Article pubs.acs.org/jced
Volumetric Properties and Viscosity B-Coefficients for the Ternary Systems Epigallocatechin Gallate + MCl + H2O (M = Li, Na, K) at Temperatures 288.15−308.15 K Dawei Li,† Guangqian Li,† Pingfeng Bian,† Zhe Shen,‡ Mengfan Fu,† Wenjun Fang,† and Weidong Yan*,† †
Department of Chemistry, Zhejiang University, Hangzhou 310027, China Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
‡
S Supporting Information *
ABSTRACT: Epigallocatechin gallate (EGCG) is the most abundant and active components in tea. In this text, the density and viscosity of ternary aqueous solution of EGCG containing LiCl/NaCl/KCl were determined at temperatures ranging from 288.15 to 308.15 K at atmospheric pressure. The density data was used to compute the apparent molar volumes (Vφ), limiting partial molar volumes (V 0φ), and transfer partial molar volumes (ΔtrsV 0φ). The viscosity B-Coefficients were calculated from the measured viscosity data using the extended Jones−Dole equation. The values of density and viscosity increased continuously with the increasing of molality of EGCG and decreased with the temperature increasing. The positive 0≠ values including (Vφ, V 0φ, ΔtrsV 0φ, viscosity B-Coefficients, the free energies of activation for solvent Δμ0≠ 1 , and for solute Δμ2 ) and Helper’s constant (∂2V 0φ/∂T2)p close to zero indicated the presence of strong solute−solvent interactions and the structure− making effect of EGCG in the investigated solutions. The apparent molar isobaric expansions (E 0φ) decreasing with temperature suggested that the solute−solvent interactions became weaker as temperature increased. These significant parameters could provide necessary data about molecular interactions occurring in simulated body fluids.
1. INTRODUCTION Tea is associated with many potential health-promoting effects and ranks only second to water as a beverage. It has received considerable attention because of its huge consumption in the food, nutraceutical, pharmaceutical products, and other areas.1−3 Tea intake has been found to have many benefits and exhibits several pharmacological properties.4−6 Epigallocatechin gallate, [EGCG, (2R,3R)-5,7-dihydroxy-2-(3,4,5-trihydroxyphenyl)-3, 4-dihydro-2H-1-benzopyran-3-yl3,4,5-trihydroxybenzoate], the “signature” compound in tea, is the most abundant and main active components.7 EGCG has various activities that greatly benefit human health and can contribute to the treatment of improving blood flow, liver function, oral health, eliminating various toxins, and inducing apoptosis in human lymphoid leukemia cells. EGCG can exert significant effects on the intestinal environment and improve resistance to various diseases such as cancer, coronary heart diseases, cardiovascular, and neurodegenerative.8−10 Because of many potential health-promoting effects, systematic study of intermolecular interactions between EGCG and multicomponents in simulated body fluids is extremely necessary. Several thermodynamic and physicochemical measurements have been made to help understand the drug action in liquid mixtures and the nature of molecular interactions11−14 but there were few data available to the best of our knowledge based on volumetric and viscometric properties of EGCG. The scarcity of basic thermodynamic data for EGCG may hinder its progress in © 2016 American Chemical Society
biology, pharmacy, and food industries applications. LiCl, NaCl, and KCl solutions were important substances in biosystem and served as useful solvent media for a variety of pharmaceutical applications. In this work, the experimental densities and viscosities were reported for three ternary mixtures (EGCG + LiCl/NaCl/ KCl + H2O) at internal temperatures T = 288.15, 293.15, 298.15, 303.15, and 308.15 K at atmospheric pressure. From these experimental data, the apparent molar volumes (Vφ), limiting partial molar volumes (V 0φ), experimental slope (SV), transfer partial molar volumes (ΔtrsV 0φ) of EGCG from water to LiCl/NaCl/KCl solutions, and viscosity B-Coefficients of the Jones−Dole equation have been calculated. The free energy of activation for solvent Δμ0≠ 1 and the free energy of activation for were obtained and discussed based on transition solute Δμ0≠ 2 state theory. These properties could provide valuable information about molecular interactions as well as necessary data for biochemistry and molecular biology applications.
2. EXPERIMENTAL SECTION 2.1. Materials. The molecular structure of EGCG (CAS Registry No. 989-51-5) is given in Figure 1. The structure and Received: November 8, 2015 Accepted: March 22, 2016 Published: March 29, 2016 1777
DOI: 10.1021/acs.jced.5b00941 J. Chem. Eng. Data 2016, 61, 1777−1792
Journal of Chemical & Engineering Data
Article
water. The uncertainty for the temperatures was 0.01 K. Densities and viscosities of pure water at different temperatures given in Table 2 were compared with literature values.15−17 The data in Table 2 shows that the variation tendencies of experimental densities and viscosities were in agreement with those of the literatures.
3. RESULTS AND DISCUSSION Experimental data in terms of density and viscosity are the two most important fundamental physicochemical properties to serve the purpose of understanding solutions fully. Interpreting the molecular interactions in liquids could help better understand the nature and mechanisms of solute−solute and solute−solvent interactions and the structural change of solvent.11,13,14 3.1. Volumetric Properties. Density is a physical property that describes the mass of one substance in unit volume. Density could provide useful information on the structural and intermolecular interaction between the solvent and solute molecules with different sizes, shapes, and chemical nature.15,17 Also, density data are essential in establishing reliable equations of states and calculations of other properties such as the apparent molar volumes, limiting partial molar volumes, and transfer partial molar volumes. The experimental densities ρ for EGCG in pure water, LiCl/NaCl/KCl aqueous solutions at T = 288.15, 293.15, 298.15, 303.15, and 308.15 K under atmospheric pressure are presented in Table 3 and graphically plotted in Figure S1 in Supporting Information as well. It was obvious that the data obtained for the density of the three aqueous mixtures tested showed similar tendencies. The density decreased with the temperature and increased with an increasing amount of salt and EGCG at fixed temperature. That is, the density is a function of temperature and concentration. When the solution was heated, the thermal energy of molecules increased and accordingly the intermolecular distance increased, which led to the decrease of the density.11,13 The densities of the three solutions increased in the order ρ (pure water) < ρ (LiCl) < ρ (NaCl) < ρ (KCl) for the same molality of EGCG at the
Figure 1. Chemical Structure of Epigallocatechin gallate (EGCG).
the purity of EGCG were verified through analyses with HPLC, UV, MS, 1H NMR, and 13C NMR. LiCl, NaCl, and KCl were analytical reagents. The specifications of these chemicals are listed in Table 1. Twice-distilled water was used in the experiment. All chemicals were used without further purification. The different molalities of EGCG in a series of different ratios of LiCl/NaCl/KCl aqueous solutions were prepared gravimetrically on a digital electronic analytical balance (Mettler, AG 285, Switzerland) with a precision of ±0.01 mg. The overall standard uncertainty in the molalities m was 0.0005 mol·kg−1. 2.2. Methods. All of the densities (ρ) were measured with an Anton Paar density meter (DMA 5000M) at temperatures T = 288.15−308.15 K at atmospheric pressure p = 0.1 MPa. The atmospheric pressure was recorded once an hour from a Fortin barometer. The standard uncertainty of the pressure was 1.0 kPa. The apparatus had an installed thermometer with a precision of ±0.01 K. The standard uncertainty of density was estimated to be 0.0005 g·cm−3. It was calibrated by twicedistilled water and dry air at 293.15 K. The densities of twicedistilled water and dry air at 293.15 K were 0.998203 and 0.001205 g·cm−3, respectively. The dynamic viscosities (η) were measured by using a rolling ball microviscosimeter Anton Paar model (AMVn) viscometer at temperatures T = 288.15−308.15 K at atmospheric pressure p = 0.1 MPa. The standard uncertainty of the pressure was 1.0 kPa. The viscometer was calibrated with double-distilled Table 1. Specification of Chemicals in this Work
chemical formula
chemical name epigallocatechin gallate, [(2R,3R)-5,7-dihydroxy-2-(3,4,5-trihydroxyphenyl)-3, 4-dihydro-2H-1-benzopyran-3-yl3,4,5-trihydroxybenzoate] lithium chloride sodium chloride potassium chloride a
source
mass fraction purity
purification method
CAS
C22H18O11
CBPa
≥ 0.995
none
989-51-5
LiCl NaCl KCl
Aladdin Sinopharm Sinopharm
≥ 0.999 ≥ 0.995 ≥ 0.995
none none none
7447-41-8 7647-14-5 7447-40-7
CBP is the abbreviation of Chengdu Biopurity Phytochemicals Co., Ltd.
Table 2. Comparisons of Experimental Densities (ρ) and Viscosities (η) with Literature Values at Temperatures T = 288.15−308.15 K ρ/g·cm−3 T/K pure water
exptl lit15−17
T/K pure water
exptl lit15−17
288.15
293.15
298.15
303.15
308.15
0.999099 0.999099
0.998205 0.998203 η/mPa·s
0.997046 0.997043
0.995644 0.995645
0.994024 0.994029
288.15
293.15
298.15
303.15
308.15
1.145 1.145
1.010 1.009
0.896 0.895
0.801 0.800
0.721 0.721
1778
DOI: 10.1021/acs.jced.5b00941 J. Chem. Eng. Data 2016, 61, 1777−1792
0.2000 0.1977 0.1994 0.1996 0.1986 0.2009 0.1983
0.3000 0.3021 0.3030 0.3038 0.2996 0.2972 0.3005
0.4000 0.4029 0.3989 0.4032 0.4004 0.4030 0.4039
0.0000 0.0099 0.0203 0.0299 0.0396 0.0499 0.0604
0.0000 0.0098 0.0203 0.0299 0.0399 0.0501 0.0599
0.1000 0.0996 0.1037 0.1002 0.0955 0.0988 0.0991
0.0000 0.0100 0.0200 0.0299 0.0399 0.0503 0.0603
0.0000 0.0100 0.0199 0.0298 0.0396 0.0495 0.0600
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
m2/mol·kg
0.0000 0.0099 0.0200 0.0298 0.0399 0.0499 0.0601
m1/mol·kg
−1
−1
1779
1.008372 1.009653 1.011159 1.012612 1.014241 1.016079 1.017845
1.006335 1.007625 1.00909 1.010519 1.012016 1.013734 1.01554
1.003996 1.005429 1.006883 1.008381 1.009911 1.011508 1.013246
1.001508 1.003016 1.004552 1.006083 1.007655 1.009307 1.010971
0.999099 1.000712 1.002356 1.003966 1.005631 1.00726 1.00894
ρ/g·cm
−3 3
324.99 318.66 313.71 308.27 301.06 296.29
326.34 320.46 316.03 312.10 306.95 302.16
313.78 311.47 308.91 306.48 303.56 300.64
306.87 304.97 303.54 302.04 300.63 298.33
295.23 294.33 293.46 292.91 292.51 291.86
± ± ± ± ± ±
± ± ± ± ± ±
± ± ± ± ± ±
± ± ± ± ± ±
± ± ± ± ± ±
−1
0.23 0.25 0.27 0.24 0.23 0.25
0.13 0.21 0.24 0.14 0.18 0.22
0.33 0.26 0.25 0.21 0.24 0.23
0.13 0.28 0.26 0.24 0.33 0.29
0.23 0.12 0.34 0.22 0.26 0.14
Vφ/cm ·mol
288.15 K
1.007405 1.008682 1.01018 1.01162 1.013277 1.015057 1.016797
1.005368 1.006651 1.008119 1.009533 1.011024 1.012729 1.014511
1.003064 1.004488 1.005935 1.007417 1.008934 1.010511 1.012238
1.000582 1.00208 1.00361 1.005136 1.006695 1.008349 1.009981
0.998205 0.999804 1.001441 1.003036 1.004683 1.006291 1.007934
ρ/g·cm
−3 3
−1
325.58 319.42 314.71 308.35 302.29 297.77
327.23 320.83 316.83 312.89 307.86 303.33
314.83 312.43 310.13 307.76 305.01 302.05
308.01 305.92 304.39 303.03 301.40 299.53
296.77 295.50 294.79 294.39 294.14 293.86
± ± ± ± ± ±
± ± ± ± ± ±
± ± ± ± ± ±
± ± ± ± ± ±
± ± ± ± ± ±
0.24 0.23 0.16 0.18 0.14 0.15
0.24 0.28 0.19 0.23 0.21 0.22
0.19 0.24 0.28 0.24 0.26 0.18
0.13 0.35 0.36 0.39 0.36 0.29
0.21 0.23 0.28 0.24 0.27 0.29
Vφ/cm ·mol
293.15 K
0.997046 0.998637 1.000257 1.001831 1.003467 1.005052 1.006689 m (LiCl 0.99941 1.000901 1.002417 1.003929 1.005474 1.007096 1.008735 m (LiCl 1.001873 1.00329 1.00473 1.006201 1.007702 1.009265 1.010974 m (LiCl 1.004173 1.005451 1.006902 1.008304 1.00978 1.01147 1.013239 m (LiCl 1.006192 1.007462 1.008943 1.010371 1.012014 1.013777 1.015502
ρ/g·cm
−3 3
−1
326.53 320.82 316.11 309.79 303.81 299.30
± ± ± ± ± ±
0.29 0.23 0.27 0.28 0.26 0.27
327.97 ± 0.29 322.13 ± 0.13 318.17 ± 0.27 314.33 ± 0.26 309.33 ± 0.13 304.79 ± 0.34 = 0.4000 mol·kg−1)
315.74 ± 0.33 313.33 ± 0.32 311.17 ± 0.23 308.99 ± 0.35 306.31 ± 0.23 303.45 ± 0.24 = 0.3000 mol·kg−1)
308.90 ± 0.35 307.15 ± 0.36 305.75 ± 0.39 304.45 ± 0.34 303.20 ± 0.34 300.94 ± 0.34 = 0.2000 mol·kg−1)
297.74 ± 0.24 296.92 ± 0.26 296.51 ± 0.23 295.99 ± 0.27 295.91 ± 0.34 295.46 ± 0.33 = 0.1000 mol·kg−1)
H2O
Vφ/cm ·mol
298.15 K
1.004758 1.006022 1.007478 1.008932 1.010542 1.012293 1.014004
1.002753 1.004029 1.005465 1.006854 1.008314 1.009985 1.01175
1.000451 1.001861 1.003294 1.004757 1.006242 1.007792 1.009486
0.998003 0.99949 1.000991 1.002483 1.004021 1.005627 1.007245
0.995644 0.997228 0.998831 1.000395 1.002014 1.003597 1.005217
ρ/g·cm
−3 3
−1
327.42 322.60 316.53 310.97 305.02 300.58
328.45 323.23 319.43 315.74 310.87 306.15
316.69 314.28 312.14 310.18 307.57 304.78
309.53 308.33 307.28 305.83 304.66 302.54
298.64 298.33 297.85 297.47 297.18 296.83
± ± ± ± ± ±
± ± ± ± ± ±
± ± ± ± ± ±
± ± ± ± ± ±
± ± ± ± ± ±
0.28 0.36 0.23 0.26 0.21 0.19
0.24 0.25 0.26 0.29 0.24 0.29
0.38 0.18 0.16 0.27 0.29 0.24
0.25 0.26 0.24 0.39 0.33 0.37
0.36 0.26 0.29 0.21 0.22 0.26
Vφ/cm ·mol
303.15 K
1.003151 1.004412 1.005849 1.007264 1.008852 1.010594 1.012289
1.001128 1.002398 1.003823 1.005201 1.006645 1.00831 1.01006
0.998848 1.00025 1.001676 1.00312 1.004608 1.006125 1.007801
0.996382 0.997864 0.999359 1.000838 1.002355 1.003951 1.005537
0.994024 0.995598 0.997195 0.998752 1.000358 1.001925 1.003529
ρ/g·cm
−3
328.05 323.98 318.86 313.32 307.11 302.62
329.38 324.38 320.67 317.14 312.14 307.49
317.77 315.31 313.56 311.23 309.13 306.40
310.29 309.14 308.35 307.22 306.01 304.24
299.89 299.36 298.86 298.61 298.46 298.21
± ± ± ± ± ±
± ± ± ± ± ±
± ± ± ± ± ±
± ± ± ± ± ±
± ± ± ± ± ±
0.27 0.37 0.33 0.36 0.37 0.39
0.25 0.33 0.24 0.34 0.17 0.26
0.37 0.33 0.36 0.24 0.33 0.18
0.26 0.38 0.33 0.35 0.36 0.38
0.36 0.33 0.24 0.26 0.29 0.27
Vφ/cm3·mol−1
308.15 K
Table 3. Values of Densities (ρ) and Apparent Molar Volumes (Vφ) of EGCG in LiCl/NaCl/KCl Aqueous Solutions at Temperatures T = 288.15−308.15 K and Pressure p = 0.1 MPaa
Journal of Chemical & Engineering Data Article
DOI: 10.1021/acs.jced.5b00941 J. Chem. Eng. Data 2016, 61, 1777−1792
1780
0.1000 0.0987 0.1037 0.1002 0.0955 0.0988 0.0991
0.2000 0.1977 0.1994 0.1996 0.1986 0.2009 0.1983
0.3000 0.3014 0.3025 0.3038 0.2996 0.2972 0.3005
0.0000 0.0100 0.0199 0.0297 0.0401 0.0497 0.0600
0.0000 0.0099 0.0199 0.0300 0.0401 0.0501 0.0605
0.0000 0.0099 0.0199 0.0292 0.0392 0.0504 0.0605
0.4000 0.4029 0.4029 0.4032 0.4004 0.4030 0.4040
0.5000 0.5035 0.5046 0.5021 0.5022 0.5052 0.4958
0.0000 0.0098 0.0199 0.0293 0.0393 0.0488 0.0602
0.0000 0.0101 0.0200 0.0299 0.0399 0.0490 0.0586
m2/mol·kg−1
m1/mol·kg−1
Table 3. continued
1.015655 1.016769 1.018051 1.019425 1.021048 1.022538 1.024168
1.01133 1.012565 1.013933 1.015293 1.016825 1.018669 1.020451
1.00743 1.008802 1.010251 1.011755 1.013289 1.014928 1.016619
1.00332 1.004791 1.006301 1.007792 1.009403 1.0109 1.012556
1.01106 1.012248 1.013578 1.014892 1.016428 1.017984 1.020076
ρ/g·cm−3
344.05 334.37 327.79 318.73 313.09 307.91
330.57 324.51 319.32 314.51 308.72 303.03
318.54 314.62 311.77 309.15 305.39 302.64
309.71 307.47 305.72 304.13 302.93 301.17
334.77 328.84 324.03 317.97 312.48 304.11
± ± ± ± ± ±
± ± ± ± ± ±
± ± ± ± ± ±
± ± ± ± ± ±
± ± ± ± ± ±
0.33 0.36 0.31 0.32 0.33 0.35
0.25 0.26 0.28 0.33 0.39 0.28
0.32 0.25 0.23 0.29 0.25 0.27
0.23 0.18 0.21 0.12 0.19 0.23
0.13 0.23 0.24 0.25 0.17 0.19
Vφ/cm3·mol−1
288.15 K
1.014527 1.015637 1.01691 1.018273 1.01988 1.021355 1.022976
1.010266 1.011496 1.012849 1.014185 1.015706 1.01754 1.01931
1.006418 1.007781 1.009212 1.010709 1.012233 1.013821 1.015535
1.002362 1.003825 1.005325 1.006792 1.008403 1.009877 1.011518
1.010065 1.011245 1.012571 1.013877 1.015402 1.016946 1.019017
ρ/g·cm−3
344.69 335.25 328.81 319.92 314.39 309.17
331.29 325.71 321.00 316.07 310.17 304.45
319.62 316.14 313.07 310.41 307.43 303.98
310.67 308.48 307.28 305.33 304.39 302.65
335.78 329.64 324.89 318.93 313.52 305.32
± ± ± ± ± ±
± ± ± ± ± ±
± ± ± ± ± ±
± ± ± ± ± ±
± ± ± ± ± ±
0.31 0.23 0.34 0.38 0.27 0.29
0.27 0.26 0.28 0.16 0.24 0.23
0.27 0.29 0.13 0.16 0.14 0.18
0.22 0.23 0.26 0.23 0.22 0.23
0.23 0.12 0.34 0.26 0.19 0.17
Vφ/cm3·mol−1
293.15 K Vφ/cm3·mol−1
298.15 K m (LiCl = 0.5000 mol·kg−1) 1.008814 1.009989 336.55 ± 0.13 1.011307 330.53 ± 0.25 1.012624 325.20 ± 0.23 1.014131 319.66 ± 0.18 1.015666 314.32 ± 0.33 1.017722 306.24 ± 0.35 m (NaCl = 0.1000 mol·kg−1) 1.001151 1.002605 311.77 ± 0.23 1.004091 309.87 ± 0.29 1.005552 308.45 ± 0.23 1.007136 306.92 ± 0.27 1.008603 305.85 ± 0.26 1.010225 304.20 ± 0.18 m (NaCl = 0.2000 mol·kg−1) 1.005144 1.006495 321.05 ± 0.18 1.007921 317.21 ± 0.14 1.009413 314.01 ± 0.35 1.010922 311.54 ± 0.39 1.012518 308.21 ± 0.34 1.014168 305.71 ± 0.39 m (NaCl = 0.3000 mol·kg−1) 1.008961 1.010181 332.56 ± 0.24 1.011537 326.31 ± 0.28 1.012844 322.46 ± 0.29 1.014351 317.57 ± 0.27 1.016174 311.58 ± 0.24 1.01793 305.88 ± 0.22 m (NaCl = 0.4000 mol·kg−1) 1.013163 1.014272 345.11 ± 0.25 1.015529 336.37 ± 0.29 1.01689 329.71 ± 0.27 1.018482 321.01 ± 0.26 1.019946 315.53 ± 0.28 1.021552 310.40 ± 0.29
ρ/g·cm−3
1.011602 1.012709 1.01394 1.015301 1.016876 1.018329 1.019926
1.007441 1.008657 1.009977 1.011294 1.012784 1.014593 1.016268
1.003651 1.005001 1.006402 1.007857 1.009392 1.01096 1.012565
0.999711 1.001158 1.002635 1.004086 1.005657 1.007105 1.00872
1.007354 1.008527 1.009837 1.011161 1.012657 1.014175 1.016217
ρ/g·cm−3
345.67 338.09 330.95 322.41 316.93 311.75
333.27 328.60 323.77 319.03 313.04 308.46
321.42 318.78 316.36 312.71 309.75 307.76
312.71 310.91 309.56 308.12 307.25 305.51
337.07 331.33 325.59 320.29 315.21 307.22
± ± ± ± ± ±
± ± ± ± ± ±
± ± ± ± ± ±
± ± ± ± ± ±
± ± ± ± ± ±
0.38 0.34 0.37 0.36 0.37 0.32
0.33 0.36 0.37 0.38 0.34 0.37
0.34 0.33 0.32 0.38 0.37 0.33
0.34 0.33 0.36 0.37 0.39 0.32
0.19 0.26 0.27 0.26 0.24 0.33
Vφ/cm3·mol−1
303.15 K
1.009851 1.01095 1.012167 1.013542 1.015082 1.016515 1.018113
1.005725 1.006935 1.008247 1.009543 1.011023 1.012818 1.014486
1.001984 1.003327 1.004717 1.006161 1.007653 1.009181 1.010803
0.998058 0.999502 1.000965 1.002412 1.003962 1.005401 1.006994
1.00579 1.006963 1.008252 1.009534 1.011025 1.012529 1.014507
ρ/g·cm−3
346.86 339.56 331.58 323.81 318.52 313.10
334.24 329.64 325.29 320.49 314.50 309.83
322.44 319.98 317.62 314.79 312.26 309.61
313.29 312.04 310.54 309.44 308.55 307.00
337.41 332.70 328.04 322.30 317.16 309.89
± ± ± ± ± ±
± ± ± ± ± ±
± ± ± ± ± ±
± ± ± ± ± ±
± ± ± ± ± ±
0.33 0.31 0.24 0.25 0.26 0.28
0.29 0.24 0.26 0.37 0.39 0.33
0.38 0.15 0.14 0.16 0.26 0.27
0.38 0.33 0.27 0.34 0.36 0.38
0.31 0.36 0.33 0.27 0.26 0.29
Vφ/cm3·mol−1
308.15 K
Journal of Chemical & Engineering Data Article
DOI: 10.1021/acs.jced.5b00941 J. Chem. Eng. Data 2016, 61, 1777−1792
1781
0.1000 0.0987 0.0985 0.1006 0.0995 0.1004 0.1005
0.2000 0.1923 0.1987 0.1943 0.2089 0.1944 0.1939
0.3000 0.2986 0.3008 0.2987 0.3030 0.2980 0.2989
0.0000 0.0103 0.0199 0.0298 0.0399 0.0501 0.0600
0.0000 0.0098 0.0197 0.0296 0.0396 0.0495 0.0592
0.0000 0.0100 0.0196 0.0293 0.0393 0.0507 0.0598
0.4000 0.3991 0.3984 0.4028 0.3979 0.4014 0.4008
0.5000 0.5011 0.4986 0.5010 0.5006 0.5052 0.4958
0.0000 0.0099 0.0195 0.0302 0.0401 0.0499 0.0603
0.0000 0.0099 0.0191 0.0291 0.0390 0.0507 0.0603
m2/mol·kg−1
m1/mol·kg−1
Table 3. continued
1.017859 1.018864 1.019975 1.021424 1.022927 1.025197 1.026928
1.01316 1.014374 1.015683 1.017246 1.01883 1.020908 1.022628
1.008579 1.009945 1.011459 1.013063 1.01477 1.01654 1.018427
1.003845 1.005381 1.006872 1.008429 1.010079 1.011795 1.013528
1.019408 1.020404 1.021565 1.023054 1.024588 1.026305 1.028403
ρ/g·cm−3
352.10 342.74 331.03 323.32 308.34 302.53
333.53 325.87 315.50 310.05 301.32 295.31
317.26 309.83 304.05 298.75 294.05 288.16
308.24 305.05 302.46 299.58 296.93 293.69
352.74 342.43 332.29 323.63 314.57 303.40
± ± ± ± ± ±
± ± ± ± ± ±
± ± ± ± ± ±
± ± ± ± ± ±
± ± ± ± ± ±
0.23 0.26 0.28 0.24 0.23 0.22
0.24 0.28 0.23 0.28 0.31 0.33
0.23 0.26 0.27 0.28 0.21 0.19
0.23 0.25 0.29 0.26 0.27 0.28
0.34 0.29 0.28 0.23 0.21 0.35
Vφ/cm3·mol−1
288.15 K
1.016768 1.017775 1.018873 1.020303 1.021798 1.024029 1.025764
1.012126 1.01334 1.014622 1.016172 1.017745 1.019799 1.021509
1.007578 1.008933 1.010449 1.012036 1.013719 1.01548 1.017357
1.002916 1.004444 1.005921 1.007429 1.009019 1.010757 1.012432
1.018236 1.019229 1.020355 1.021815 1.023371 1.025039 1.027037
ρ/g·cm−3
352.18 343.55 332.26 324.48 310.00 303.88
333.75 327.43 317.03 311.50 302.93 296.85
318.55 310.45 305.08 300.14 295.36 289.44
309.16 306.30 304.98 303.00 299.24 296.60
353.32 344.59 334.70 324.95 316.61 306.72
± ± ± ± ± ±
± ± ± ± ± ±
± ± ± ± ± ±
± ± ± ± ± ±
± ± ± ± ± ±
0.28 0.26 0.27 0.24 0.33 0.24
0.16 0.27 0.23 0.29 0.24 0.33
0.29 0.33 0.35 0.34 0.39 0.38
0.29 0.24 0.26 0.23 0.21 0.28
0.28 0.24 0.27 0.16 0.19 0.27
Vφ/cm3·mol−1
293.15 K Vφ/cm3·mol−1
298.15 K m (NaCl = 0.5000 mol·kg−1) 1.016834 1.017829 353.48 ± 0.27 1.018919 346.62 ± 0.21 1.020365 336.55 ± 0.25 1.021915 326.54 ± 0.29 1.023587 317.84 ± 0.27 1.025561 308.14 ± 0.27 m (KCl = 0.1000 mol·kg−1) 1.00171 1.003233 309.84 ± 0.23 1.004698 307.34 ± 0.17 1.006192 306.21 ± 0.18 1.007769 304.29 ± 0.17 1.009506 300.31 ± 0.16 1.011138 298.24 ± 0.17 m (KCl = 0.2000 mol·kg−1) 1.006325 1.007674 319.38 ± 0.23 1.009187 311.11 ± 0.29 1.010758 306.11 ± 0.27 1.012424 301.38 ± 0.29 1.014172 296.64 ± 0.24 1.015995 291.42 ± 0.26 m (KCl = 0.3000 mol·kg−1) 1.01084 1.012052 334.22 ± 0.29 1.013319 328.54 ± 0.23 1.014856 318.26 ± 0.27 1.016415 312.82 ± 0.18 1.018454 304.27 ± 0.26 1.02015 298.24 ± 0.17 m (KCl = 0.4000 mol·kg−1) 1.015432 1.016438 352.61 ± 0.27 1.017534 344.02 ± 0.23 1.018948 333.18 ± 0.19 1.020432 325.49 ± 0.26 1.022627 311.50 ± 0.19 1.024371 305.01 ± 0.29
ρ/g·cm−3
1.013886 1.014881 1.015983 1.017383 1.018858 1.021024 1.022768
1.009341 1.010546 1.01182 1.013323 1.01487 1.016894 1.018578
1.004852 1.006203 1.007675 1.00926 1.01091 1.012645 1.014495
1.000277 1.001785 1.003243 1.004713 1.006284 1.007911 1.009491
1.015235 1.016221 1.01731 1.018731 1.020251 1.021895 1.023888
ρ/g·cm−3
354.08 344.64 334.14 326.50 312.86 306.18
335.23 328.84 319.68 314.23 305.69 299.66
319.44 313.32 307.18 302.63 297.93 292.07
311.53 308.67 307.98 305.82 303.77 302.03
354.77 347.50 338.03 328.44 319.96 309.61
± ± ± ± ± ±
± ± ± ± ± ±
± ± ± ± ± ±
± ± ± ± ± ±
± ± ± ± ± ±
0.29 0.33 0.34 0.39 0.26 0.29
0.38 0.33 0.36 0.23 0.26 0.27
0.23 0.36 0.33 0.37 0.35 0.13
0.23 0.29 0.34 0.19 0.38 0.36
0.21 0.23 0.39 0.23 0.36 0.37
Vφ/cm3·mol−1
303.15 K
1.012179 1.013178 1.014239 1.015624 1.017159 1.019255 1.02098
1.00764 1.008842 1.010122 1.011592 1.013128 1.01514 1.016811
1.003193 1.004544 1.00599 1.007557 1.009198 1.010916 1.012753
0.998631 1.000135 1.001568 1.003051 1.004598 1.006214 1.007781
1.013481 1.014462 1.015541 1.016919 1.018399 1.020011 1.021991
ρ/g·cm−3
354.11 346.93 336.26 326.64 314.36 307.78
335.89 329.04 321.00 315.56 306.99 301.01
319.75 314.92 308.93 304.22 299.58 293.69
312.19 310.39 308.78 307.08 305.04 303.35
355.71 348.68 340.30 331.20 322.85 312.23
± ± ± ± ± ±
± ± ± ± ± ±
± ± ± ± ± ±
± ± ± ± ± ±
± ± ± ± ± ±
0.33 0.38 0.27 0.39 0.26 0.26
0.18 0.14 0.37 0.38 0.26 0.27
0.33 0.34 0.37 0.36 0.39 0.37
0.28 0.39 0.34 0.36 0.28 0.24
0.37 0.39 0.24 0.23 0.14 0.12
Vφ/cm3·mol−1
308.15 K
Journal of Chemical & Engineering Data Article
DOI: 10.1021/acs.jced.5b00941 J. Chem. Eng. Data 2016, 61, 1777−1792
0.5000 0.4990 0.5029 0.5033 0.5022 0.5016 0.5000 0.0000 0.0099 0.0193 0.0289 0.0399 0.0503 0.0591
same temperature, which proved that the density was higher for the larger molecular weight. It was compatible with the order of the size of the salts, that is, KCl > NaCl > LiCl. The studies of the apparent and partial molar volumes of aqueous mixtures were used to examine solute−solvent, solute−solute, and solvent−solvent interactions, that is, they could provide useful information on the nature of interaction between solute and solvent molecules.17−19 The apparent molar volumes (Vφ) of EGCG were calculated from eq 111,13,14,20
m1 is the molality of EGCG in LiCl/NaCl/KCl aqueous solutions. m2 is the molality of LiCl/NaCl/KCl in aqueous solutions, respectively. The standard uncertainties (u) are u(m) = 0.0005 mol·kg−1, u(T) = 0.01 K, u(p) = 1.0 kPa, u(ρ) = 0.0005 g·cm−3. The combined expanded uncertainty (Uc) is Uc(Vφ) = 0.4 cm3·mol−1 (0.95 level of confidence).
1.018275 1.019192 1.020252 1.021594 1.023263 1.025313 1.027073 0.26 0.29 0.23 0.27 0.28 0.34 ± ± ± ± ± ± 359.95 349.36 336.89 326.66 311.62 302.65 358.33 346.90 333.98 323.87 308.34 299.86
± ± ± ± ± ±
0.23 0.32 0.33 0.35 0.36 0.34
359.30 348.17 335.52 325.34 310.06 301.31
± ± ± ± ± ±
m KCl = 0.5000 mol·kg−1)
1.0212 1.022125 1.023209 1.024584 1.026274 1.02837 1.030133
0.23 0.13 0.15 0.19 0.18 0.27
1.019839 1.020761 1.021831 1.023191 1.02487 1.02694 1.028703
Vφ/cm3·mol−1
Article
Vφ =
(ρ − ρ0 ) M − 1000 ρ (mρρ0 )
(1)
where M is the molar mass of the solute (EGCG), m is the molality of EGCG, and ρ and ρ0 are the densities of solution and solvent (MCl + H2O), respectively. The calculated values of Vφ along with ρ and ρ0 are listed in Table 3 and plotted in Figure S2 in Supporting Information as well. According to the law of propagation of uncertainty and the above uncertainties of the measured variables, the relative expanded uncertainties of Vφ at a confidence level of 0.95 (k = 2) were found to be 0.4 cm3·mol−1. It could be seen that there was the same tendency for EGCG in the solvent of pure water, LiCl, NaCl or KCl. Vφ increased with an increasing molality of LiCl/NaCl/KCl at a particular temperature and increased with a rise of temperature for a certain solvent. Vφ decreased with an increasing amount of EGCG at fixed temperature. The observed order of the apparent molar volumes Vφ was Vφ (KCl) > Vφ (NaCl) > Vφ (LiCl) > Vφ (pure water) for a certain solute at a particular temperature. The results could be explained by Frank model21 as follows: during the process of ion hydration, the shrinkage effect of the ion to the water and the destruction of the water molecule structure caused the hydrogen-bonding network of the water molecules in the ion hydration layer to be reduced; the volume of water in the hydration layer was smaller than that of the normal water molecule thus a positive contribution to the volume was produced. As the plots of Vφ values against different molar concentrations (m) were linear in the concentration range studied, the partial molar volume of EGCG at infinite dilution (V 0φ) was obtained by least−squares fitting to eq 213,14
Vφ = V φ0 + S Vm
(2)
V 0φ
The characteristic parameters SV and were determined from the y-intercept and the experimental slope. The values of V 0φ showed the nature of solute−solvent interactions, whereas SV values indicated the strength of solute−solute interactions.22−24 The calculated values of V 0φ and SV were summarized in Table S1 in Supporting Information. The change tendencies of V 0φ and SV with increasing molalities of MCl in the solvent (MCl + H2O) and increasing of temperature were clearly demonstrated by the curves in Figures 2 and 3. The values of V 0φ were found to be positive for all the ternary (EGCG + MCl + H2O) systems. This could be interpreted from the fact that the hydrophilic-ionic group interactions played the dominant role during the overall interaction processes in the studied ternary systems. The values of V 0φ increased with a rise in the molalities of salt in the mixtures and with the temperature increasing. It was probably due to the reduction of electrostriction of water and the release of some solvent molecules from the loose solvation layers of the solutes in solution. This revealed the presence of solute−solvent interactions, which were more intense at higher weight fractions
a
0.33 0.34 0.34 0.39 0.39 0.24 ± ± ± ± ± ± 1.01652 1.017439 1.01848 1.019806 1.02147 1.023495 1.025257 360.86 350.49 338.34 328.02 313.11 303.97
± ± ± ± ± ±
Vφ/cm3·mol−1
0.37 0.36 0.37 0.36 0.38 0.34
361.13 351.78 339.85 329.31 314.63 305.26
Vφ/cm3·mol−1 ρ/g·cm−3
1.022324 1.023256 1.024353 1.025747 1.02745 1.029574 1.031335
293.15 K
Vφ/cm3·mol−1 Vφ/cm3·mol−1 m2/mol·kg−1 m1/mol·kg−1
Table 3. continued
ρ/g·cm−3
288.15 K
ρ/g·cm−3
ρ/g·cm−3
298.15 K
ρ/g·cm−3
303.15 K
308.15 K
Journal of Chemical & Engineering Data
1782
DOI: 10.1021/acs.jced.5b00941 J. Chem. Eng. Data 2016, 61, 1777−1792
Journal of Chemical & Engineering Data
Article
Figure 2. Variations of limiting partial molar volumes (V0φ) of EGCG versus the molality of NaCl aqueous solution at temperatures T = 288.15−308.15 K: ⧫, 288.15K; ▼, 293.15K; ▲, 298.15 K; ●, 303.15 K; ■, 308.15 K. (Since the tendency of V0φ versus the molality of LiCl/KCl was very close to NaCl, V0φ versus m (LiCl/KCl) can be omitted.)
Figure 4. Comparisons of V 0φ at temperatures T = 288.15−308.15 K in different molalities of salts solutions: ●, KCl; ▲, NaCl; ■, LiCl.
Figure 3. Variations of experimental slope (SV) versus the molality of NaCl aqueous solutions at temperatures T = 288.15−308.15 K: ⧫, 288.15K; ▼, 293.15K; ▲, 298.15 K; ●, 303.15 K; ■, 308.15 K. (Since the tendency of SV versus the molality of LiCl/KCl was very close to NaCl, SV versus m (LiCl/KCl) can be omitted.) Figure 5. Comparisons of SV at Temperatures T = 288.15 to 308.15 K in Different Molalities of Salts Solutions: ●, KCl; ▲, NaCl; ■, LiCl.
of salts in the solutions due to the presence of larger amounts of ions in solution.14,22,24 This behavior indicated that stronger interactions occurred between EGCG and salts at high concentrations and high temperature. It could be seen that the observed order of V 0φ (see Figure 4) was the same as the apparent molar volumes (Vφ) (see Figure S2). That was, V 0φ (KCl) > V 0φ (NaCl) > V 0φ (LiCl) > V 0φ (pure water) for a certain solute at a particular temperature. In addition, it was noteworthy that all values of SV, which reflected the solute−solute interactions were negative and became more negative in the presence of salts. This indicated the existence of weak solute−solute interactions. The values of SV increased with the temperature increasing and decreased with a rise in the molality of MCl in the solvent (MCl + H2O). That is, the presence of solute−solute interactions between EGCG molecules that became weaker with increasing molalities of MCl. It was also obvious from Figure 5 that SV decreased in the order SV (pure water) > SV (LiCl) > SV (NaCl) > SV (KCl). The negative values of SV also suggested that the hydrophobic− hydrophobic interactions and the hydrophobic−hydrophilic
interactions were predominant over the hydrogen bond interactions between EGCG molecules. With the aim of appraising the temperature dependence of the partial molar volumes, V 0φ values were expressed by eq 3 where A, B, and C have been evaluated by the least−squares fitting of apparent molar volume at different temperatures V φ0 = A + BT + CT 2
(3)
E0φ
The apparent molar isobaric expansions can be evaluated by differentiating from eq 3 with respect to temperature as eq 4 ⎛ ∂V 0 ⎞ φ ⎟⎟ = B + 2CT Eφ0 = ⎜⎜ ⎝ ∂T ⎠ P
(4)
E0φ
The calculated values of at T = 288.15−308.15 K are given in Table S2 in Supporting Information. E0φ was an important indicator of solute−solvent interactions.25−28 1783
DOI: 10.1021/acs.jced.5b00941 J. Chem. Eng. Data 2016, 61, 1777−1792
Journal of Chemical & Engineering Data
Article
Table 4. Transfer Partial Molar Volumes (ΔtrsV 0φ) of EGCG from Pure Water to LiCl/NaCl/KCl Aqueous Solutions at T = 288.15−308.15 Ka ΔtrsV 0φ/ cm3·mol−1 m/mol·kg
−1
288.15 K
293.15 K
298.15 K
303.15 K
308.15 K
LiCl 0.1000 0.2000 0.3000 0.4000 0.5000
12.77 20.99 34.84 34.99 45.40
± ± ± ± ±
0.03 0.08 0.07 0.02 0.06
12.62 20.74 34.22 34.21 45.06
± ± ± ± ±
0.07 0.06 0.04 0.03 0.05
0.1000 0.2000 0.3000 0.4000 0.5000
15.31 25.60 39.78 54.53 66.12
± ± ± ± ±
0.07 0.08 0.04 0.03 0.06
15.09 25.60 39.57 53.97 65.73
± ± ± ± ±
0.02 0.03 0.06 0.04 0.06
0.1000 0.2000 0.3000 0.4000 0.5000
15.36 26.13 44.59 65.94 74.20
± ± ± ± ±
0.04 0.03 0.07 0.04 0.08
15.04 25.90 44.11 64.99 74.09
± ± ± ± ±
0.07 0.08 0.07 0.03 0.04
12.43 20.38 33.99 34.15 44.60
± ± ± ± ±
0.04 0.03 0.05 0.06 0.01
12.08 20.09 33.51 34.08 43.93
± ± ± ± ±
0.04 0.02 0.06 0.07 0.04
11.57 19.97 33.44 33.93 43.41
± ± ± ± ±
0.07 0.08 0.04 0.03 0.06
15.07 25.59 39.43 53.41 65.65
± ± ± ± ±
0.04 0.07 0.06 0.04 0.03
14.84 25.30 39.28 53.27 65.58
± ± ± ± ±
0.06 0.07 0.04 0.03 0.05
14.41 25.04 39.25 53.32 65.26
± ± ± ± ±
0.03 0.02 0.04 0.07 0.05
14.59 25.18 43.62 64.14 73.78
± ± ± ± ±
0.06 0.02 0.04 0.03 0.04
14.09 25.15 43.16 64.06 73.66
± ± ± ± ±
0.02 0.06 0.07 0.03 0.04
13.99 24.88 42.50 63.99 73.29
± ± ± ± ±
0.03 0.02 0.05 0.04 0.06
NaCl
KCl
m is the molality of LiCl/NaCl/KCl in aqueous solutions, respectively. The standard uncertainties (u) are u(m) = 0.0005 mol·kg−1, u(T) = 0.01 K. The combined expanded uncertainty (Uc) is Uc(ΔtrsV 0φ) = 0.08 cm3·mol−1 (0.95 level of confidence).
a
ΔtrsV 0φ is an important parameter for describing transfer property and was free from solute−solute interactions and, therefore, provided information about solute−solvent interactions. The values of ΔtrsV 0φ obtained by this procedure are summarized in Table 4. According to the cosphere overlap model, developed by Friedman and Krishnan,31,32 the values of ΔtrsV 0φ had positive values, which indicated dominance of the polar−polar and ion−polar interactions between EGCG and salts. From Table 4, it could be clearly observed that the ΔtrsV 0φ values for all the three EGCG ternary systems were positive and increased monotonically with the molality of MCl in the solvent (MCl + H2O) in ternary systems. ΔtrsV 0φ also decreased with the rising temperature. These results can be explained by the properties of the water molecules in the hydration cosphere that depended on the nature of the solute species.31,32 ΔtrsV 0φ increased in the order ΔtrsV 0φ (LiCl) < ΔtrsV 0φ (NaCl) < ΔtrsV 0φ (KCl) for a certain solute at a particular temperature. Altogether, both V 0φ and ΔtrsV 0φ values were of the same trend (LiCl < NaCl < KCl) in the same molality at the same temperature, while SV values were more negative in the sequence LiCl →NaCl →KCl. This may be explained as follows: on one side, for the solutions of the same molality in the ternary system consisting of EGCG, salt, and water the interactions between ions and the charged centers of EGCG were in dominant position. However, for different cations (Li+, Na+, K+) with the same charge in the electrolyte solution, the electrical shrinkage effect was basically consistent but due to the ionic radius (Li+< Na+ < K+) the destruction effects of the water structure of the EGCG molecular solvation layer were different, that is, K+ was the strongest, Li+ was the weakest. Owensby33 has reported that in the strong polar solvent due to the partial negative charge on the exposed oxygen atom of the solvent molecules the cations would be easier to be solvated. As the surface charge density of Li+ was higher than Na+ and K+, the solvation degree of Li+ was greater than Na+ and K+, which resulted in the larger electric shrinkage effect of the solvent. On the other side, the enhancement of solute−solvent
These E0φ values were also employed in interpreting the structure making or breaking properties of various solutes. Table S2 in Supporting Information shows that the E0φ values were positive, which indicates that the partial molar volumes increased with the increase of temperature. When the solution was heated, some water molecules can be unconfined from the hydration layer, thereby raising the solution volume and so E0φ would be positive. The E0φ values decreased with an increase in temperature. This may be attributed to the fact that molecular motions become fast through enhancement in temperature and the difference in water structure between solvation shell and bulk water become smaller and, consequently, the corresponding effect from the overlap of solvation shells become weaker.26−28 Hepler25 proposed a method that provided qualitative information about the structure making or breaking ability of a solute in eq 526−29 ⎛ ∂ 2V 0 ⎞ ⎛ ∂E 0 ⎞ φ ⎟ = 2C ⎜⎜ φ ⎟⎟ = ⎜⎜ 2 ⎟ T ∂ T ∂ ⎠P ⎠P ⎝ ⎝
(5)
where C is only a mathematical parameter that is used in eq 3. If the sign of (∂E0φ/∂T)P is positive or its value is close to zero, the solute is a structure maker, otherwise it is a structure breaker.26−28 The values of (∂2V 0φ/∂T2)P related to the studied solutions are listed in Table S2 in Supporting Information. It can be found that EGCG essentially acts as a structure maker. The limiting transfer properties could provide qualitative information regarding the interactions of a cosolvent and a solute without considering the effects of solute−solute interactions.28,29 To further study the interactions of EGCG in the solvent (MCl + H2O), the values of the limiting partial molar volume of transfer (ΔtrsV 0φ) of EGCG from pure water to salt aqueous solutions are calculated by eq 626,30 ΔtrsV φ0 = V φ0 (in aqueous LiCl, NaCl or KCl solutions) − V φ0 (in pure water)
(6) 1784
DOI: 10.1021/acs.jced.5b00941 J. Chem. Eng. Data 2016, 61, 1777−1792
1785
0.1000 0.0996 0.1037 0.1002 0.0955 0.0988 0.0991
0.2000 0.1977 0.1994 0.1996 0.1986 0.2009 0.1983
0.3000 0.3021 0.3030 0.3038 0.2996 0.2972 0.3005
0.0000 0.0100 0.0200 0.0299 0.0399 0.0503 0.0603
0.0000 0.0100 0.0199 0.0298 0.0396 0.0495 0.0600
0.0000 0.0099 0.0203 0.0299 0.0396 0.0499 0.0604
0.4000 0.4029 0.3989 0.4032 0.4004 0.4030 0.4039
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0099 0.0200 0.0298 0.0399 0.0499 0.0601
0.0000 0.0098 0.0203 0.0299 0.0399 0.0501 0.0599
m2/mol·kg−1
m1/mol·kg−1
0.011 0.011 0.011 0.012 0.012 0.012 0.012
± ± ± ± ± ± ±
1.183 1.216 1.225 1.248 1.264 1.284 1.300
1.169 1.197 1.210 1.228 1.243 1.261 1.281 0.011 0.011 0.012 0.012 0.012 0.012 0.012
0.011 0.011 0.011 0.012 0.012 0.012 0.011
± ± ± ± ± ± ±
1.154 1.178 1.193 1.207 1.226 1.243 1.263
± ± ± ± ± ± ±
0.011 0.011 0.011 0.011 0.011 0.012 0.012
± ± ± ± ± ± ±
1.146 1.158 1.174 1.186 1.203 1.222 1.256
0.011 0.011 0.011 0.011 0.012 0.012
1.145 + 0.011 1.148 ± 1.158 ± 1.171 ± 1.187 ± 1.203 ± 1.222 ±
η/mPa·s
288.15 K
1.000 1.028 1.036 1.055 1.069 1.086 1.099
1.000 1.024 1.035 1.050 1.063 1.078 1.095
1.000 1.021 1.034 1.046 1.063 1.078 1.095
1.000 1.011 1.024 1.036 1.050 1.067 1.096
1.000 1.003 1.011 1.022 1.036 1.050 1.066
ηr
1.045 1.074 1.082 1.102 1.116 1.133 1.147
1.033 1.057 1.069 1.085 1.096 1.112 1.130
1.019 1.040 1.052 1.065 1.081 1.097 1.113
1.011 1.023 1.036 1.047 1.061 1.079 1.105
1.010 1.014 1.021 1.034 1.049 1.062 1.079
± ± ± ± ± ± ±
± ± ± ± ± ± ±
± ± ± ± ± ± ±
± ± ± ± ± ± ±
± ± ± ± ± ± ±
η/mPa·s
0.009 0.009 0.009 0.011 0.011 0.011 0.011
0.009 0.009 0.009 0.009 0.009 0.011 0.011
0.009 0.009 0.009 0.009 0.009 0.009 0.011
0.009 0.009 0.009 0.009 0.009 0.009 0.011
0.009 0.009 0.009 0.009 0.009 0.009 0.009
293.15 K
1.000 1.005 1.012 1.024 1.039 1.051 1.069 m 1.000 1.012 1.025 1.036 1.050 1.068 1.093 m 1.000 1.021 1.033 1.045 1.061 1.077 1.093 m 1.000 1.024 1.035 1.050 1.062 1.077 1.094 m 1.000 1.027 1.035 1.054 1.067 1.084 1.097
ηr H2O 0.896 ± 0.008 0.906 ± 0.009 0.911 ± 0.008 0.920 ± 0.008 0.934 ± 0.008 0.945 ± 0.008 0.959 ± 0.009 (LiCl = 0.1000 mol·kg−1) 0.898 ± 0.008 0.912 ± 0.009 0.924 ± 0.009 0.933 ± 0.009 0.946 ± 0.009 0.962 ± 0.009 0.975 ± 0.009 (LiCl = 0.2000 mol·kg−1) 0.909 ± 0.009 0.926 ± 0.009 0.938 ± 0.009 0.949 ± 0.009 0.964 ± 0.009 0.977 ± 0.009 0.992 ± 0.009 (LiCl = 0.3000 mol·kg−1) 0.921 ± 0.009 0.943 ± 0.009 0.951 ± 0.009 0.966 ± 0.009 0.978 ± 0.009 0.991 ± 0.009 1.007 ± 0.009 (LiCl = 0.4000 mol·kg−1) 0.932 ± 0.009 0.956 ± 0.009 0.965 ± 0.009 0.981 ± 0.009 0.994 ± 0.009 1.010 ± 0.010 1.023 ± 0.009
η/mPa·s
298.15 K
1.000 1.026 1.035 1.052 1.067 1.083 1.097
1.000 1.023 1.032 1.049 1.062 1.076 1.093
1.000 1.019 1.032 1.044 1.060 1.075 1.092
1.000 1.015 1.028 1.038 1.053 1.071 1.085
1.000 1.011 1.017 1.028 1.043 1.055 1.071
ηr
0.840 0.861 0.869 0.883 0.894 0.909 0.919
0.830 0.848 0.856 0.870 0.879 0.892 0.905
0.818 0.834 0.843 0.854 0.866 0.879 0.892
0.809 0.821 0.831 0.839 0.851 0.866 0.877
0.801 0.815 0.820 0.827 0.838 0.849 0.860
± ± ± ± ± ± ±
± ± ± ± ± ± ±
± ± ± ± ± ± ±
± ± ± ± ± ± ±
± ± ± ± ± ± ±
0.008 0.008 0.008 0.008 0.008 0.009 0.009
0.008 0.008 0.008 0.008 0.008 0.008 0.009
0.008 0.008 0.008 0.008 0.008 0.008 0.008
0.008 0.008 0.008 0.008 0.008 0.008 0.008
0.008 0.007 0.007 0.007 0.007 0.007 0.007
η/mPa·s
303.15 K
1.000 1.025 1.035 1.051 1.065 1.083 1.095
1.000 1.023 1.032 1.049 1.059 1.075 1.091
1.000 1.019 1.030 1.044 1.059 1.075 1.091
1.000 1.015 1.027 1.037 1.052 1.071 1.084
1.000 1.017 1.023 1.032 1.046 1.059 1.073
ηr
0.762 0.781 0.789 0.801 0.812 0.824 0.834
0.753 0.770 0.777 0.790 0.797 0.809 0.820
0.743 0.757 0.765 0.775 0.786 0.797 0.809
0.735 0.746 0.754 0.760 0.772 0.786 0.794
0.721 0.739 0.744 0.750 0.759 0.769 0.778
± ± ± ± ± ± ±
± ± ± ± ± ± ±
± ± ± ± ± ± ±
± ± ± ± ± ± ±
± ± ± ± ± ± ±
0.007 0.007 0.007 0.008 0.008 0.008 0.008
0.007 0.007 0.007 0.007 0.007 0.008 0.008
0.007 0.007 0.007 0.007 0.007 0.007 0.008
0.007 0.007 0.007 0.007 0.007 0.007 0.007
0.007 0.007 0.007 0.007 0.007 0.007 0.007
η/mPa·s
308.15 K
Table 5. Values of Viscosities (η) and Relative Viscosities (ηr) of EGCG in LiCl/NaCl/KCl Aqueous Solutions at T = 288.15−308.15 K and Pressure p = 0.1 MPaa
1.000 1.025 1.035 1.051 1.065 1.081 1.094
1.000 1.023 1.031 1.048 1.058 1.075 1.089
1.000 1.019 1.029 1.044 1.058 1.074 1.089
1.000 1.015 1.027 1.035 1.052 1.070 1.082
1.000 1.025 1.031 1.040 1.053 1.066 1.079
ηr
Journal of Chemical & Engineering Data Article
DOI: 10.1021/acs.jced.5b00941 J. Chem. Eng. Data 2016, 61, 1777−1792
1786
0.1000 0.0987 0.1037 0.1002 0.0955 0.0988 0.0991
0.2000 0.1977 0.1994 0.1996 0.1986 0.2009 0.1983
0.3000 0.3014 0.3025 0.3038 0.2996 0.2972 0.3005
0.0000 0.0100 0.0199 0.0297 0.0401 0.0497 0.0600
0.0000 0.0099 0.0199 0.0300 0.0401 0.0501 0.0605
0.0000 0.0099 0.0199 0.0292 0.0392 0.0504 0.0605
0.4000 0.4029 0.4029 0.4032 0.4004 0.4030 0.4040
0.5000 0.5035 0.5046 0.5021 0.5022 0.5052 0.4958
0.0000 0.0098 0.0199 0.0293 0.0393 0.0488 0.0602
0.0000 0.0101 0.0200 0.0299 0.0399 0.0490 0.0586
m2/mol·kg−1
m1/mol·kg−1
Table 5. continued 288.15 K
1.158 1.211 1.226 1.242 1.259 1.276 1.291
1.151 1.202 1.215 1.230 1.245 1.263 1.282
1.149 1.196 1.206 1.224 1.239 1.254 1.280
1.146 1.186 1.199 1.213 1.228 1.245 1.265
1.201 1.238 1.248 1.265 1.283 1.309 1.324
0.011 0.011 0.011 0.011 0.012 0.011 0.012 0.011 0.011 0.012 0.012 0.012 0.012 0.012
± ± ± ± ± ± ± ± ± ± ± ± ± ± 0.011 0.012 0.012 0.012 0.012 0.012 0.012
0.011 0.011 0.011 0.011 0.012 0.012 0.011
± ± ± ± ± ± ±
± ± ± ± ± ± ±
0.011 0.012 0.011 0.012 0.011 0.012 0.012
± ± ± ± ± ± ±
η/mPa·s
1.000 1.046 1.059 1.073 1.087 1.102 1.115
1.000 1.044 1.056 1.069 1.081 1.097 1.114
1.000 1.041 1.049 1.065 1.078 1.091 1.114
1.000 1.035 1.047 1.058 1.072 1.086 1.104
1.000 1.031 1.039 1.053 1.068 1.090 1.102
ηr
1.026 1.072 1.084 1.100 1.115 1.127 1.143
1.019 1.063 1.075 1.087 1.101 1.116 1.132
1.016 1.058 1.068 1.081 1.095 1.107 1.127
1.011 1.047 1.058 1.070 1.084 1.095 1.117
1.061 1.092 1.102 1.115 1.133 1.155 1.169
± ± ± ± ± ± ±
± ± ± ± ± ± ±
± ± ± ± ± ± ±
± ± ± ± ± ± ±
± ± ± ± ± ± ±
0.010 0.010 0.010 0.011 0.011 0.011 0.011
0.009 0.009 0.009 0.009 0.011 0.011 0.011
0.009 0.009 0.009 0.009 0.009 0.011 0.011
0.009 0.009 0.009 0.009 0.009 0.009 0.011
0.009 0.009 0.011 0.011 0.011 0.011 0.011
293.15 K η/mPa·s
298.15 K η/mPa·s
m (LiCl = 0.5000 mol·kg−1) 1.000 0.948 ± 0.009 1.029 0.975 ± 0.009 1.038 0.984 ± 0.009 1.051 0.992 ± 0.009 1.068 1.010 ± 0.009 1.088 1.030 ± 0.009 1.102 1.042 ± 0.009 m (NaCl = 0.1000 mol·kg−1) 1.000 0.892 ± 0.008 1.036 0.924 ± 0.009 1.046 0.935 ± 0.009 1.059 0.945 ± 0.009 1.073 0.956 ± 0.009 1.084 0.967 ± 0.009 1.105 0.983 ± 0.009 m (NaCl = 0.2000 mol·kg−1) 1.000 0.901 ± 0.009 1.042 0.937 ± 0.009 1.052 0.948 ± 0.009 1.064 0.958 ± 0.009 1.078 0.971 ± 0.009 1.090 0.982 ± 0.009 1.109 0.998 ± 0.009 m (NaCl = 0.3000 mol·kg−1) 1.000 0.910 ± 0.009 1.044 0.949 ± 0.009 1.055 0.960 ± 0.009 1.067 0.970 ± 0.009 1.081 0.983 ± 0.009 1.096 0.996 ± 0.009 1.111 1.011 ± 0.010 m (NaCl = 0.4000 mol·kg−1) 1.000 0.917 ± 0.009 1.045 0.958 ± 0.009 1.057 0.969 ± 0.009 1.072 0.982 ± 0.009 1.087 0.996 ± 0.009 1.099 1.007 ± 0.010 1.114 1.021 ± 0.010
ηr
1.000 1.045 1.057 1.071 1.087 1.099 1.114
1.000 1.044 1.055 1.067 1.081 1.096 1.112
1.000 1.040 1.053 1.064 1.077 1.090 1.108
1.000 1.036 1.048 1.059 1.072 1.085 1.103
1.000 1.028 1.038 1.046 1.066 1.087 1.099
ηr
303.15 K
0.827 0.863 0.873 0.885 0.898 0.908 0.920
0.820 0.854 0.864 0.873 0.885 0.897 0.911
0.812 0.844 0.855 0.864 0.874 0.885 0.899
0.804 0.832 0.842 0.851 0.859 0.870 0.884
0.853 0.876 0.885 0.891 0.908 0.927 0.937
± ± ± ± ± ± ±
± ± ± ± ± ± ±
± ± ± ± ± ± ±
± ± ± ± ± ± ±
± ± ± ± ± ± ±
0.008 0.008 0.008 0.008 0.008 0.009 0.009
0.008 0.008 0.008 0.008 0.008 0.008 0.009
0.008 0.008 0.008 0.008 0.008 0.008 0.008
0.008 0.008 0.008 0.008 0.008 0.008 0.008
0.008 0.008 0.008 0.008 0.009 0.009 0.009
η/mPa·s
1.000 1.044 1.056 1.070 1.086 1.098 1.113
1.000 1.043 1.055 1.066 1.080 1.095 1.112
1.000 1.039 1.053 1.064 1.076 1.090 1.108
1.000 1.035 1.047 1.059 1.069 1.083 1.101
1.000 1.027 1.037 1.045 1.064 1.087 1.098
ηr
308.15 K
0.751 0.782 0.792 0.803 0.814 0.824 0.835
0.745 0.776 0.784 0.794 0.804 0.814 0.828
0.738 0.765 0.777 0.784 0.793 0.802 0.817
0.730 0.755 0.764 0.772 0.780 0.789 0.802
0.774 0.795 0.803 0.808 0.822 0.841 0.849
± ± ± ± ± ± ±
± ± ± ± ± ± ±
± ± ± ± ± ± ±
± ± ± ± ± ± ±
± ± ± ± ± ± ±
0.007 0.007 0.007 0.008 0.008 0.008 0.008
0.007 0.007 0.007 0.007 0.008 0.008 0.008
0.007 0.007 0.007 0.007 0.007 0.008 0.008
0.007 0.007 0.007 0.007 0.007 0.007 0.008
0.007 0.007 0.008 0.008 0.008 0.008 0.008
η/mPa·s
1.000 1.041 1.054 1.069 1.083 1.097 1.112
1.000 1.041 1.052 1.065 1.079 1.092 1.110
1.000 1.037 1.053 1.062 1.074 1.087 1.107
1.000 1.035 1.046 1.057 1.068 1.080 1.098
1.000 1.027 1.037 1.044 1.062 1.086 1.097
ηr
Journal of Chemical & Engineering Data Article
DOI: 10.1021/acs.jced.5b00941 J. Chem. Eng. Data 2016, 61, 1777−1792
1787
0.1000 0.0987 0.0985 0.1006 0.0995 0.1004 0.1005
0.2000 0.1923 0.1987 0.1943 0.2089 0.1944 0.1939
0.3000 0.2986 0.3008 0.2987 0.3030 0.2980 0.2989
0.0000 0.0103 0.0199 0.0298 0.0399 0.0501 0.0600
0.0000 0.0098 0.0197 0.0296 0.0396 0.0495 0.0592
0.0000 0.0100 0.0196 0.0293 0.0393 0.0507 0.0598
0.4000 0.3991 0.3984 0.4028 0.3979 0.4014 0.4008
0.5000 0.5011 0.4986 0.5010 0.5006 0.5052 0.4958
0.0000 0.0099 0.0195 0.0302 0.0401 0.0499 0.0603
0.0000 0.0099 0.0191 0.0291 0.0390 0.0507 0.0603
m2/mol·kg−1
m1/mol·kg−1
Table 5. continued 288.15 K
1.147 1.190 1.217 1.228 1.239 1.261 1.291
1.145 1.190 1.212 1.222 1.227 1.256 1.282
1.145 1.188 1.211 1.219 1.226 1.256 1.266
1.145 1.187 1.211 1.218 1.225 1.249 1.259
1.165 1.221 1.237 1.250 1.268 1.285 1.302
0.011 0.011 0.012 0.012 0.012 0.012 0.012 0.011 0.011 0.012 0.012 0.012 0.012 0.012
± ± ± ± ± ± ± ± ± ± ± ± ± ± 0.011 0.011 0.012 0.012 0.012 0.012 0.012
0.011 0.011 0.012 0.012 0.012 0.012 0.012
± ± ± ± ± ± ±
± ± ± ± ± ± ±
0.011 0.012 0.011 0.012 0.012 0.012 0.012
± ± ± ± ± ± ±
η/mPa·s
1.000 1.038 1.062 1.071 1.080 1.099 1.126
1.000 1.039 1.059 1.068 1.072 1.097 1.120
1.000 1.038 1.058 1.065 1.071 1.098 1.106
1.000 1.037 1.058 1.065 1.070 1.092 1.100
1.000 1.048 1.062 1.073 1.089 1.103 1.118
ηr
1.013 1.038 1.055 1.065 1.094 1.129 1.143
1.011 1.035 1.054 1.064 1.093 1.118 1.132
1.010 1.034 1.052 1.061 1.089 1.115 1.118
1.010 1.033 1.048 1.058 1.084 1.109 1.116
1.033 1.082 1.095 1.108 1.124 1.137 1.154
± ± ± ± ± ± ±
± ± ± ± ± ± ±
± ± ± ± ± ± ±
± ± ± ± ± ± ±
± ± ± ± ± ± ±
0.009 0.009 0.009 0.009 0.009 0.011 0.011
0.009 0.009 0.009 0.009 0.009 0.011 0.010
0.009 0.009 0.009 0.009 0.009 0.011 0.011
0.009 0.010 0.010 0.010 0.010 0.011 0.011
0.010 0.010 0.010 0.011 0.011 0.011 0.011
293.15 K η/mPa·s
298.15 K η/mPa·s
m (NaCl = 0.5000 mol·kg−1) 1.000 0.925 ± 0.009 1.047 0.968 ± 0.009 1.060 0.980 ± 0.009 1.073 0.992 ± 0.009 1.088 1.005 ± 0.009 1.101 1.018 ± 0.009 1.117 1.033 ± 0.009 m (KCl = 0.1000 mol·kg−1) 1.000 0.896 ± 0.008 1.023 0.924 ± 0.009 1.038 0.934 ± 0.009 1.048 0.946 ± 0.009 1.074 0.956 ± 0.009 1.098 0.970 ± 0.009 1.106 0.998 ± 0.009 m (KCl = 0.2000 mol·kg−1) 1.000 0.896 ± 0.008 1.024 0.926 ± 0.009 1.042 0.941 ± 0.009 1.050 0.952 ± 0.009 1.078 0.962 ± 0.009 1.104 0.975 ± 0.009 1.107 0.998 ± 0.009 m (KCl = 0.3000 mol·kg−1) 1.000 0.897 ± 0.008 1.024 0.928 ± 0.008 1.043 0.941 ± 0.009 1.052 0.954 ± 0.009 1.081 0.965 ± 0.009 1.105 0.978 ± 0.009 1.120 1.010 ± 0.009 m (KCl = 0.4000 mol·kg−1) 1.000 0.897 ± 0.008 1.024 0.929 ± 0.009 1.042 0.941 ± 0.009 1.051 0.954 ± 0.009 1.081 0.966 ± 0.009 1.115 0.981 ± 0.009 1.129 1.017 ± 0.009
ηr
1.000 1.036 1.049 1.063 1.077 1.094 1.135
1.000 1.035 1.049 1.063 1.076 1.090 1.125
1.000 1.034 1.050 1.062 1.073 1.088 1.113
1.000 1.032 1.042 1.056 1.067 1.083 1.115
1.000 1.047 1.060 1.072 1.087 1.101 1.117
ηr
303.15 K
0.801 0.834 0.848 0.855 0.869 0.880 0.897
0.801 0.832 0.847 0.855 0.867 0.873 0.895
0.801 0.830 0.847 0.852 0.866 0.871 0.885
0.801 0.826 0.840 0.844 0.859 0.867 0.885
0.834 0.872 0.883 0.894 0.907 0.917 0.932
± ± ± ± ± ± ±
± ± ± ± ± ± ±
± ± ± ± ± ± ±
± ± ± ± ± ± ±
± ± ± ± ± ± ±
0.007 0.008 0.008 0.008 0.008 0.008 0.008
0.007 0.008 0.008 0.008 0.008 0.008 0.008
0.007 0.008 0.008 0.008 0.008 0.008 0.008
0.008 0.008 0.008 0.008 0.008 0.008 0.008
0.008 0.008 0.008 0.008 0.009 0.009 0.009
η/mPa·s
1.000 1.041 1.058 1.068 1.085 1.099 1.120
1.000 1.038 1.057 1.068 1.083 1.089 1.117
1.000 1.036 1.057 1.064 1.081 1.087 1.105
1.000 1.032 1.049 1.055 1.073 1.084 1.105
1.000 1.045 1.058 1.072 1.087 1.099 1.116
ηr
308.15 K
0.730 0.760 0.772 0.780 0.793 0.803 0.813
0.726 0.751 0.763 0.775 0.788 0.791 0.805
0.723 0.748 0.763 0.775 0.785 0.787 0.790
0.722 0.743 0.759 0.770 0.782 0.785 0.785
0.760 0.796 0.804 0.817 0.824 0.834 0.847
± ± ± ± ± ± ±
± ± ± ± ± ± ±
± ± ± ± ± ± ±
± ± ± ± ± ± ±
± ± ± ± ± ± ±
0.007 0.007 0.007 0.007 0.007 0.007 0.007
0.007 0.007 0.007 0.007 0.007 0.007 0.007
0.007 0.007 0.007 0.007 0.007 0.007 0.007
0.007 0.007 0.007 0.007 0.007 0.007 0.007
0.007 0.007 0.008 0.008 0.008 0.008 0.008
η/mPa·s
1.000 1.040 1.058 1.068 1.085 1.099 1.112
1.000 1.034 1.051 1.067 1.086 1.089 1.109
1.000 1.034 1.056 1.072 1.086 1.088 1.093
1.000 1.029 1.051 1.067 1.083 1.088 1.088
1.000 1.047 1.058 1.074 1.085 1.098 1.114
ηr
Journal of Chemical & Engineering Data Article
DOI: 10.1021/acs.jced.5b00941 J. Chem. Eng. Data 2016, 61, 1777−1792
0.011 0.011 0.011
Article
interactions weakened the hydrogen bond interactions between EGCG molecules, which led to the values of SV decreasing. In addition, the temperature had little influences on the values of V 0φ and SV. This indicated the small contributions of temperature to volume. The values of V 0φ increased with the increasing molalities of salts solutions while the change trend for the values of SV was contrary. This conclusion was consistent with the order of radius in the electrically induced contraction effect. For the salts with the same anion, the different limiting partial molar volume of transfer (ΔtrsV 0φ) was mainly caused by the different cation. Also, the interaction between EGCG and the salt was mainly determined by the charge density on the surface of the cation. The greater the charge density was, the greater the electrostatic effect would be, thus the contribution to ΔtrsV 0φ was greater. Li+, Na+, and K+ were with the same charge, but the ionic radius was K+ (0.133 nm) > Na+ (0.095 nm) > Li+ (0.068 nm), so the sequence of positive contribution to ΔtrsV 0φ was Li+ > Na+ > K+. Besides, because of the hydration enthalpy34 of Li+ (−522 kJ/mol), Na+ (−375 kJ/mol), and K+ (−324 kJ/mol), the dehydration ability was more difficult for Li+ than for Na+ and K+. Thus the order was ΔtrsV 0φ (LiCl) < ΔtrsV 0φ (NaCl) < ΔtrsV 0φ (KCl) 3.2. Viscometric Properties. The viscosity data with solvent concentration at various temperatures are useful in understanding the solute−solute, solute−solvent interactions.35,36 The experimental viscosities of ternary systems of EGCG + aqueous solutions at T = 288.15−308.15 K are given in Table 5 and all the viscosity data are depicted in Figure S3 in Supporting Information. The relative expanded uncertainty (k = 2) in η was estimated to be 0.004 mPa·s according to the law of propagation of error. It was shown that the tendency of viscosities changing was consistent with the densities trend. Also, the viscosities increased nonlinearlyLiCl/NaCl/KCl with the increase of the molality of LiCl/NaCl/KCl. The viscosities decreased with temperature increasing due to the rapid molecular motion. It could be easily found from Table 5 that the values of viscosities increased with the molalities of EGCG for a given temperature, which implied that the viscosity was also a function of temperature and concentration. For a given molality of EGCG and a constant temperature, the viscosities decreased in the order η (LiCl) > η (NaCl) > η (KCl). The viscosities of EGCG in LiCl/NaCl/KCl + H2O mixtures could be correlated by the Jones−Dole eq 737,38
a m1 is the molality of EGCG in LiCl/NaCl/KCl aqueous solutions. m2 is the molality of LiCl/NaCl/KCl in aqueous solutions, respectively. The standard uncertainties (u) are u(m) = 0.0005 mol·kg−1; u(T) = 0.01 K, u(p) = 1.0 kPa. The combined expanded uncertainty (Uc) is Uc(η) = 1.0% (0.95 level of confidence).
1.000 1.043 1.058 1.070 1.087 1.101 1.114 0.007 0.007 0.007 0.007 0.006 0.007 0.007 ± ± ± ± ± ± ± 0.730 0.761 0.773 0.781 0.793 0.804 0.813 1.000 1.041 1.057 1.068 1.084 1.099 1.119 0.007 0.007 0.007 0.007 0.007 0.007 0.007 ± ± ± ± ± ± ± 0.802 0.834 0.848 0.856 0.869 0.881 0.897 1.000 1.035 1.050 1.061 1.077 1.092 1.139 0.009 0.009 0.009
1.027 ± 1.060 ± 1.076 ± 1.093 + 0.009 1.107 ± 1.136 ± 1.155 ± 0.011 0.011 0.012 0.012 0.012 0.012 0.012 ± ± ± ± ± ± ± 0.5000 0.4990 0.5029 0.5033 0.5022 0.5016 0.5000 0.0000 0.0099 0.0193 0.0289 0.0399 0.0503 0.0591
1.152 1.190 1.217 1.228 1.248 1.273 1.295
308.15 K 303.15 K 298.15 K
m (KCl = 0.5000 mol·kg−1) 1.000 0.899 ± 0.008 1.032 0.930 ± 0.008 1.048 0.943 ± 0.008 1.065 0.954 ± 0.008 1.078 0.968 ± 0.008 1.106 0.982 ± 0.008 1.125 1.023 ± 0.009 1.000 1.033 1.057 1.067 1.084 1.106 1.124
η/mPa·s η/mPa·s m2/mol·kg−1 m1/mol·kg−1
Table 5. continued
288.15 K
ηr
293.15 K
ηr
η/mPa·s
ηr
η/mPa·s
ηr
η/mPa·s
ηr
Journal of Chemical & Engineering Data
(ηr − 1) c
1/2
= ψ = A + Bc1/2
(7)
where the relative viscosity ηr was calculated by eq 8. η0 and η are the viscosities of the solvent (MCl + H2O) and solution, respectively, and c is the molarity of EGCG calculated from the molality values (m)
ηr =
η η0
(8)
A and B are the Jones−Dole constants qualified with some physicochemical characteristics of solutions. Viscosity B-Coefficients reflected the solute−solvent interactions. It is a valuable tool to describe the nature of solute in different solvents and provided information concerning their effects on the structure of the solvent in the local vicinity of the solute molecules.39,40 The A-Coefficients (also called Falkenhagen coefficients, reflecting solute−solute interactions) can be determined empirically but are 1788
DOI: 10.1021/acs.jced.5b00941 J. Chem. Eng. Data 2016, 61, 1777−1792
Journal of Chemical & Engineering Data
Article
Table 6. B-Coefficients of EGCG in LiCl/NaCl/KCl Aqueous Solutions at T = 288.15−308.15 Ka 103B/m3·mol−1 m(salts)/mol·kg
−1
288.15 K
293.15 K
298.15 K
303.15 K
308.15 K
LiCl 0 0.1000 0.2000 0.3000 0.4000 0.5000
0.975 1.413 1.589 1.627 1.748 1.798
± ± ± ± ± ±
0.006 0.005 0.007 0.003 0.008 0.006
1.016 1.403 1.563 1.600 1.715 1.774
± ± ± ± ± ±
0.004 0.003 0.007 0.006 0.002 0.008
0.1000 0.2000 0.3000 0.4000 0.5000
1.817 1.953 2.039 2.143 2.159
± ± ± ± ±
0.007 0.010 0.011 0.010 0.005
1.810 1.922 2.009 2.130 2.131
± ± ± ± ±
0.004 0.006 0.009 0.005 0.003
0.1000 0.2000 0.3000 0.4000 0.5000
1.855 1.956 2.045 2.143 2.171
± ± ± ± ±
0.011 0.006 0.003 0.008 0.009
1.829 1.925 2.027 2.130 2.132
± ± ± ± ±
0.006 0.007 0.002 0.007 0.010
1.102 1.398 1.537 1.580 1.698 1.726
± ± ± ± ± ±
0.010 0.007 0.006 0.005 0.011 0.010
1.190 1.380 1.517 1.550 1.671 1.702
± ± ± ± ± ±
0.006 0.004 0.008 0.007 0.010 0.007
1.345 1.347 1.486 1.527 1.649 1.676
± ± ± ± ± ±
0.003 0.007 0.006 0.002 0.009 0.010
1.805 1.909 2.006 2.101 2.125
± ± ± ± ±
0.006 0.005 0.004 0.007 0.006
1.767 1.895 1.995 2.102 2.105
± ± ± ± ±
0.006 0.010 0.011 0.010 0.003
1.721 1.862 1.954 2.058 2.080
± ± ± ± ±
0.011 0.006 0.005 0.003 0.002
1.821 1.924 2.020 2.107 2.129
± ± ± ± ±
0.002 0.006 0.007 0.009 0.004
1.797 1.924 2.019 2.107 2.113
± ± ± ± ±
0.012 0.010 0.008 0.006 0.007
1.793 1.895 1.956 2.057 2.109
± ± ± ± ±
0.007 0.006 0.004 0.008 0.009
NaCl
KCl
m (salts) is the molality of LiCl/NaCl/KCl in aqueous solutions, respectively. The standard uncertainties (u) are u(m) = 0.0005 mol·kg−1; u(T) = 0.01 K. The combined expanded uncertainty (Uc) is Uc(103B) = 0.011 m3·mol−1 (0.95 level of confidence).
a
usually very low (negligible in the case of c > 0. 1mol /L).27 The Jones−Dole equation was simplified to eq 927,41,42 ηr = 1 + Bc
The solvation number of a solute can be calculated from (B/V 0φ) ratio. The calculated solvation numbers (B/V 0φ) of (EGCG + LiCl/NaCl/KCl + H2O) mixtures were listed in Table 7. The high value of solvation number was an indication of the formation of a primary solvation shell and was between 0 and 2.5 for unsolvated spherical species.42 The values of solvation numbers that were not more than 2.5 in this work at all temperatures indicated that EGCG was not very solvated. The viscosity data was also analyzed on the basis of transition state treatment suggested by Feakins et al.45,46 The viscosity B-coefficient in terms of this theory is given by eq 10:
(9)
As shown in Table 6, it is indicated that the B-Coefficients of the three ternary systems increased obviously with the rise of temperature and with the increase in mass of LiCl/NaCl/KCl in the solvent mixture. The positive values of B-Coefficients indicate the presence of solute−solvent interactions. A perusal of Table 6 shows that the values of the B-Coefficients of EGCG in the studied solvent systems suggested the presence of strong solute−solvent interactions, and these types of interactions were strengthened with an increase of LiCl/NaCl/KCl in the solvent mixtures. These conclusions are in excellent agreement with those drawn from V 0φ values discussed earlier. The positive value of B-coefficient also indicated the enhancement in the hydrogen bonding interactions of the solvent with EGCG and the influences of salts concentration on water structure. The three-dimensional structure of water consolidated at a lower salts concentration was broken at a higher concentration. As for the more positive value of B-coefficients in aqueous NaCl and KCl solutions than those in aqueous LiCl solutions, it may be attributed to the very small ionic radius and easily polarized properties of Li+ than Na+ and K+. Compared with B-Coefficients, it has been reported in a number of studies that dB/dT was a better criterion for determining the structure−making/breaking nature of any solute.43,44 In general, the positive dB/dT indicated that the solute prefer to act as a structure breaker, whereas the negative dB/dT predicted the structure-maker characteristics.14 According to Table 6, the values of B-Coefficients decreased with temperature in the investigated (EGCG + MCl + H2O) mixtures, which corresponded to the negative dB/dT value. This indicated that EGCG served as a structure maker in all LiCl/NaCl/KCl + H2O systems. This further reinforced the conclusions drawn earlier from the values of (∂2V 0φ/∂T2)p
B=
V1̅ 0(Δμ20 ≠ − Δμ10 ≠ ) (V1̅ 0 − V2̅ 0) + 1000 1000RT
V1̅ 0(
V2̅ 0(
(10)
Vφ̅ 0)are
= ∑ xiMi /ρ0 ) and = where the molar volume of the solvents (MCl + H2O) and the standard partial molar volume of the solute at infinite dilution, respectively. The xi and Mi denote the mole fraction and molar weight of H2O and MCl in mixed solvent, respectively. ρ0 is the density of the solvent (MCl + H2O). The free energy of activation for solvent 0≠ Δμ0≠ 1 and the free energy of activation for solute Δμ2 could be calculated by equations 11 and 12
⎛ η V̅ 0 ⎞ 1 Δμ10 ≠ = ΔG̅10 ≠ = RT ln⎜⎜ 0 ⎟⎟ hN ⎝ A⎠ Δμ20 ≠ = ΔG̅20 ≠ = Δμ10 ≠ +
(11)
RT[1000B − (V1̅ 0 − V2̅ 0)] V1̅ 0 (12)
where R is the gas constant, h is the Planck constant, NA is the Avogadro number, η0 is the viscosity of the solvent, and the other symbols have their usual meanings. The values of 0≠ Δμ0≠ 1 and Δμ2 at all measured temperatures are included in Table 7. According to the Feakins’s model, the magnitude of Δμ0≠ 2 reflected the ability to form the transition state: the 1789
DOI: 10.1021/acs.jced.5b00941 J. Chem. Eng. Data 2016, 61, 1777−1792
Journal of Chemical & Engineering Data
Article
0≠ Table 7. Free Energies of Activation for Solvent (Δμ0≠ 1 ) and for Solute (Δμ2 ) and Solvation Number of EGCG in Different Molalities of LiCl/NaCl/KCl Aqueous Solutions at T = 288.15−308.15 Ka
T/K
B/V 0φ
288.15 293.15 298.15 303.15 308.15
0.003 0.003 0.004 0.004 0.004
−1 Δμ0≠ 1 /kJ·mol
−1 Δμ0≠ 2 /kJ·mol
B/V 0φ
−1 Δμ0≠ 1 /kJ·mol
H2O
288.15 293.15 298.15 303.15 308.15
0.005 0.005 0.005 0.004 0.004
288.15 293.15 298.15 303.15 308.15
0.005 0.005 0.005 0.005 0.005
288.15 293.15 298.15 303.15 308.15
0.005 0.005 0.005 0.005 0.005
288.15 293.15 298.15 303.15 308.15
0.005 0.005 0.005 0.005 0.005
288.15 293.15 298.15 303.15 308.15
0.005 0.005 0.005 0.005 0.005
−1 Δμ0≠ 2 /kJ·mol
H2O
= 0.1000 ± 0.04 ± 0.03 ± 0.04 ± 0.02 ± 0.02 = 0.2000 ± 0.04 ± 0.03 ± 0.03 ± 0.04 ± 0.02 = 0.3000 ± 0.04 ± 0.03 ± 0.03 ± 0.04 ± 0.02 = 0.4000 ± 0.04 ± 0.02 ± 0.03 ± 0.02 ± 0.04 = 0.5000 ± 0.04 ± 0.03 ± 0.02 ± 0.02 ± 0.03
mol·kg−1) 235.65 237.93 240.92 241.91 240.71 mol·kg−1) 259.70 260.27 260.63 261.71 206.02 mol·kg−1) 266.11 266.65 267.97 267.77 182.51 mol·kg−1) 281.71 281.66 283.61 284.10 172.63 mol·kg−1) 289.31 290.66 288.58 289.44 166.44
± ± ± ± ±
0.03 0.04 0.04 0.03 0.04
0.006 0.006 0.006 0.006 0.005
± ± ± ± ±
0.04 0.02 0.04 0.02 0.03
0.006 0.006 0.006 0.006 0.006
± ± ± ± ±
0.04 0.03 0.03 0.04 0.03
0.006 0.006 0.006 0.006 0.006
± ± ± ± ±
0.03 0.04 0.04 0.02 0.03
0.006 0.006 0.006 0.006 0.006
± ± ± ± ±
0.03 0.04 0.04 0.02 0.04
0.006 0.006 0.006 0.006 0.006
−1 Δμ0≠ 1 /kJ·mol
−1 Δμ0≠ 2 /kJ·mol
H2O
0.003 0.003 0.004 0.004 0.004 m (LiCl 9.46 9.32 9.19 9.08 8.99 m (LiCl 9.48 9.34 9.22 9.11 9.02 m (LiCl 9.51 9.38 9.26 9.15 9.06 m (LiCl 9.55 9.41 9.29 9.19 9.10 m (LiCl 9.59 9.45 9.34 9.23 9.14
B/V 0φ 0.003 0.003 0.004 0.004 0.004
m (NaCl = 0.1000 9.45 ± 0.03 9.32 ± 0.04 9.17 ± 0.04 9.06 ± 0.02 8.97 ± 0.04 m (NaCl = 0.2000 9.46 ± 0.02 9.33 ± 0.02 9.19 ± 0.03 9.09 ± 0.04 9.00 ± 0.03 m (NaCl = 0.3000 9.47 ± 0.04 9.33 ± 0.03 9.22 ± 0.02 9.11 ± 0.02 9.02 ± 0.04 m (NaCl = 0.4000 9.48 ± 0.04 9.35 ± 0.03 9.23 ± 0.04 9.13 ± 0.02 9.04 ± 0.03 m (NaCl = 0.5000 9.49 ± 0.04 9.37 ± 0.02 9.26 ± 0.03 9.16 ± 0.02 9.07 ± 0.04
mol·kg−1) 290.08 ± 293.69 ± 297.58 ± 296.61 ± 294.39 ± mol·kg−1) 309.51 ± 310.28 ± 313.29 ± 315.91 ± 315.88 ± mol·kg−1) 322.80 ± 323.83 ± 328.48 ± 331.79 ± 330.78 ± mol·kg−1) 338.76 ± 342.26 ± 343.44 ± 348.68 ± 347.62 ± mol·kg−1) 342.39 ± 343.98 ± 348.34 ± 350.76 ± 352.29 ±
0.04 0.03 0.04 0.02 0.03
0.006 0.006 0.006 0.006 0.006
0.04 0.03 0.04 0.04 0.02
0.006 0.006 0.006 0.006 0.006
0.04 0.02 0.03 0.04 ± 0.04
0.006 0.006 0.006 0.006 0.006
0.04 0.03 0.02 0.02 0.04
0.006 0.006 0.006 0.006 0.006
0.04 0.03 0.02 0.02 0.03
0.006 0.006 0.006 0.006 0.006
m (KCl = 0.1000 9.45 ± 0.04 9.31 ± 0.03 9.18 ± 0.02 9.05 ± 0.03 8.94 ± 0.02 m (KCl = 0.2000 9.45 ± 0.04 9.31 ± 0.03 9.18 ± 0.02 9.05 ± 0.04 8.94 ± 0.04 m (KCl = 0.3000 9.45 ± 0.04 9.31 ± 0.02 9.18 ± 0.03 9.05 ± 0.02 8.95 ± 0.04 m (KCl = 0.4000 9.45 ± 0.04 9.31 ± 0.03 9.17 ± 0.04 9.05 ± 0.02 8.96 ± 0.04 m (KCl = 0.5000 9.46 ± 0.03 9.35 ± 0.04 9.18 ± 0.04 9.05 ± 0.02 8.96 ± 0.04
mol·kg−1) 295.22 296.48 299.89 300.92 304.68 mol·kg−1) 310.36 311.06 315.63 330.33 317.24 mol·kg−1) 324.81 327.51 331.54 336.27 341.69 mol·kg−1) 340.94 344.46 346.50 351.67 386.73 mol·kg−1) 346.02 346.13 350.96 353.98 447.66
± ± ± ± ±
0.03 0.03 0.04 0.02 0.04
± ± ± ± ±
0.04 0.02 0.04 0.03 0.04
± ± ± ± ±
0.04 0.02 0.04 0.03 0.04
± ± ± ± ±
0.04 0.03 0.04 0.03 0.04
± ± ± ± ±
0.04 0.03 0.04 0.04 0.03
a m (salts) is the molality of LiCl/NaCl/KCl in aqueous solutions, respectively. The standard uncertainties (u) are u(m) = 0.0005 mol·kg−1; u(T) = 0≠ −1 −1 (0.95 level of confidence). 0.01 K. The combined expanded uncertainty (Uc) is Uc(Δμ0≠ 1 ) = 0.04 kJ·mol , Uc (Δμ2 ) = 0.04 kJ·mol
higher the value of Δμ0≠ 2 was, the more difficult it was to form the transition state because of the stronger solute−solvent interactions. Also, the smaller Δμ0≠ 2 had a high trend to act as structure breaker and this feature shows an agreement with the results of the dB/dT trend.26−29 0≠ A perusal of Table 7 shows that Δμ0≠ 1 and Δμ2 were 0≠ 0≠ positive, and the values of Δμ2 were larger than Δμ1 , which suggested the solute−solvent interactions between EGCG and salt aqueous solution in the ground state were stronger than in the transition state. That is, the formation of the transition state was less favored by the solvation of the solute molecules. Δμ 20≠ of KCl was the largest, NaCl was intermediate, LiCl was the least. This indicates the existence of the stronger solute−solvent interactions in KCl aqueous solution. These are in agreement with the results of viscosity B-Coefficients.
intermolecular interactions. In this paper, the density and viscosity of ternary aqueous solution of EGCG containing LiCl/NaCl/KCl were determined. Measurements were carried out at temperatures ranging from 288.15−308.15 K at atmospheric pressure. The apparent molar volumes (Vφ), limiting partial molar volumes (V 0φ), experimental slope (SV), solvation number (B/V 0φ), the free energies of activation for solvent Δμ0≠ 1 2 0 2 and for solute Δμ0≠ 2 , Helper’s constant (∂ V φ/∂T )P, the apparent molar isobaric expansions (E φ0 ), and transfer partial molar volumes (ΔtrsV 0φ) of EGCG from water to LiCl/NaCl/KCl aqueous solutions have been obtained from the experiment. The experimental viscosities were correlated using the extended Jones−Dole equation in order to obtain the viscosity B-Coefficients. The parameters and variation tendencies have been discussed with the help of solute−solvent interactions and solute−solute interactions. The positive values including 0≠ (Vφ, V 0φ, ΔtrsV 0φ, viscosity B-Coefficients, Δμ0≠ 1 , Δμ2 ) and 2 0 2 (∂ V φ/∂T )P close to zero indicated the presence of strong solute−solvent interactions and the structure−making effect of EGCG in the investigated solutions. E φ0 decreasing with
4. CONCLUSIONS Thermodynamic and transport properties play a fundamental role to investigate understanding the mechanism of the 1790
DOI: 10.1021/acs.jced.5b00941 J. Chem. Eng. Data 2016, 61, 1777−1792
Journal of Chemical & Engineering Data
Article
(11) Dong, L. N; Liu, M.; Li, G. Q.; Wang, L. L.; Sun, D. Z.; Wei, X. L.; Di, Y. Y. Volumetric properties and refractive indices of N, Nhexamethylenebisacetamide in aqueous glucose and sucrose solutions. J. Chem. Eng. Data 2011, 56, 4031−4039. (12) Banipal, T. S.; Singh, H.; Banipal, P. K. Volumetric and viscometric properties of some sulpha drugs in aqueous solutions of sodium chloride at T = (288.15 to 318.15) K. J. Chem. Eng. Data 2010, 55, 3872−3881. (13) Dong, L. N.; Liu, M.; Chen, A. J.; Sun, D. Z. Enthalpies of dilution, volumetric properties, and refractive indices of N, N′hexamethylenebisacetamide in aqueous xylitol or d-mannitol solutions at T = 298.15 K. J. Chem. Eng. Data 2012, 57, 2456−2464. (14) Chen, A.; Liu, M.; Zheng, Y.; Sun, D.; Wang, B.; Wang, L. Volumetric, Viscometric, and Refractive Index Behavior of 7-Hydroxy4-methylcoumarin in Aqueous Ethanol or 1-Propanol Solutions in the Temperature Range of (293.15 to 313.15) K. J. Chem. Eng. Data 2013, 58, 2474−2482. (15) Sadeghi, R.; Parhizkar, H. Volumetric, isentropic compressibility and electrical conductivity of solutions of tri-sodium phosphate in 1propanol + water mixed-solvent media over the temperature range of 283.15−303.15 K. Fluid Phase Equilib. 2008, 265, 173−183. (16) Dean, J. A. Lange’s Handbook of Chemistry; McGraw-Hill Book Company Inc: New York, 1960. (17) Ratkova, E. L.; Fedorov, M. V. On a relationship between molecular polarizability and partial molar volume in water. J. Chem. Phys. 2011, 135, 244109. (18) Li, H.; Xu, X. Y.; Chi, C. J.; Liu, M.; Di, Y. Y.; Sun, D. Z. Molar Volumes and Refractive Indexes of Hexane-1,2,3,4,5,6-hexol in Aqueous Solutions of 1-Propanol and 2-Propanol. J. Chem. Eng. Data 2010, 55, 2909−2913. (19) Chi, H.; Li, G.; Guo, Y.; Xu, L.; Fang, W. Excess Molar Volume along with Viscosity, Flash Point, and Refractive Index for Binary Mixtures of cis-Decalin or trans-Decalin with C9 to C11 n-Alkanes. J. Chem. Eng. Data 2013, 58, 2224−2232. (20) Simonson, J. M.; Ryther, R. J. Volumetric Properties of Aqueous Sodium Hydroxide from 273.15 to 348.15 K. J. Chem. Eng. Data 1989, 34, 57−63. (21) Frank, H. S.; Wen, W. Y. Ion-solvent interaction. Structural aspects of ion-solvent interaction in aqueous solutions: a suggested picture of water structure. Discuss. Faraday Soc. 1957, 24, 133−140. (22) Yan, Z.; Wang, J.; Zheng, H.; Liu, D. Volumetric properties of some α-amino acids in aqueous guanidine hydrochioride at 5, 15, 25, and 35°C. J. Solution Chem. 1998, 27, 473−483. (23) Ali, A.; Hyder, S.; Sabir, S.; Chand, D.; Nain, A. K. Volumetric, viscometric, and refractive index behaviour of a-amino acids and their groups’ contribution in aqueous D-glucose solution at different temperatures. J. Chem. Thermodyn. 2006, 38, 136−143. (24) Qiblawey, H.; Arshad, M.; Easa, A.; Atilhan, M. Viscosity and Density of Ternary Solution of Calcium Chloride + Sodium Chloride + Water from T= (293.15 to 323.15) K. J. Chem. Eng. Data 2014, 59, 2133−2143. (25) Hepler, L. G. Thermal expansion and structure in water and aqueous solutions. Can. J. Chem. 1969, 47, 4613−4617. (26) Rafiee, H. R.; Frouzesh, F. Study of Apparent Molar Volumes for Ionic Liquid, Ethyl-3-methyl Imidazolium Chloride in Aqueous Lithium Nitrate, Lithium Bromide, and Lithium Chloride Solutions at Temperatures (298.15 to 318.15) K. J. Chem. Eng. Data 2015, 60, 2958−2965. (27) Shekaari, H.; Zafarani-Moattar, M. T.; Mirheydari, S. N. Density, Viscosity, Speed of Sound, and Refractive Index of a Ternary Solution of Aspirin, 1 Butyl-3-methylimidazolium Bromide, and Acetonitrile at Different Temperatures T = (288.15 to 318.15) K. J. Chem. Eng. Data 2015, 60, 1572−1583. (28) Sharma, S. K.; Singh, G.; Kumar, H.; Kataria, R. Densities, Sound Speed, and Viscosities of Some Amino Acids with Aqueous Tetra-Butyl Ammonium Iodide Solutions at Different Temperatures. J. Chem. Eng. Data 2015, 60, 2600−2611.
temperature suggested that the solute−solvent interactions became weaker as temperature increased. These obtained thermodynamical properties and transport properties of multicomponents were useful to understand the structural change and solute−solvent interaction in the ternary solutions (EGCG + salts + H2O).
■
ASSOCIATED CONTENT
S Supporting Information *
The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.jced.5b00941. The values of limiting partial molar volumes (V 0φ) and experimental slopes (SV). Apparent molar isobaric expansions (E0φ) and Helper’s constant (∂2V 0φ/∂T2)p. Comparisons of densities (ρ), viscosities (η) and the apparent molar volumes (Vφ) of EGCG in different molalities of salt solutions. (PDF)
■
AUTHOR INFORMATION
Corresponding Author
*E-mail:
[email protected]. Tel.: 86-571-87951430. Fax: +86-571-87951895. Funding
The authors are thankful to the Chinese Pharmacopoeia Commission. The authors are grateful to analysis and measurement of Zhejiang University for providing MS and NMR data. This project is financially supported by Zhejiang Provincial Natural Science Foundation of China (Y 2100458). Notes
The authors declare no competing financial interest.
■
REFERENCES
(1) Yang, C. S.; Wang, X.; Lu, G.; Picinich, S. C. Cancer prevention by tea: animal studies, molecular mechanisms and human relevance. Nat. Rev. Cancer 2009, 9, 429−439. (2) Jankun, J.; Selman, S. H.; Swiercz, R.; Skrzypczak-Jankun, E. Why drinking green tea could prevent cancer. Nature 1997, 387, 561−561. (3) Zhao, F.; Lin, H. T.; Zhang, S.; Lin, Y. F.; Yang, J. F.; Ye, N. X. Simultaneous determination of caffeine and some selected polyphenols in Wuyi Rock tea by high-performance liquid chromatography. J. Agric. Food Chem. 2014, 62, 2772−2781. (4) Ghosh, A. K.; Ghosh, C.; Gupta, A. A simple approach to detect caffeine in tea beverages. J. Agric. Food Chem. 2013, 61, 3814−3820. (5) Yang, C. S. Inhibition of carcinogenesis by tea. Nature 1997, 389, 134−135. (6) Ananingsih, V-k.; Sharma, A.; Zhou, W. Tea catechins during food processing and storage: A review on stability and detection. Food Res. Int. 2013, 50, 469−479. (7) Song, Q. R.; Zhu, J. L.; Wan, J. F.; Cao, X. J. Measurement and modeling of Epigallocatechin Gallate solubility in supercritical carbon dioxide fluid with ethanol cosolvent. J. Chem. Eng. Data 2010, 55, 3946−3951. (8) Liao, S.; Umekita, Y.; Guo, J.; Kokontis, J.-M.; Hiipakka, R.-A. Growth inhibition and regression of human prostate and breast tumors in athymic mice by tea epigallocatechin gallate. Cancer Lett. 1995, 2596, 239−243. (9) Maeda-Yamamoto, M.; Ema, K.; Monobe, M.; Tokuda, Y.; Tachibana, H. Epicatechin-3-O-(3″-O-methyl)-gallate content in various tea cultivars (Camellia sinensis L.) and its in vitro inhibitory effect on histamine release. J. Agric. Food Chem. 2012, 60, 2165−2170. (10) Wang, Y.; Li, Q.; Wang, Q.; Li, Y.; Ling, J.; Liu, L.; Chen, X.; Bi, K. Simultaneous determination of seven bioactive components in Oolong tea Camellia sinensis: quality control by chemical composition and HPLC fingerprints. J. Agric. Food Chem. 2012, 60, 256−260. 1791
DOI: 10.1021/acs.jced.5b00941 J. Chem. Eng. Data 2016, 61, 1777−1792
Journal of Chemical & Engineering Data
Article
(29) Xu, X. H.; Zhu, C. Y.; Ma, Y. G. Densities and Viscosities of Sugar Alcohols in Vitamin B6 Aqueous Solutions at (293.15 to 323.15) K. J. Chem. Eng. Data 2015, 60, 1535−1543. (30) Ren, X. F.; Zhu, C. Y.; Ma, Y. G. Volumetric and Viscometric Studies of Amino Acids in Mannitol Aqueous Solutions at T = (293.15 to 323.15) K. J. Chem. Eng. Data 2015, 60, 1787−1802. (31) Desnoyers, J. E.; Arel, M.; Perron, G.; Jolicoeur, C. Apparent molar volumes of alkali halides in water at 25 °C. Influence of structural hydration interactions on the concentration dependence. J. Phys. Chem. 1969, 73, 3346−3351. (32) Pal, A.; Chauhan, N. Thermodynamic study of some amino acids, 2-aminopropanoic acid, 2-amino-3 methylbutanoic acid, 2amino-4- methylpentanoic acid, and 2-amino-3-pheny − lpropanoic acid in aqueous saccharide solutions at different temperatures:Volumetric and ultrasonic study. J. Chem. Eng. Data 2011, 56, 1687−1694. (33) Owensby, D. A.; Parker, A. J.; Diggle, J. W. Solvation of ions. 21. solvation of potassium cation in non-aqueous solvents. J. Am. Chem. Soc. 1974, 96, 2682−2688. (34) Lilley, T. H.; Moses, E.; Tasker, I. R. Aqueous solutions containing amino acids and peptides. Part 10.Enthalpy of interaction of glycine with some alkali metal chlorides at 298.15 K. J. Chem. Soc., Faraday Trans. 1 1980, 76, 906−914. (35) Zhang, C. F.; Li, G. Q.; Yue, L.; Guo, Y. S.; Fang, W. J. Densities, Viscosities, Refractive Indices, and Surface Tensions of Binary Mixtures of 2,2,4-Trimethylpentane with Several Alkylated Cyclohexanes from (293.15 to 343.15) K. J. Chem. Eng. Data 2015, 60, 2541−2548. (36) Lu, X. X.; Wu, D.; Ye, D. F.; Wang, Y. P.; Guo, Y. S.; Fang, W. J. Densities and Viscosities of Binary Mixtures of Ethyl-1,1,3,3tetramethylguanidinium Ionic Liquids with Ethanol and 1-Propanol. J. Chem. Eng. Data 2015, 60, 2618−2628. (37) Jones, G.; Dole, M. The Viscosity of Aqueous Solutions of Strong Electrolytes with Special Reference to Barium Chloride. J. Am. Chem. Soc. 1929, 51, 2950−2964. (38) Freyer, E. B.; Hubbard, J. C.; Andrews, D. H. Sonic Studies of the Physical Properties of Liquids. I. The Sonic Interferometer. The Velocity of Sound in Some Organic Liquids and Their Compressibilities. J. Am. Chem. Soc. 1929, 51, 759−770. (39) Zhang, J. F.; Fennell, P. S.; Trusler, J. P. M. Density and Viscosity of Partially Carbonated Aqueous Tertiary Alkanolamine Solutions at Temperatures between (298.15 and 353.15) K. J. Chem. Eng. Data 2015, 60, 2392−2399. (40) Nazet, A.; Sokolov, S.; Sonnleitner, T.; Makino, T.; Kanakubo, M.; Buchner, R. Densities, Viscosities, and Conductivities of the Imidazolium Ionic Liquids [Emim][Ac], [Emim][FAP], [Bmim][BETI], [Bmim][FSI], [Hmim][TFSI], and [Omim][TFSI]. J. Chem. Eng. Data 2015, 60, 2400−2411. (41) Zhao, C. W.; Ma, P. S.; Hua, C. Measurement and Analysis of Densities and Viscosities of Aqueous Glucose Solutions with NaCl and KCl. J. East. China. Univ. Techno. 2003, 29, 129−133. (42) Riyazuddeen; Usmani, M. A. Densities, speeds of sound, and viscosities of (L-proline + aqueous glucose) and (L-proline + aqueous sucrose) solutions in the temperature range (298.15 to 323.15) K. J. Chem. Eng. Data 2011, 56, 3504−3509. (43) Kaminsky, M. Ion−solvent interaction and the viscosity of strong−electrolyte solutions. Discuss. Faraday Soc. 1957, 24, 171−179. (44) Sarma, T. S.; Ahluwalia, J. C. Experimental studies on the structure of aqueous solutions by hydrophobic solute. Chem. Soc. Rev. 1973, 2, 203−232. (45) Feakins, D.; Freemantle, D. J.; Lawrence, K. G. Transition state treatment of the relative viscosity of electrolytic solutions. Applications to aqueous, non-aqueous and methanol + water systems. J. Chem. Soc., Faraday Trans. 1 1974, 70, 795−806. (46) Feakins, D.; Waghorne, W. E.; Lawrence, K. G. The viscosity and structure of solutions. Part 1. A new theory of the Jones−Dole Bcoefficient and the related activation parameters: application to aqueous solutions. J. Chem. Soc., Faraday Trans. 1 1986, 82, 563−568.
1792
DOI: 10.1021/acs.jced.5b00941 J. Chem. Eng. Data 2016, 61, 1777−1792