Under the condition of infinite dilution, the interactions between solute and solute is negligible, therefore, the solute− solvent interactions would become dominated in the solutions. The limiting partial molar volume of transfer means the difference between the water solvent and the mixed solvent and could provide much valuable information about solute− solvent interactions.
(6)
where Sv is the experimental slope and C is the molar concentration of amino acids in vitamin B6 aqueous solutions at 293.15 K. In this case, the values of V0ϕ were obtained by the least-squares regression analysis and listed in Table 4. F
DOI: 10.1021/je500975a J. Chem. Eng. Data XXXX, XXX, XXX−XXX
Journal of Chemical & Engineering Data
Article
water to vitamin B6 aqueous solutions could be calculated as follows: Δtr V ϕ0 = V ϕ0[VB6 + water] − V ϕ0[water]
(7)
It should be noted that the limiting partial molar volumes of amino acids in pure water were taken from our previous research.18 The results of limiting partial molar volumes of transfer, ΔtrV0ϕ are summarized in Table 4. The ΔtrV0ϕ of amino acids from water to vitamin B6 aqueous solutions are positive except for L-arginine, and increase monotonically with both the molality of solvent and the temperature of the solution. The values of ΔtrV0ϕ of amino acids from water to vitamin B6 aqueous solutions could be observed to shift in the following order: ΔtrV0ϕ [L-arginine] < 0 < ΔtrV0ϕ [L-valine] < ΔtrV0ϕ [L-alanine] < ΔtrV0ϕ [glycine] < ΔtrV0ϕ [Lthreonine]. This could be reasonably explained by the cosphere overlap model.24,31,32 According to specific structure and properties of amino acids and vitamin B6, there mainly exists five types of interactions between amino acids and vitamin B6 molecules: (a) ion−ion interactions between zwitterionic end groups (NH3+,COO−) of amino acids and the ions (H+,Cl−) ionized or hydrolyzed from vitamin B6 molecules
Figure 2. Apparent molar volumes of glycine as a function of its molar concentration in vitamin B6 aqueous solutions at T = 293.15 K: ■, 0.1 mol·kg−1; ●, 0.2 mol·kg−1; ▲, 0.3 mol·kg−1; ▼, 0.4 mol·kg−1.
The limiting partial molar volumes of transfer, ΔtrV0ϕ of glycine, L-alanine, L-valine, L-threonine, and L-arginine from pure
Table 4. Limiting Partial Molar Volumes (V0ϕ) and Limiting Partial Molar Volumes of Transfer (ΔtrV0ϕ) of Amino Acids in Vitamin B6 Aqueous Solutions at T = (293.15 to 323.15) K T/K = 293.15 maa mol·kg
−1
−1
cm ·mol 3
T/K = 303.15
ΔtrV0ϕ
V0ϕ
cm ·mol 3
−1
cm ·mol 3
T/K = 313.15
ΔtrV0ϕ
V0ϕ −1
−1
cm ·mol 3
T/K = 323.15
ΔtrV0ϕ
V0ϕ −1
ΔtrV0ϕ
V0ϕ −1
−1
cm3·mol−1
cm ·mol
cm ·mol
cm ·mol
43.76 44.08 44.29 44.56 44.84
0.32 0.53 0.80 1.08
44.25 44.58 44.81 45.10 45.37
0.33 0.56 0.85 1.12
61.03 61.20 61.39 61.59 61.81
0.17 0.36 0.56 0.78
61.39 61.60 61.81 62.07 62.26
0.21 0.42 0.68 0.87
91.32 91.47 91.65 91.77 92.00
0.15 0.33 0.45 0.68
92.07 92.24 92.42 92.57 92.39
0.17 0.35 0.50 0.72
77.84 78.0 78.25 78.46 78.71
0.21 0.41 0.62 0.87
78.27 78.51 78.74 79.04 79.28
0.24 0.47 0.77 1.01
125.68 118.26 118.67 118.93 119.48
−7.42 −7.01 −6.75 −6.20
126.67 119.53 120.02 120.30 120.77
−7.14 −6.65 −6.37 −5.90
3
3
3
Glycine
a
0.0000 0.1000 0.2000 0.3000 0.4000
42.61 42.90 43.12 42.36 43.60
0.29 0.51 0.75 0.99
43.17 43.48 43.69 43.94 43.20
0.0000 0.1000 0.2000 0.3000 0.4000
60.14 60.27 60..42 60.52 60.73
0.13 0.28 0.38 0.59
60.59 60.74 60.90 61.07 61.28
0.0000 0.1000 0.2000 0.3000 0.4000
90.11 90.20 90.36 90.45 90.65
0.09 0.25 0.34 0.54
90.61 90.73 90.90 91.01 91.25
0.0000 0.1001 0.2000 0.3000 0.4000
76.51 76.68 76.84 76.97 76.26
0.17 0.33 0.46 0.75
77.16 77.35 77.53 77.71 77.99
0.0000 0.1000 0.2000 0.3000 0.4000
123.97 115.74 116.13 116.52 117.05
−8.23 −7.84 −7.45 −6.92
124.88 116.95 117.42 117.77 118.27
0.31 0.52 0.77 1.03 L-Alanine 0.15 0.31 0.48 0.69 L-Valine 0.12 0.29 0.40 0.64 L-Threonine 0.19 0.37 0.55 0.83 L-Arginine −7.93 −7.46 −7.11 −6.61
ma stands for the molality of vitamin B6 in water. G
DOI: 10.1021/je500975a J. Chem. Eng. Data XXXX, XXX, XXX−XXX
Journal of Chemical & Engineering Data
Article
(b) ion−hydrophilic group interactions between zwitterionic end groups (NH3+,COO−) of amino acids and the OH groups in vitamin B6 molecules (c) hydrophilic−hydrophilic group interactions between the hydrophilic groups of amino acid (such as OH, and NH2) and the OH groups in vitamin B6 molecules (d) ion−hydrophobic group interactions between the zwitterionic end groups (NH3+,COO−) of amino acids and the alkyl chain of vitamin B6 molecules (e) hydrophobic−hydrophobic group interactions between the alkyl chain of amino acids and the alkyl chain of vitamin B6 molecules The interaction of types (a), (b), and (c) contributes positively to the limiting partial molar volumes of transfer, while types (d) and (e) make a negative contribution to the limiting partial molar volumes of transfer. From Table 3, the positive values of ΔtrV0ϕ of glycine, L-alanine, L-valine, and L-threonine adequately imply that the ion−ion interactions, and ion−hydrophilic and hydrophilic− hydrophilic group interactions surpass the ion−hydrophobic and hydrophobic−hydrophobic group interactions. When the temperature or the molality of mixture solvents increases, the dominant effect would be much more notable. Naturally, different amino acids would show various interactions. Considering the structure of amino acids, that is, CH2−(glycine), CH3−CH−(L-alanine), (CH3)2−CH−CH-(L-valine), CH3− CH(OH)-(L-threonine), CNHNHNH2−(L-arginine), there only exists type (a), (b), (d), and (e) for glycine, L-alanine, and L-valine, while all these five kinds of interactions are available for L-threonine and L-arginine. Commonly, the contribution of the alkyl chain of amino acids to ΔtrV0ϕ exerts great dependence on the size of alkyl chain, thereby it is not difficult to conclude the results: ΔtrV0ϕ [L-valine] < ΔtrV0ϕ [L-alanine] < ΔtrV0ϕ [glycine]. Nevertheless, the ΔtrV0ϕ of L-threonine are larger than that of Lvaline owing to its additional type (c) interactions. As to the dramatically large negative values of ΔtrV0ϕ for L-arginine, maybe this is not purely caused by its additional type (c) interactions. It could be interpreted by the fact that L-arginine is an alkaline amino acid, while vitamin B6 is acidic, just like L-ascorbic acid. In the vitamin B6 aqueous solutions, L-arginine could neutralize and exchange an electric charge with a vitamin B6 molecule, which leads to the electrostriction of the water to be enhanced rapidly, and finally results in a relatively large and negative value of the limiting partial molar volumes of transfer. It is worth noting that the ΔtrV0ϕ for L-arginine from water to vitamin B6 aqueous solutions seems to be less negative than from water to L-ascorbic acid aqueous solutions, this is probably because of the occurrence of strong and positive ion−ion interactions, as opposed to the interactions in amino acids + L-ascorbic acid + water solutions. 3.3. Viscometric Properties. The experimental viscosities of glycine, L-alanine, L-valine, L-threonine, and L-arginine in vitamin B6 aqueous solutions at T = (293.15, 303.15, 313.15 and 323.15) K are displayed in Table 2 and partly depicted in Figure 3. It could be clearly found from Figure 3 that the viscosities of amino acids are in nonlinear relationship to the molar concentration of solute. In this work, the extended Jones-Dole equation33 were utilized to correlate the viscosities of solutions. η = 1 + BC + DC 2 ηr = η0 (8)
Figure 3. Viscosities, η of amino acids in 0.1 mol·kg−1 vitamin B6 aqueous solutions at T = 293.15 K: ■, glycine; ●, L-alanine; ▲, L-valine; ▼, L-threonine; ◆, L-arginine.
Coefficients B and D are the physicochemical properties at a given temperature. Generally, the B coefficient gives a significant insight into solute−solvent interactions34 and the D coefficient seems to stand for solute−solute interactions.31 The fitting parameters B and D of viscosity are obtained by the least-squares deviations and shown in Table 5. From Figure 3, it could be found the viscosities of amino acids are largely associated with their molar weights. The larger is the molar weight of the amino acid, the slower is the motion of the molecule, and naturally the larger is the viscosity. Viscosity B coefficient is a valuable parameter regarding the solute−solvent interactions.35,36 It could be clearly observed from Table 5 that the viscosity B coefficients are positive for these amino acids and retain an increasing trend with the molality of vitamin B6, implying the existence of strong solute−solvent interactions in the presence of vitamin B6. Additionally, the relationship between the viscosity B coefficient and temperature, expressed as the derivative form of dB/dT, could provide more information about the solute−solvent interactions in terms of the structuremaking and structure-breaking nature. Normally, dB/dT is negative for structure-makers and positive for structure-breakers. It is observed that the dB/dT of glycine is positive while that of other amino acids are negative. Consequently, we could determine that glycine may tend to act as structure-breakers, whereas the other amino acids are more likely to be structuremakers. Similar results could be found in the literature.37,38 On the basis of the Feakin’s transition state theory,39 the viscosity could be applied to analyze the free energy of activation per mole of solvent (Δμ0⇌ 1 ) and the free energy of activation per mole of solute (Δμ0⇌ 2 ). The B coefficients could be expressed as the following equation:40 B = (V1̅ 0 − V2̅ 0)/1000 + V1̅ 0(Δμ20 ⇌ − Δμ10 ⇌)/(1000RT ) (9)
where V1̅ 0 (=∑xiMi/ρ0)
is the mean molar volume of the mixture solvents (vitamin B6 + water), ρ0 is the density of the mixture solvents. The xi and Mi specify the mole fraction and molar weight of water and vitamin B6 in solvent mixtures, respectively. V2̅ 0 is the standard partial molar volume of the solute at infinite dilution, equivalent to the limiting partial molar volume, V0φ, which has been obtained in the front section 3.2.
where ηr is the relative viscosity; η and η0 are the viscosities of solutions and the mixed solvents, respectively. The molar concentration, C, is converted from the molality, m, at 293.15 K. H
DOI: 10.1021/je500975a J. Chem. Eng. Data XXXX, XXX, XXX−XXX
Journal of Chemical & Engineering Data
Article
Table 5. B and D Coefficients of Jones−Dole Equation, and the Free Energies of Activation per Mole of Solvent (Δμ0⇌ 1 ) and Solute (Δμ0⇌ 2 ) at T = (293.15, 303.15, 313.15 and 323.15) K T K
B
Δμ0⇌ 1
D −1
dm ·mol 3
dm ·mol 6
−2
−1
kJ·mol
Δμ0⇌ 2
T
−1
kJ·mol
K
Glycine 293.15 303.15 313.15 323.15 293.15 303.15 313.15 323.15 293.15 303.15 313.15 323.15 293.15 303.15 313.15 323.15 L-Alanine 293.15 303.15 313.15 323.15 293.15 303.15 313.15 323.15 293.15 303.15 313.15 323.15 293.15 303.15 313.15 323.15 L-Valine 293.15 303.15 313.15 323.15 293.15 303.15 313.15 323.15
0.1 mol·kg−1 0.111 (±0.001) 0.121 (±0.001) 0.131 (±0.001) 0.140 (±0.000) 0.2 mol·kg−1 0.128 (±0.001) 0.133 (±0.001) 0.144 (±0.001) 0.150 (±0.000) 0.3 mol·kg−1 0.136 (±0.000) 0.142 (±0.000) 0.151 (±0.001) 0.163 (±0.000) 0.4 mol·kg−1 0.148 (±0.001) 0.159 (±0.001) 0.165 (±0.001) 0.171 (±0.001)
Vitamin B6 Aqueous 0.046 (±0.001) 0.037 (±0.001) 0.027 (±0.001) 0.020 (±0.001) Vitamin B6 Aqueous 0.034 (±0.001) 0.032 (±0.001) 0.023 (±0.001) 0.019 (±0.001) Vitamin B6 Aqueous 0.016 (±0.001) 0.015 (±0.001) 0.011 (±0.001) 0.000 (±0.001) Vitamin B6 Aqueous 0.011 (±0.001) 0.003 (±0.001) 0.005 (±0.001) 0.006 (±0.001)
Solution 9.42 9.17 8.96 8.77 Solution 9.53 9.28 9.07 8.89 Solution 9.65 9.40 9.19 9.00 Solution 9.76 9.51 9.31 9.12
0.1 mol·kg−1 0.227 (±0.001) 0.216 (±0.002) 0.206 (±0.002) 0.199 (±0.001) 0.2 mol·kg−1 0.240 (±0.001) 0.222 (±0.001) 0.213 (±0.001) 0.202 (±0.001) 0.3 mol·kg−1 0.245 (±0.001) 0.231 (±0.002) 0.223 (±0.001) 0.212 (±0.001) 0.4 mol·kg−1 0.259 (±0.002) 0.242 (±0.001) 0.233 (±0.001) 0.226 (±0.001)
Vitamin B6 Aqueous 0.067 (±0.002) 0.067 (±0.003) 0.067 (±0.003) 0.060 (±0.003) Vitamin B6 Aqueous 0.076 (±0.002) 0.082 (±0.002) 0.073 (±0.002) 0.067 (±0.001) Vitamin B6 Aqueous 0.069 (±0.002) 0.063 (±0.004) 0.051 (±0.002) 0.039 (±0.003) Vitamin B6 Aqueous 0.065 (±0.003) 0.067 (±0.002) 0.054 (±0.003) 0.042 (±0.001)
Solution 9.42 9.17 8.95 8.77 Solution 9.53 9.28 9.07 8.89 Solution 9.65 9.40 9.19 9.00 Solution 9.76 9.51 9.31 9.12
0.1 mol·kg−1 Vitamin B6 Aqueous Solution 0.386 (±0.001) 0.200 (±0.002) 9.42 0.368 (±0.002) 0.154 (±0.006) 9.17 0.354 (±0.003) 0.113 (±0.006) 8.96 0.335 (±0.002) 0.082 (±0.004) 8.77 0.2 mol·kg−1 Vitamin B6 Aqueous Solution 0.398 (±0.003) 0.211 (±0.007) 9.53 0.378 (±0.001) 0.169 (±0.003) 9.28 0.364 (±0.002) 0.110 (±0.006) 9.07 0.343 (±0.001) 0.067 (±0.003) 8.89
293.15 303.15 313.15 323.15
27.59 29.36 31.24 33.04 29.78 30.92 32.96 34.37
293.15 303.15 313.15 323.15 L-Threonine
30.77 32.06 33.85 36.12
293.15 303.15 313.15 323.15
32.25 34.25 35.67 37.13
293.15 303.15 313.15 323.15 293.15 303.15 313.15 323.15
45.44 44.86 44.33 44.14
293.15 303.15 313.15 323.15 L-Arginine
46.92 45.44 45.09 44.35 47.34 46.44 46.26 45.57
293.15 303.15 313.15 323.15
48.92 47.68 47.41 47.33
293.15 303.15 313.15 323.15 293.15 303.15 313.15 323.15
70.73 69.99 69.67 68.48
293.15 303.15 313.15 323.15
71.84 70.87 70.59 69.17
Δμ0⇌ 1
D −1
dm ·mol
−2
dm ·mol 6
−1
kJ·mol
0.3 mol·kg−1 Vitamin B6 Aqueous Solution 0.404 (±0.002) 0.195 (±0.004) 9.65 0.383 (±0.001) 0.156 (±0.003) 9.41 0.370 (±0.002) 0.111 (±0.004) 9.19 0.355 (±0.001) 0.077 (±0.003) 9.01 0.4 mol·kg−1 Vitamin B6 Aqueous Solution 0.415 (±0.002) 0.209 (±0.006) 9.76 0.398 (±0.001) 0.155 (±0.003) 9.51 0.382 (±0.001) 0.118 (±0.002) 9.30 0.364 (±0.001) 0.086 (±0.002) 9.12 0.1 mol·kg−1 0.324 (±0.001) 0.310 (±0.001) 0.298 (±0.001) 0.287 (±0.001) 0.2 mol·kg−1 0.336 (±0.001) 0.317 (±0.001) 0.306 (±0.001) 0.293 (±0.001) 0.3 mol·kg−1 0.341 (±0.001) 0.324 (±0.001) 0.313 (±0.001) 0.302 (±0.001) 0.4 mol·kg−1 0.353 (±0.001) 0.335 (±0.001) 0.323 (±0.001) 0.311 (±0.001)
Vitamin B6 Aqueous 0.102 (±0.001) 0.090 (±0.001) 0.076 (±0.002) 0.068 (±0.002) Vitamin B6 Aqueous 0.116 (±0.001) 0.098 (±0.001) 0.079 (±0.001) 0.064 (±0.002) Vitamin B6 Aqueous 0.112 (±0.002) 0.092 (±0.002) 0.076 (±0.002) 0.057 (±0.002) Vitamin B6 Aqueous 0.107 (±0.002) 0.092 (±0.001) 0.073 (±0.002) 0.058 (±0.001)
Solution 9.45 9.19 8.96 8.77 Solution 9.53 9.28 9.07 8.89 Solution 9.65 9.40 9.19 9.00 Solution 9.76 9.51 9.30 9.12
0.1 mol·kg−1 Vitamin B6 Aqueous 0.508 (±0.003) 0.301 (±0.006) 0.489 (±0.003) 0.271 (±0.005) 0.468 (±0.004) 0.255 (±0.008) 0.449 (±0.004) 0.229 (±0.008) 0.2 mol·kg−1 Vitamin B6 Aqueous 0.519 (±0.005) 0.376 (±0.009) 0.497 (±0.007) 0.328 (±0.012) 0. 476 (±0.003) 0.296 (±0.005) 0.455 (±0.002) 0.261 (±0.003) 0.3 mol·kg−1 Vitamin B6 Aqueous 0.525 (±0.003) 0.393 (±0.005) 0.502 (±0.005) 0.347 (±0.008) 0.483 (±0.004) 0.310 (±0.007) 0.466 (±0.004) 0.278 (±0.007) 0.4 mol·kg−1 Vitamin B6 Aqueous 0.534 (±0.004) 0.509 (±0.007) 0.513 (±0.005) 0.474 (±0.009) 0.494 (±0.005) 0.459 (±0.009) 0.473 (±0.004) 0.438 (±0.008)
Solution 9.42 9.17 8.96 8.77 Solution 9.53 9.28 9.07 8.89 Solution 9.65 9.41 9.19 9.00 Solution 9.76 9.51 9.31 9.12
Δμ0⇌ 2 kJ·mol−1 72.14 71.08 70.95 70.42 73.11 72.62 72.14 71.23
60.64 60.15 59.80 59.46 61.83 60.71 60.55 59.96 62.10 61.28 61.15 60.89 63.30 62.39 62.16 61.80
90.48 90.34 89.67 89.11 91.30 90.79 90.16 89.35 91.46 90.82 90.49 90.28 92.02 91.68 91.40 90.66
Where η0 is the viscosity of the solvent; R, NA and h are gas constant, Avogadro’s number and Planck’s constant, respectively. When eq 9 undergoes a rearrangement, we could get the relation of free energy of activation per mole of solute (Δμ0⇌ 2 ):
The free energy of activation per mole of solvent (Δμ0⇌ 1 ) could be calculated by the following equation: Δμ10 ⇌ = RT lnη0V1̅ 0/hNA
B 3
(10) I
DOI: 10.1021/je500975a J. Chem. Eng. Data XXXX, XXX, XXX−XXX
Journal of Chemical & Engineering Data
Article
Table 6. Contributions of All Groups to the Limiting Partial Molar Volumes (V0ϕ) and the Viscosity B-Coefficients for Amino Acids in Vitamin B6 Aqueous Solutions at T = (293.15, 303.15, 313.15 and 323.15) K V0ϕ/(cm3·mol−1) groups
T/K = 293.15
T/K = 303.15
B/(dm3·mol−1)
T/K = 313.15
NH3+, COO− CH CH2 CH3 OH CNHNHNH2
27.94 7.83 15.65 23.48 9.62 33.02
28.48 7.82 15.64 23.47 9.76 33.89
28.95 7.85 15.70 23.55 9.85 34.36
NH3+, COO− CH CH2 CH3 OH CNHNHNH2
28.15 7.82 15.64 23.46 9.60 33.25
28.69 7.82 15.63 23.45 9.77 34.13
29.16 7.85 15.69 23.54 9.86 34.59
NH3+, COO− CH CH2 CH3 OH CNHNHNH2
28.40 7.79 15.59 23.38 9.59 33.55
28.97 7.79 15.59 23.38 9.77 34.25
29.47 7.82 15.64 23.46 9.88 34.71
NH3+, COO− CH CH2 CH3 OH CNHNHNH2
28.64 7.79 15.58 23.37 9.67 33.88
29.21 7.79 15.58 23.38 9.82 34.56
29.74 7.82 15.63 23.45 9.89 35.03
Δμ20 ⇌ = Δμ10 ⇌ + RT[1000B − (V1̅ 0 − V2̅ 0)]/V1̅ 0
T/K = 323.15
ma = 0.1000 mol·kg−1 29.26 7.90 15.81 23.71 9.74 34.95 ma = 0.2000 mol·kg−1 29.51 7.89 15.79 23.68 9.76 35.25 ma = 0.3000 mol·kg−1 29.85 7.87 15.74 23.61 9.84 35.29 ma = 0.4000 mol·kg−1 30.11 7.86 15.73 23.59 9.85 35.62
T/K = 293.15
T/K = 303.15
T/K = 313.15
T/K = 323.15
0.032 0.045 0.090 0.135 0.068 0.162
0.046 0.041 0.081 0.122 0.061 0.159
0.057 0.037 0.074 0.112 0.055 0.151
0.072 0.033 0.065 0.098 0.051 0.148
0.049 0.044 0.088 0.133 0.066 0.161
0.056 0.041 0.080 0.122 0.059 0.158
0.068 0.037 0.074 0.111 0.052 0.150
0.080 0.033 0.065 0.098 0.050 0.147
0.056 0.044 0.088 0.132 0.065 0.161
0.066 0.040 0.080 0.120 0.059 0.157
0.077 0.037 0.073 0.110 0.053 0.149
0.092 0.033 0.065 0.098 0.048 0.147
0.070 0.044 0.087 0.131 0.065 0.159
0.081 0.040 0.079 0.119 0.056 0.154
0.091 0.036 0.073 0.109 0.051 0.149
0.102 0.033 0.065 0.097 0.047 0.144
Since the V0ϕ values of the studied amino acids in binary and ternary solutions vary linearly with the number of carbon atoms (nc) in their alkyl chains, a linear regression analysis32,42 could be performed through the following relation:
(11)
0⇌ The calculated values of Δμ0⇌ 1 and Δμ2 at different temperatures are listed in Table 5. The Δμ0⇌ 2 values in Table 5 are positive at the whole temperature range under investigation, suggesting the presence of solute−solvent interactions between the solute (amino acids) and solvent (vitamin B6 + water) 0⇌ molecules. The much higher Δμ0⇌ 2 values, as opposed to Δμ1 , reveal that the solute−solvent interactions in the ground state are relatively stronger than that in the transition state and hinder the formation of transition state in the presence of vitamin B6.41 It could be found that for the same temperature and molality of values are positive vitamin B6 aqueous solution, the Δμ0⇌ 2 dependence on the molar weight of solute, that is to say they follow in the order: L-arginine > L-valine > L-threonine > Lalanine > glycine. This trend is just in accordance with the viscosity B coefficients. It should be noted that the molar weights of L-threonine and L-valine are nearly the same, 119.12 g·mol−1 for L-threonine and 117.15 g·mol−1 for L-valine), respectively, but the Δμ0⇌ 2 of L-threonine is obviously smaller than that of L-valine. The reason may be the strong solute−solvent interactions between L-threonine and vitamin B6 aqueous solutions due to its strong hydrophilicity of OH groups. 3.4. Group Additivity Analyses. Group additivity schemes, a crucial method of modeling the thermodynamic properties of solutions, have been widely investigated by many researchers.19,27,33,35−37 Here we attempt to analyze two typical volumetric and viscometric properties: V0ϕ and B coefficients by this method.
V ϕ0 = V ϕ0(NH3+, COO−) + nc(CH 2)
(12)
The V ϕ0 (NH 3 + ,COO − ) and V ϕ0 (CH 2 ) represent the corresponding contributions of the zwitterionic end group and the methylene group to Vϕ0 , respectively. Similar linear correlations have been reported in the literature.19,34,38,43 The alkyl chains of the homologous series of amino acids investigated in this work are CH2−(glycine), CH3−CH−(L-alanine), CH3− CH3−CH−CH−(L-valine). As proposed by Hakin,44 V ϕ0(CH3) = 1.5V ϕ0(CH 2)
(13)
V ϕ0(CH) = 0.5V ϕ0(CH 2)
(14)
It should be pointed out that V0ϕ(CH2) refers to the mean value of V0ϕ(CH) and V0ϕ(CH3). With the help of eqs 13 and 14, the contribution values from the zwitterionic end group (NH3+,COO−) and methylene group (CH2) were correlated by eq 12 through a linear regression analysis. The oxhydryl group (OH) contribution of L-threonine and the amino-group (CNHNHNH2) of L-arginine to V0ϕ are obtained by eqs 15 and 16. J
DOI: 10.1021/je500975a J. Chem. Eng. Data XXXX, XXX, XXX−XXX
Journal of Chemical & Engineering Data
Article
valine < L-alanine < glycine < L-threonine. The dB/dT for glycine is positive while that of other amino acids is negative, indicating that glycine maybe tends to act as structure-breaker, whereas the other amino acids are more inclined to be structure-maker. The group additivity analysis shows that the CNHNHNH2 group contributes greatly to both the V0ϕ and the viscosity B coefficients, only the zwitterionic end group (NH3+,COO−) group tends to be structure-breaker.
V ϕ0(OH) = V ϕ0(L‐threonine) − V ϕ0(NH3+, COO−) − 2V ϕ0(CH) − V ϕ0(CH3)
(15)
Vϕ 0(CNHNHNH 2) = Vϕ 0(L‐arginine) − Vϕ 0(NH3+, COO−) − 3Vϕ 0(CH 2) − Vϕ 0(CH)
(16)
■
The results are given in Table 6. The V0ϕ (NH3+,COO−) and V0ϕ (CH2) are in good agreement with the values in the literature.44,45 With the contribution values of different groups, we could easily predict and conclude the trend of V0ϕ in the former section 3.2: glycine < L-alanine < L-threonine < L-valine < L-arginine. Similarly, viscosity B coefficients of amino acids also vary linearly with nc B = B(NH3+, COO−) + ncB(CH 2)
ASSOCIATED CONTENT
* Supporting Information S
Comparison between experimental densities and viscosities of vitamin B6 and the literature values. This material is available free of charge via the Internet at http://pubs.acs.org.
■
(17)
AUTHOR INFORMATION
Corresponding Authors
*E-mail:
[email protected]. *E-mail:
[email protected].
B(OH) and B(CNHNHNH2) could be calculated through the similar method of eqs 15 and 16, respectively. Table 6 also gives the contributions of zwitterionic end group (NH3+,COO−), the methylene group (CH2), the oxhydryl group (OH), and the amino-group (CNHNHNH2) to viscosity B coefficients. From Table 6 we could also find that no matter what the limiting partial molar volumes or the viscosity B coefficients, the contributions of all groups are positive under the whole molality and temperature range. V0ϕ (NH3+,COO−), V0ϕ (CH2), V0ϕ (OH), and V0ϕ (CNHNHNH2) all show a monotonically increasing relationship to temperature, but only V0ϕ (NH3+,COO−) and V0ϕ (CNHNHNH2) increase with the increase of the molality of vitamin B6 aqueous solutions. For the viscosity B coefficients, B(NH3+,COO−) increases monotonically with the temperature as well as the molality of vitamin B6 aqueous solutions. However, B(CH2), B(OH), and B(CNHNHNH2) show the reverse trend with the above two factors. Surprisingly, V0ϕ (CNHNHNH2) and B(CNHNHNH2) values are found to be the largest among these groups owing to its long alkyl chain and large steric hindrance, maybe that is why L-arginine has such higher values of V0ϕ and viscosity B coefficients. Moreover, the effects of the temperature and the molality of vitamin B6 aqueous solutions on V0ϕ(OH) and B(OH) values demonstrate that the interaction between the OH group and vitamin B6 is more intensive due to the strong hydrophilic ability of the OH group. Finally, positive dB/dT for (NH3+,COO−) indicates that the zwitterionic end group tends to be structure-breaker, while negative dB/dT for CH 2 , CNHNHNH2, and OH group signifies that the methylene group, amino-group, and oxhydryl group are more likely to be structure-maker.
Notes
The authors declare no competing financial interest.
■
REFERENCES
(1) Shivdas, R.; Desai, P. B.; Srivastava, A. K. Complexation of macrocyclic compounds with organic molecules: 1 Pyridoxine hydrochloride in dimethylsulfoxide. J. Chem. Eng. Data 2004, 49, 1738−1743. (2) Phoenix, J.; Hopkins, P.; Bartram, C.; Beynon, R. J.; Quinlivan, R. C. M.; Edwards, R. H. T. Effect of vitamin B6 supplementation in McArdle’s disease: A strategic case study. Neuromusc. Disord. 1998, 8, 210−212. (3) Tsuji, T.; Fukuwatari, T.; Sasaki, S.; Shibata, K. Urinary excretion of vitamin B1, B2, B6, niacin, pantothenic acid, folate, and vitamin C correlates with dietary intakes of free-living elderly, female Japanese. Nutr. Res. (N.Y.) 2010, 30, 171−178. (4) Cho, Y.-O.; Kim, B.-Y. Vitamin B6 intake by Koreans should be based on sufficient amount and a variety of food sources. Nutrition 2005, 21, 1113−1119. (5) Neelakantan, M. A.; Sundaram, M.; Nair, M. S. Solution equilibria of Ni(II), Cu(II), and Zn(II) complexes involving pyridoxine and imidazole containing ligands: pH metric, spectral, electrochemical, and biological studies. J. Chem. Eng. Data 2011, 56, 2527−2535. (6) di Salvo, M. L.; Contestabile, R.; Safo, M. K. Vitamin B6 salvage enzymes: Mechanism, structure and regulation. Biochim. Biophys. Acta 2011, 1814, 1597−1608. (7) Kikic, I.; Zordi, N. D.; Moneghini, M.; Solinas, D. Antisolvent precipitation of Vitamin B6: A thermodynamic study. J. Chem. Eng. Data 2011, 56, 4978−4983. (8) Giri, I. N. A.; Teshima, S.; Kanazawa, A.; Ishikawa, M. Effects of dietary pyridoxine and protein levels on growth, vitamin B6 content, and free amino acid profile of juvenile Penaeus japonicas. Aquaculture 1997, 157, 263−275. (9) Denslow, S. A.; Walls, A. A.; Daub, M. E. Regulation of biosynthetic genes and antioxidant properties of vitamin B6 vitamers during plant defense responses. Physiol. Mol. Plant Pathol. 2005, 66, 244−255. (10) Banipal, T. S.; Singh, H.; Banipal, P. K.; Singh, V. Volumetric and viscometric studies on L-ascorbic acid, nicotinic acid, thiamine hydrochloride and pyridoxine hydrochloride in water at temperatures (288.15−318.15) K and at atmospheric pressure. Thermochim. Acta 2013, 553, 31−39. (11) Dhondge, S. S.; Deshmukh, D. W.; Paliwal, L. J. Density, speed of sound, viscosity and refractive index properties of aqueous solutions of vitamins B1·HCl and B6·HCl at temperatures (278.15, 288.15, and 298.15) K. J. Chem. Thermodyn. 2013, 58, 149−157. (12) Huang, A.; Liu, C.; Ma, L.; Tong, Z.; Lin, R. Effects of clustering structure on volumetric properties of amino acids in (DMSO + water) mixtures. J. Chem. Thermodyn. 2012, 49, 95−103.
4. CONCLUSIONS We measured the densities and viscosities of glycine/L-alanine/Lvaline/L-threonine/L-arginine in vitamin B6 aqueous solutions at T = (293.15, 303.15, 313.15 and 323.15) K and presented a series of volumetric and viscometric properties. The Guimarães equation and extended Jones−Dole equation were applied to correlate the experimental densities and viscosities, respectively, and the results indicate the great feasibility of these empirical equations. The positive values of V0ϕ, viscosity B coefficients, and free energies of activation per mole of solute (Δμ0⇌ 2 ) suggest the presence of strong solute−solvent interactions in amino acids + vitamin B6 + water ternary system. The ΔtrV0ϕ are positive for glycine, L-valine, L-alanine, and L-threonine, while negative for Larginine, and the values of ΔtrV0ϕ follow the order L-arginine < LK
DOI: 10.1021/je500975a J. Chem. Eng. Data XXXX, XXX, XXX−XXX
Journal of Chemical & Engineering Data
Article
(13) Banipal, T. S.; Kaur, J.; Banipal, P. K. Interactions of some amino acids with aqueous manganese chloride tetrahydrate at T = (288.15 to 318.15) K: A volumetric and viscometric approach. J. Chem. Thermodyn. 2012, 48, 181−189. (14) Ali, A.; Bhushan, V.; Bidhuri, P. Volumetric study of α-amino acids and their group contributions in aqueous solutions of cetyltrimethylammonium bromide at different temperatures. J. Mol. Liq. 2013, 177, 209−214. (15) Nain, A. K.; Chand, D. Volumetric, ultrasonic, and viscometric behaviour of glycine, DL-alanine, and L-valine in aqueous 1,4-butanediol solutions at different temperatures. J. Chem. Thermodyn. 2009, 41, 243− 249. (16) Liu, Q.; Hu, X.; Lin, R.; Sang, W.; Li, S. Limiting partial molar volumes of glycine, L-alanine, and L-serine in ethylene glycol + water mixtures at 298.15 K. J. Chem. Eng. Data 2001, 46, 522−525. (17) Yan, Z.; Wang, J.; Kong, W.; Lu, J. Effect of temperature on volumetric and viscosity properties of some α-amino acids in aqueous calcium chloride solutions. Fluid Phase Equilib. 2004, 215, 143−150. (18) Jiang, X.; Zhu, C.; Ma, Y. Volumetric and viscometric studies of amino acids in L-ascorbic acid aqueous solutions at T = (293.15 to 323.15) K. J. Chem. Thermodyn. 2014, 71, 50−63. (19) Jiang, X.; Zhu, C.; Ma, Y. Densities and viscosities of erythritol, xylitol, and mannitol in L-ascorbic acid aqueous solutions at T = (293.15 to 323.15) K. J. Chem. Eng. Data 2013, 58, 2970−2978. (20) Jiang, X.; Zhu, C.; Ma, Y. Density and viscosity of sorbitol/maltitol in L-ascorbic acid aqueous solutions at T = (293.15 to 323.15) K. J. Mol. Liq. 2013, 188, 67−73. (21) Zhu, C.; Ma, Y.; Zhou, C. Densities and viscosities of sugar alcohol aqueous solutions. J. Chem. Eng. Data 2010, 55, 3882−3885. (22) Zhu, C.; Han, S.; Liu, J.; Ma, Y. Densities and viscosities of diaminotoluene with water, ethanol, propan-1-ol, and butan-1-ol from (293.15 to 333.15) K. J. Chem. Eng. Data 2014, 59, 880−889. (23) Korson, L.; Drost- Hansen, W.; Millero, F. J. Viscosity of water at various temperatures. J. Phys. Chem. 1969, 73, 34−39. (24) Zhao, C.; Ma, P.; Li, J. Partial molar volumes and viscosity Bcoefficients of arginine in aqueous glucose, sucrose and L-ascorbic acid solutions at T = 298.15 K. J. Chem. Thermodyn. 2005, 37, 37−42. (25) Dhondge, S. S.; Zodape, S. P.; Parwate, D. V. Volumetric and viscometric studies of some drugs in aqueous solutions at different temperatures. J. Chem. Thermodyn. 2012, 48, 207−212. (26) Guimarães, G. C.; Júnior, M. C. C.; Rojas, E. E. G. Density and kinematic viscosity of pectin aqueous solution. J. Chem. Eng. Data 2009, 54, 662−667. (27) Abdulagatov, I. M.; Azizov, N. D. Experimental study of the density and derived volumetric (excess, apparent, and partial molar volumes) properties of aqueous 1-propanol mixtures at temperatures from 298 to 582 K and pressures up to 40 MPa. J. Chem. Thermodyn. 2014, 71, 155−170. (28) González, E. J.; Calvar, N.; Macedo, E. A. Osmotic coefficients and apparent molar volumes of 1-hexyl-3-methylimidazolium trifluoromethanesulfonate ionic liquid in alcohols. J. Chem. Thermodyn. 2014, 69, 93−100. (29) Warmińska, D.; Płaczek, A.; Grzybkowski, W. Thermodynamic properties of inorganic salts in nonaqueous solvents. V. Apparent molar volumes and compressibilities of divalent transition metal bromides in N,N-dimethylformamide. J. Chem. Eng. Data 2009, 54, 220−226. (30) Han, S.; Zhu, C.; Ma, Y. Densities and viscosities of naphthalen-1ol, naphthalen-2-ol, and 1-aminonaphthalene in the solvents of ethanol, propan-1-ol, and butan-1-ol. J. Chem. Eng. Data 2012, 57, 1396−1403. (31) Kumar, H.; Kaur, K.; Kumar, S. Apparent molar volumes and transport behavior of glycine and L-valine in aqueous solutions of tripotassium citrate at T = (308.15 and 318.15) K. J. Mol. Liq. 2011, 162, 89−94. (32) Ali, A.; Khan, S.; Hyder, S.; Tariq, M. Interactions of some αamino acids with tetra-n-alkylammonium bromides in aqueous medium at different temperatures. J. Chem. Thermodyn. 2007, 39, 613−620. (33) Seuvre, A. M.; Mathlouthi, M. Solutions properties and solute− solvent interactions in ternary sugar−salt−water solutions. Food Chem. 2010, 122, 455−461.
(34) Hossain, M. S.; Biswas, T. K.; Kabiraz, D. C.; Islam, M. N.; Huque, M. E. Studies on sodium dodecylsulfate in aqueous and in aqueous amino acid solutions: Volumetric and viscometric approaches. J. Chem. Thermodyn. 2014, 71, 6−13. (35) Sastry, N. V.; Valand, P. H.; Macwan, P. M. Effect of hydrophilic additives on volumetric and viscosity properties of amino acids in aqueous solutions at T = (283.15 to 333.15) K. J. Chem. Thermodyn. 2012, 49, 14−23. (36) Kabiraz, D. C.; Biswas, T. K.; Huque, M. E. Physico-chemical properties of some electrolytes in water and aqueous sodiumdodecyl sulfate solutions at different temperatures. J. Chem. Thermodyn. 2011, 43, 1917−1923. (37) Nain, A. K.; Lather, M.; Neetu. Probing solute−solute and solute−solvent interactions in (l-arginine + d-xylose/l-arabinose + water) solutions at different temperatures by using volumetric and viscometric methods. J. Chem. Thermodyn. 2013, 63, 67−73. (38) Yan, Z.; Wang, J.; Liu, W.; Lu, J. Apparent molar volumes and viscosity B-coefficients of some α-amino acids in aqueous solutions from 278.15 to 308.15 K. Thermochim. Acta 1999, 334, 17−27. (39) Feakins, D.; Freemantle, D. J.; Lawrence, K. G. Transition state treatment of the relative viscosity of electrolytic solutions. Applications to aqueous, non-aqueous and methanol + water systems. J. Chem. Soc., Faraday Trans. 1 1974, 70, 795−806. (40) Pal, A.; Kumar, S. Viscometric and volumetric studies of some amino acids in binary aqueous solutions of urea at various temperatures. J. Mol. Liq. 2004, 109, 23−31. (41) Kaur, K.; Kumar, H. Viscometric measurements of L-serine with antibacterial drugs ampicillin and amoxicillin at different temperatures: (305.15 to 315.15) K. J. Mol. Liq. 2013, 177, 49−53. (42) Banipal, T. S.; Kaur, D.; Banipal, P. K. Apparent molar volumes and viscosities of some amino acids in aqueous sodium acetate solutions at 298.15 K. J. Chem. Eng. Data 2004, 49, 1236−1246. (43) Li, Y.; Li, Y.; Wang, F.; Ren, B. Volumetric and viscometric studies of cefepime hydrochloride in water and normal saline from (278.15 to 313.15) K. J. Chem. Thermodyn. 2013, 66, 14−21. (44) Ali, A.; Hyder, S.; Sabir, S.; Chand, D.; Nain, A. K. Volumetric, viscometric, and refractive index behaviour of α-amino acids and their groups’ contribution in aqueous D-glucose solution at different temperatures. J. Chem. Thermodyn 2006, 38, 136−143. (45) Hakin, A. W.; Duke, M. M.; Groft, L. L.; Marty, J. L.; Rushfeldt, M. L. Calorimetric investigations of aqueous amino acid and dipeptide systems from 288.15 to 328.15 K. Can. J. Chem. 1995, 73, 725−734.
L
DOI: 10.1021/je500975a J. Chem. Eng. Data XXXX, XXX, XXX−XXX