Article pubs.acs.org/jced
Volumetric Properties, Viscosity, and Refractive Indices of Different Naringenin Solutions at Several Temperatures Yingying Shan,† Behnaz Asadzadeh, and Weidong Yan* Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang 310027, China S Supporting Information *
ABSTRACT: Thermophysical properties including densities and viscosities of naringenin in aqueous solutions of ethanol/1-propanol with alcohol concentrations of (24.00 to 40.00) mol·kg−1 have been measured as a function of concentration of naringenin at temperatures from (293.15 to 323.15) K and atmospheric pressure. Also, refractive indices for studied systems have been determined at 298.15 K. The measured data were used to calculate the apparent molar volume (Vϕ), standard partial molar volume (V0ϕ), partial molar volume (V̅ ), viscosity B-coefficients, and molar refractions (Rm). The viscosity and refractive index data have been analyzed by Jones−Dole and Lorentz−Lorenz equations, respectively. The trends of variation of experimental and calculated parameters have been discussed according to the interactions between solvents and solute. The obtained results imply that naringenin acts as a structure maker in the studied system.
■
INTRODUCTION
As a pharmaceutical drug, it is inevitable to study naringenin’s various interactions in aqueous solutions in order to determine the functional properties of it. There is some information regarding naringenin properties in different solvents solutions;11,12 however, information with respect to the densities, viscosities, and refractive indices of naringenin in aqueous solutions was not found in the relevant literature. Therefore, in the present work, densities and viscosities of naringenin in aqueous ethanol/1-propanol solution at temperatures from (293.15 to 323.15) K and different alcohol concentrations (m = 24.00 to 40.00 mol·kg−1 in water) have been measured. Also, for studied systems refractive indices have been determined at 298.15 K. The measured density data was used to calculate apparent molar volume and standard partial molar volume. Furthermore, measured viscosities and refractive indices data were used to compute the viscosity B-coefficients and molar refractions, respectively. All of the obtained parameters have been used to describe the solute−solvent interactions in the ternary systems. The viscosity and refractive indices data have been analyzed by Jones−Dole and Lorentz−Lorenz equations, respectively. All of the obtained parameters have been used to describe the solute−solvent interactions occurring between the various components in the studied ternary system.
Naringenin (C15H12O5, CAS: 480-41-1), a plant flavonoid, has attracted significant scientific and public interest in Chinese medicine by owning the versatile health-promoting effects of antioxidation,1 antiulcer,2 reducing cholesterol,3 and antiinflammation.4 Knowledge of thermophysical properties of drugs with organic solvents in chemical processes requires reliable and systematic data such as densities and viscosities.5 This information is useful to understand the intermolecular interactions present in liquid pharmaceutical systems.6,7 The intermolecular interactions are commonly connected with noncovalent interactions including hydrophobic interactions, electrostatic interactions, and hydrogen bonding, which are influenced by the surrounding solutes and solvent.8 Volumetric properties provide useful information to solute−solvent interactions. Also, volumetric properties could provide a better introduction to the interactions of the components in solutions. These properties not only depend on solvent−solvent, solute− solvent, and solute−solute interactions, but also the structural effects result in interstitial accommodation due to the difference in molar volume and free volume between components in the system.9 Viscometric properties give important information about solute−solute and solute−solvent interactions and could help us to confirm the results of volumetric properties. Literature survey indicates that, few experimental works have been performed to study thermophysical properties of drugs in different alcohols solutions. In this way, Li et al.10 measured the density and refractive indices of hexane-1,2,3,4,5,6-hexol in aqueous solutions of 1-propanol and 2-propanol, and Chen et al.6 have also studied 7-hydroxy-4-methylcoumarin’s viscometric, volumetric, and refractive index behavior in aqueous ethanol or 1-propanol solutions in different temperature ranges. © 2017 American Chemical Society
■
EXPERIMENTAL SECTION Materials. The purity of naringenin purchased from Aladdin Industrial Corporation (Shanghai, China), was more than 97% in mass fraction. The 1H NMR and 13C NMR spectra of naringenin were presented in Figure S1 (Supporting Information). Received: March 29, 2017 Accepted: August 17, 2017 Published: September 5, 2017 3229
DOI: 10.1021/acs.jced.7b00299 J. Chem. Eng. Data 2017, 62, 3229−3240
Journal of Chemical & Engineering Data
Article
Table 1. Sources and Purities of the Chemicals Used
a
chemical
CASRN
source
initial mass fraction purity
purification method
final mass fraction purity
analysis method
naringenin ethanol 1-propanol
480-41-1 64-17-5 71-23-8
Aladdin Sinopharm Sinopharm
0.97 0.99 0.99
recrystallization distillation distillation
0.985 0.997 0.995
HPLCa GCb GC
High performance liquid chromatography. bGas chromatography.
Table 2. Comparison of Experimental Density (ρ), Viscosities (η) and Refractive Indices (nD) with Literature Valuesa at Different Temperatures and the Experimental Pressure (p = 0.1 MPa)b ρ/103 kg·m−3 T/K
expt
293.15 298.15 308.15
0.998206 0.997046 0.994024
293.15 298.15
0.789476 0.788356
293.15 298.15
0.803675 0.800942
298.15 303.15
0.925800 0.923139
298.15 313.15
0.914360 0.903156
η/mPa·s lit.
expt
Water 0.998207 1.002 0.997047 0.887 0.994027 0.728 Ethanol 0.7895 1.159 0.788 1.091 1-Propanol 0.8036 2.407 0.7996 2.117 Water + Ethanol (16.00 mol·kg−1) 0.926799 2.367 0.922942 1.992 Water +1-Propanol (14.00 mol·kg−1) 0.914486 2.591 0.903277 1.618
nD lit.
expt
lit.
1.009 0.890 0.729
1.3327 1.3315
1.3320 1.3313
1.162 1.096
1.3607
1.3618
2.410 2.118
1.3862
1.3853
2.363 1.9886
1.3569
1.3564
2.599 1.626
1.3637
1.3640
a
Chen, A.; Liu, M.; Zheng, Y., et al. J. Chem. Eng. Data 2013, 58, 2474−2482. Tang, N.; Shi, W.; Yan, W. J. Chem. Eng. Data 2015, 61, 35−40. ́ Gonçalves, F.; Trindade, A R.; Costa, C., et al. J. Chem. Thermodynamics 2010, 42, 1039−1049. Martinez-Reina M.; Amado-González E.; GomézJaramillo W. J. Solution Chem. 2015, 44, 206−222. Dong, L.; Liu, M.; Li, G., et al. J. Chem. Eng. Data 2011, 56, 4031−4039. Mokhtarani, B.; Sharifi, A.; Mortaheb, H. R., et al. J. Chem. Thermodyn. 2009, 41, 1432−1438. Li, H.; Xu, X Y.; Chi, C. J., et al. J. Chem. Eng. Data 2010, 55, 2909−2913. Li, D.; Li, G.; Bian, P., et al. J. Chem. Eng. Data 2016, 61, 1777−1792. Zafarani-Moattar M. T.; Hosseinzadeh S. J. Chem. Eng. Data 2006, 51, 1190−1193. b Standard uncertainties u for the molality of solvents is u(msolvent) = 0.01 mol·kg−1, u(T) = 0.01 K, u(P) = 5 KPa. The relative standard uncertainties for densities and viscosity are ur (ρ) = 0.005, ur(η) = 0.01, and the standard uncertainty of refractive indices is u(nD) = 0.0005.
Viscosity measurements were carried out with an Anton Paar AMVn at different temperatures. By this apparatus, the working temperature can be controlled within ±0.01 K. The viscometer was calibrated with distilled deionized water before use. The measured data of solutions compared with literature are shown in Table 2. The percentage deviation of viscosities (η) with literature values were ±0.69%. The flow time of the solutions through the whole capillary was recorded, and the following equation was used to calculate the viscosities of the solution.
Ethanol and 1-propanol were purchased from Sinopharm Chemical Reagent Co., Ltd. (Shanghai, China). Water obtained by a Millipore, Milli-Q (Bedford, MA, USA) purification system was used to prepare the aqueous solution. The sources and purities of chemicals used in the experiment are listed in Table 1. Apparatus and Procedure. The studied solutions were prepared in glass vials in molal base concentration by mass using an analytical balance (A CP 225D balance (Sartorius, Germany) with an uncertainty of ±0.01 mg to achieve exact molality concentrations (m = 24.00, 28.00, 32.00, 36.00, and 40.00 mol·kg−1) of ethanol/1-propanol in water without a solute and concentrations (m = 0.00, 0.01, 0.02, 0.03, 0.04, and 0.05 mol·kg−1) of naringenin in the mixed solvents. The weight of the solute and solvents in the studied system are given in Table S1. All the solutions were kept in glass bottles with a cap to prevent evaporation before use. Measurements were performed immediately after preparation of solutions. The density data of the solutions at different temperatures were measured using an Anton Paar DMA 5000 M densimeter (with an accuracy of ±0.005 kg·m−3). The apparatus was calibrated with double distilled deionized, and degassed water, and dry air at atmospheric pressure. The measured density data of pure solvent and solutions compared with literature are shown in Table 2; however, there are no available literature data for naringenin. The percentage deviation of density (ρ) with literature values was ±0.17%.
η = k(7.680 − ρ)t
(1)
where ρ represents the density of the solution, t represents the flow time of the solution in the capillary. In this work, k was calibrated to be 0.010167 using distilled deionized water at 293.15 K (η = 1.002; ρ = 0.99820). Refractive index values nD of the studied solutions were determined using a WYA-2S refractometer (Shanghai BM Instruments Manufacture Co., Ltd., China) with an uncertainty of 5 × 10−4. The temperature of the solutions was maintained at 298.15 K using a constant temperature thermostatic bath (THD-2006, Ningbo Tianheng Instrument Works Co., Ltd., China) with a thermal stability of ±0.1 K. The measured refractive index value of pure water at 298.15 K was reported in Table 2 and compared with literature value. The percentage deviation of refractive indices (nD) with literature values were ±0.08%. 3230
DOI: 10.1021/acs.jced.7b00299 J. Chem. Eng. Data 2017, 62, 3229−3240
3231
1.3456
0.0000
0.2769
0.5442
0.8101
1.0773
1.3456
0.0000
0.2742
0.5442
0.8128
1.0799
0.0000
0.0102
0.0201
0.0300
0.0400
0.0501
0.0000
0.0101
0.0201
0.0301
0.0401
1.3456
0.0501
1.0799
1.0799
0.0401
0.0501
0.8101
0.0300
0.0401
0.5442
0.0201
0.8128
0.2715
0.0100
0.0301
0.0000
0.0000
0.5442
1.3456
0.0501
0.0201
1.0799
0.0401
0.2769
0.8128
0.0301
0.0000
0.5442
0.0201
0.0102
0.2769
0.0102
0.0000
0.0000
%
mol·kg−1
0.0000
Wnaringenin
mnaringenin
883.956
883.098
882.221
881.323
880.390
890.239
889.426
888.601
887.749
886.888
885.981
896.583
895.799
894.997
894.178
893.341
892.458
903.989
903.232
902.462
901.672
900.845
899.992
913.065
912.245
911.393
910.532
909.641
908.710
kg·m−3
ρ 6
906.509 907.385 908.242 909.063
189.50 ± 0.24
190.91 ± 0.22
191.99 ± 0.18
193.30 ± 0.18
897.529 898.338 899.110 899.887
199.15 ± 0.23
200.61 ± 0.21
202.08 ± 0.15
203.20 ± 0.17
890.066 890.899 891.713 892.513
197.08 ± 0.22
198.48 ± 0.21
199.61 ± 0.16
200.75 ± 0.17
883.569 884.431 885.271 886.102
194.56 ± 0.20
195.58 ± 0.17
196.91 ± 0.21
198.08 ± 0.11
877.107 878.015 878.900 879.777
190.21 ± 0.30
191.25 ± 0.22
192.53 ± 0.16
193.78 ± 0.18
876.159
882.699
193.25 ± 0.29
881.777
889.212
195.64 ± 0.33
888.313
896.693
197.94 ± 0.34
895.830
905.615
904.674
kg·m−3
ρ
188.66 ± 0.31
m3·mol−1
Vϕ(×10 )
293.15 K 6
192.46 ± 0.13
191.47 ± 0.15
189.98 ± 0.22
188.62 ± 0.30
196.78 ± 0.11
195.76 ± 0.21
194.50 ± 0.17
193.41 ± 0.20
191.72 ± 0.35
199.30 ± 0.12
198.17 ± 0.16
196.92 ± 0.21
195.41 ± 0.21
194.04 ± 0.33
202.05 ± 0.11
201.15 ± 0.16
199.28 ± 0.22
198.10 ± 0.23
196.57 ± 0.34
192.86 ± 0.15
191.36 ± 0.16
190.14 ± 0.21
189.09 ± 0.24
187.80 ± 0.33
m3·mol−1
Vϕ(×10 )
298.15 K
875.549
874.677
873.776
872.854
871.898
881.917
881.075
880.225
879.350
878.467
877.532
888.342
887.537
886.716
885.865
885.006
884.095
895.917
895.151
894.347
893.527
892.671
891.793
904.998
904.170
903.303
902.425
901.522
900.572
kg·m−3
ρ 6
m3·mol−1
900.882
900.027
899.162
898.279
191.41 ± 0.11
190.39 ± 0.15
188.91 ± 0.23
187.29 ± 0.25
186.16 ± 0.29
(Wethanol = 0.5249)
897.364
886.977
891.180
890.391
889.576
888.745
887.870
199.32 ± 0.11
197.86 ± 0.16
196.36 ± 0.20
194.64 ± 0.22
193.58 ± 0.34
879.584
884.151
883.336
882.511
881.649
880.775
197.67 ± 0.12
196.37 ± 0.16
194.70 ± 0.22
193.50 ± 0.22
192.01 ± 0.33
873.214
877.658
876.803
875.941
875.058
874.161
194.48 ± 0.11
193.43 ± 0.17
192.09 ± 0.17
190.76 ± 0.20
189.21 ± 0.28
191.74 ± 0.13
190.16 ± 0.15
188.88 ± 0.22
187.90 ± 0.30
871.245
870.357
869.442
868.513
867.544
190.44 ± 0.13
188.99 ± 0.16
187.88 ± 0.21
186.51 ± 0.33
methanol = 40.00 mol·kg−1 (Wethanol = 0.6481)
195.63 ± 0.11
194.55 ± 0.21
193.20 ± 0.17
192.13 ± 0.20
190.42 ± 0.29
methanol = 36.00 mol·kg−1 (Wethanol = 0.6237)
198.53 ± 0.17
197.25 ± 0.16
195.85 ± 0.21
194.72 ± 0.22
192.91 ± 0.33
methanol = 32.00 mol·kg−1 (Wethanol = 0.5957)
200.81 ± 0.15
199.13 ± 0.15
197.78 ± 0.22
196.32 ± 0.23
195.02 ± 0.33
6
Vϕ(×10 )
308.15 K
methanol = 28.00 mol·kg−1 (Wethanol = 0.5632)
192.33 ± 0.12
190.80 ± 0.16
189.68 ± 0.21
188.31 ± 0.24
187.05 ± 0.32
−1
kg·m−3
ρ
896.404
methanol = 24.00 mol·kg
m3·mol−1
Vϕ(×10 )
303.15 K
866.881
865.980
865.055
864.118
863.138
873.356
872.493
871.623
870.738
869.827
868.871
879.832
879.027
878.182
877.311
876.421
875.489
887.032
886.232
885.409
884.565
883.688
882.783
896.690
895.834
894.956
894.065
893.142
892.171
kg·m−3
ρ 6
189.37 ± 0.18
188.02 ± 0.16
186.92 ± 0.22
185.35 ± 0.31
193.78 ± 0.12
192.71 ± 0.20
191.34 ± 0.18
189.59 ± 0.21
188.37 ± 0.27
196.91 ± 0.15
194.96 ± 0.16
193.53 ± 0.19
192.13 ± 0.20
190.97 ± 0.34
198.57 ± 0.12
197.17 ± 0.16
195.61 ± 0.21
194.13 ± 0.23
192.42 ± 0.33
190.75 ± 0.16
189.50 ± 0.15
188.13 ± 0.22
186.47 ± 0.26
185.12 ± 0.34
m3·mol−1
Vϕ(×10 )
313.15 K
862.458
861.550
860.614
859.669
858.677
868.960
868.087
867.207
866.305
865.383
864.413
875.511
874.679
873.822
872.942
872.043
871.096
883.069
882.274
881.440
880.576
879.693
878.777
892.436
891.577
890.687
889.786
888.854
887.872
kg·m−3
ρ 6
188.41 ± 0.13
186.94 ± 0.16
185.87 ± 0.22
184.03 ± 0.30
192.52 ± 0.11
191.34 ± 0.14
189.85 ± 0.17
188.25 ± 0.20
186.85 ± 0.29
195.41 ± 0.12
193.87 ± 0.16
192.46 ± 0.18
190.92 ± 0.22
189.31 ± 0.35
197.86 ± 0.11
196.00 ± 0.16
194.41 ± 0.21
193.40 ± 0.22
191.35 ± 0.33
189.98 ± 0.11
188.52 ± 0.16
187.23 ± 0.22
185.53 ± 0.27
184.06 ± 0.33
m3·mol−1
Vϕ(×10 )
318.15 K
857.959
857.042
856.104
855.147
854.144
864.481
863.605
862.721
861.805
860.877
859.898
871.115
870.272
869.417
868.527
867.622
866.666
878.331
877.515
876.676
875.809
874.913
873.986
888.111
887.252
886.350
885.432
884.496
883.502
kg·m−3
ρ
187.56 ± 0.13
186.10 ± 0.16
184.60 ± 0.22
182.81 ± 0.30
191.90 ± 0.12
190.58 ± 0.15
188.85 ± 0.16
187.56 ± 0.20
185.95 ± 0.29
194.91 ± 0.12
193.49 ± 0.16
191.72 ± 0.21
190.28 ± 0.22
188.53 ± 0.36
196.94 ± 0.11
195.39 ± 0.15
193.64 ± 0.21
192.25 ± 0.22
190.31 ± 0.33
189.19 ± 0.13
187.43 ± 0.17
186.13 ± 0.20
184.79 ± 0.25
182.85 ± 0.33
m3·mol−1
Vϕ(×106)
323.15 K
Table 3. Values of Densities (ρ) and Apparent Molar Volumes (Vϕ) of Naringenin in Aqueous Ethanol/1-Propanol Solutions at T = (293.15 to 323.15) K and p = 0.1 MPaa
Journal of Chemical & Engineering Data Article
DOI: 10.1021/acs.jced.7b00299 J. Chem. Eng. Data 2017, 62, 3229−3240
0.5442
0.8101
1.0799
1.3430
0.0000
0.2742
0.5442
0.8128
1.0773
1.3403
0.0000
0.2742
0.5416
0.0401
0.0500
0.0000
0.0101
0.0201
0.0301
0.0400
0.0499
0.0000
0.0101
0.0200
0.8101
0.0300
0.0300
0.5416
0.0200
0.0201
0.2742
0.0101
0.2742
0.0000
0.0000
0.0000
1.3430
0.0500
0.0101
1.0799
0.0401
0.0000
0.8128
0.0301
1.3430
0.5442
0.0201
0.0500
0.2769
0.0102
1.0746
0.0000
0.0000
0.0399
1.3456
%
mol·kg−1
0.0501
Wnaringenin
mnaringenin
Table 3. continued
3232
868.467
867.585
866.652
875.457
874.672
873.845
872.998
872.129
871.227
880.571
879.832
879.059
878.270
877.452
876.598
886.797
886.006
885.187
884.353
883.495
882.598
894.689
893.887
893.056
892.201
891.331
890.414
884.797
kg·m−3
ρ 6
880.630
194.75 ± 0.12
888.381 889.252 890.100 890.921
193.18 ± 0.24
194.36 ± 0.18
195.73 ± 0.16
196.97 ± 0.13
874.368 875.165 875.948 876.702
201.72 ± 0.29
203.39 ± 0.27
204.74 ± 0.21
206.30 ± 0.15
869.043 869.902 870.730 871.547
196.01 ± 0.27
197.12 ± 0.20
198.30 ± 0.22
199.93 ± 0.17
863.564 864.462
191.43 ± 0.29
192.91 ± 0.25
862.617
868.167
194.40 ± 0.37
867.252
873.540
200.78 ± 0.37
872.673
882.945
199.73 ± 0.23
881.307
196.95 ± 0.28 882.134
880.458
195.57 ± 0.23
198.16 ± 0.15
879.594
194.26 ± 0.35
878.683
887.497
191.83 ± 0.35
886.561
kg·m−3
ρ
m3·mol−1
Vϕ(×10 )
293.15 K 6
191.23 ± 0.26
189.89 ± 0.31
198.59 ± 0.19
197.58 ± 0.19
196.07 ± 0.20
195.05 ± 0.31
193.03 ± 0.36
205.28 ± 0.19
203.83 ± 0.17
202.46 ± 0.22
200.63 ± 0.29
199.50 ± 0.39
198.50 ± 0.19
197.15 ± 0.15
195.82 ± 0.18
194.61 ± 0.23
192.81 ± 0.35
195.18 ± 0.15
194.01 ± 0.16
192.64 ± 0.18
191.43 ± 0.24
189.79 ± 0.34
193.47 ± 0.11
m3·mol−1
Vϕ(×10 )
298.15 K
192.84 ± 0.11
−1
6
m3·mol−1
Vϕ(×10 )
308.15 K
191.75 ± 0.11
(Wethanol = 0.6481)
kg·m−3
ρ
872.108
methanol = 40.00 mol·kg
m3·mol−1
Vϕ(×10 )
6
194.78 ± 0.13
193.46 ± 0.16
191.83 ± 0.18
190.49 ± 0.24
189.42 ± 0.35
878.651
883.102
882.265
881.403
880.518
879.606
193.56 ± 0.13
192.29 ± 0.16
190.71 ± 0.18
189.07 ± 0.25
188.01 ± 0.34
197.79 ± 0.13
196.03 ± 0.15
194.79 ± 0.21
193.40 ± 0.23
191.86 ± 0.35
870.680
875.052
874.212
873.375
872.506
871.614
196.38 ± 0.18
195.24 ± 0.15
193.43 ± 0.18
191.97 ± 0.23
190.50 ± 0.35
204.14 ± 0.15
202.78 ± 0.18
201.26 ± 0.21
199.65 ± 0.29
198.07 ± 0.37
864.588
868.712
867.937
867.147
866.324
865.476
203.65 ± 0.19
202.24 ± 0.18
200.34 ± 0.21
198.72 ± 0.28
197.53 ± 0.37
197.91 ± 0.17
196.18 ± 0.18
194.65 ± 0.20
193.33 ± 0.26
192.30 ± 0.36
859.057
863.438
862.626
861.764
860.893
859.992
197.04 ± 0.17
195.26 ± 0.21
194.24 ± 0.22
192.73 ± 0.27
191.02 ± 0.36
860.399
859.487
858.531 189.98 ± 0.25
188.99 ± 0.29
856.279
855.360
854.394 189.12 ± 0.25
187.93 ± 0.32
m1‑propanol = 40.00 mol·kg−1 (W1‑propanol = 0.7062)
867.517
866.713
865.872
865.004
864.105
863.182
m1‑propanol = 36.00 mol·kg−1 (W1‑propanol = 0.6839)
872.727
871.958
871.167
870.354
869.519
868.638
m1‑propanol = 32.00 mol·kg−1 (W1‑propanol = 0.6579)
879.002
878.195
877.354
876.497
875.619
874.698
m1‑propanol = 28.00 mol·kg−1 (W1‑propanol = 0.6273)
887.029
886.206
885.357
884.479
883.581
882.639
m1‑propanol = 24.00 mol·kg−1 (W1‑propanol = 0.5906)
876.407
kg·m−3
ρ
303.15 K
852.093
851.169
850.192
859.286
858.472
857.602
856.726
855.815
854.873
864.583
863.793
862.982
862.152
861.302
860.400
871.009
870.159
869.305
868.425
867.521
866.571
879.093
878.246
877.375
876.479
875.566
874.600
867.746
kg·m−3
ρ 6
188.34 ± 0.30
186.71 ± 0.31
196.54 ± 0.14
194.59 ± 0.23
193.58 ± 0.22
191.91 ± 0.31
190.38 ± 0.35
202.50 ± 0.15
201.19 ± 0.20
199.72 ± 0.21
198.04 ± 0.28
196.05 ± 0.37
195.00 ± 0.11
193.74 ± 0.11
192.04 ± 0.16
190.44 ± 0.19
188.71 ± 0.35
192.82 ± 0.13
191.59 ± 0.16
190.04 ± 0.18
188.64 ± 0.25
186.90 ± 0.34
190.92 ± 0.12
m3·mol−1
Vϕ(×10 )
313.15 K
847.850
846.918
845.933
855.103
854.266
853.399
852.520
851.598
850.649
860.478
859.674
858.868
858.026
857.162
856.251
866.883
866.025
865.159
864.269
863.355
862.393
875.028
874.172
873.295
872.386
871.462
870.485
863.337
kg·m−3
ρ 6
187.47 ± 0.30
185.87 ± 0.28
195.77 ± 0.15
194.32 ± 0.26
192.96 ± 0.26
190.99 ± 0.27
189.73 ± 0.33
201.72 ± 0.15
200.58 ± 0.18
198.53 ± 0.20
196.86 ± 0.29
195.21 ± 0.37
193.96 ± 0.12
192.61 ± 0.15
190.94 ± 0.16
189.28 ± 0.21
187.41 ± 0.34
191.85 ± 0.13
190.60 ± 0.16
188.82 ± 0.18
187.47 ± 0.24
185.83 ± 0.35
189.85 ± 0.13
m3·mol−1
Vϕ(×10 )
318.15 K
843.553
842.606
841.606
850.839
850.003
849.123
848.228
847.298
846.336
856.247
855.447
854.617
853.762
852.883
851.958
862.703
861.839
860.959
860.058
859.134
858.160
870.895
870.036
869.154
868.233
867.295
866.309
858.858
kg·m−3
ρ
185.62 ± 0.25
184.04 ± 0.31
194.76 ± 0.23
192.92 ± 0.22
191.57 ± 0.27
189.84 ± 0.30
188.30 ± 0.34
200.44 ± 0.14
198.72 ± 0.17
196.99 ± 0.21
195.25 ± 0.29
193.67 ± 0.37
192.87 ± 0.13
191.35 ± 0.15
189.77 ± 0.17
188.10 ± 0.22
186.09 ± 0.35
191.04 ± 0.13
189.58 ± 0.16
187.60 ± 0.18
186.28 ± 0.24
184.87 ± 0.34
188.70 ± 0.11
m3·mol−1
Vϕ(×106)
323.15 K
Journal of Chemical & Engineering Data Article
DOI: 10.1021/acs.jced.7b00299 J. Chem. Eng. Data 2017, 62, 3229−3240
1.0773
1.3430
0.0400
0.0500
871.031
870.195
869.347
kg·m−3
ρ 6
kg·m−3 865.349 866.215 867.061
194.05 ± 0.22
195.35 ± 0.19
196.59 ± 0.19
ρ
m3·mol−1
Vϕ(×10 )
293.15 K 6
195.21 ± 0.17
193.86 ± 0.22
192.74 ± 0.23
m3·mol−1
Vϕ(×10 )
298.15 K
m3·mol−1
Vϕ(×10 )
6
863.015
862.169
861.296 194.47 ± 0.22
192.84 ± 0.21
191.58 ± 0.23
−1
6
m3·mol−1
Vϕ(×10 )
308.15 K
858.925
858.058 193.53 ± 0.19
192.28 ± 0.19
190.80 ± 0.22
(W1‑propanol = 0.7062)
kg·m−3
ρ
857.183
m1‑propanol = 40.00 mol·kg
kg·m−3
ρ
303.15 K
854.764
853.898
853.014
kg·m−3
ρ 6
192.73 ± 0.16
191.15 ± 0.17
189.59 ± 0.25
m3·mol−1
Vϕ(×10 )
313.15 K
850.544
849.667
848.773
kg·m−3
ρ 6
191.97 ± 0.21
190.48 ± 0.20
189.04 ± 0.26
m3·mol−1
Vϕ(×10 )
318.15 K
846.291
845.392
844.493
kg·m−3
ρ
190.19 ± 0.22
188.94 ± 0.22
187.12 ± 0.24
m3·mol−1
Vϕ(×106)
323.15 K
3233
0.6839
0.7062
36.00
40.00
298.15 K
303.15 K
308.15 K
318.15 K
323.15 K
197.8 ± 0.4 196.5 ± 0.1 195.7 ± 0.3 194.6 ± 0.1
191.9 ± 0.2 190.6 ± 0.2 189.6 ± 0.2 188.8 ± 0.2
188.5 ± 0.2 187.4 ± 0.4 186.4 ± 0.3 185.2 ± 0.2
199.1 ± 0.3
193.1 ± 0.2
190.2 ± 0.2
184.3 ± 0.3 182.4 ± 0.2 127.9 ± 1.3 132.9 ± 1.5 138.6 ± 3.1 144.0 ± 1.6
188.1 ± 0.2 186.6 ± 0.1 133.9 ± 3.2 137.1 ± 0.8 141.0 ± 4.6 146.3 ± 2.4
193.5 ± 0.3 191.8 ± 0.2 140.8 ± 2.7 147.9 ± 1.2 153.0 ± 1.5 157.8 ± 3.1
185.9 ± 0.2 184.5 ± 0.4 135.6 ± 3.5 139.3 ± 2.9 145.1 ± 1.8 150.7 ± 2.0
191.6 ± 0.3 190.4 ± 0.3 188.9 ± 0.3 187.2 ± 0.2
1-Propanol
182.7 ± 0.3 181.5 ± 0.3 116.1 ± 3.2 121.8 ± 1.7 127.4 ± 2.0 130.2 ± 0.9
148.9 ± 1.4 152.4 ± 0.9 156.8 ± 3.1
150.5 ± 2.9 154.6 ± 2.8 160.6 ± 4.2
160.6 ± 4.9 167.8 ± 1.7 170.5 ± 2.6
159.1 ± 2.7 164.6 ± 5.0 168.6 ± 1.8
148.3 ± 4.3 152.0 ± 2.3 156.9 ± 3.7
135.8 ± 1.4 141.8 ± 1.1 147.5 ± 3.4
147.2 ± 1.9 151.6 ± 2.7 159.8 ± 1.5 139.4 ± 2.6 144.3 ± 1.2 149.1 ± 1.8
185.4 ± 0.4 184.4 ± 0.3 120.2 ± 1.3 124.7 ± 1.3 128.5 ± 2.2 132.1 ± 1.0
153.2 ± 2.1 156.2 ± 3.1 163.9 ± 1.5
143.4 ± 1.4 148.7 ± 2.3 153.5 ± 2.1
313.15 K
187.8 ± 0.2 186.9 ± 0.3 127.8 ± 2.5 132.9 ± 1.0 137.8 ± 3.1 141.9 ± 0.7
189.9 ± 0.1 188.7 ± 0.1 134.5 ± 2.1 139.9 ± 2.5 143.7 ± 1.6 146.8 ± 4.5
188.5 ± 0.2 187.8 ± 0.4 186.4 ± 0.1 185. Five ±0.1 184.3 ± 0.2 183.1 ± 0.2 128.7 ± 1.7 134.1 ± 2.1 137.4 ± 2.6 143.6 ± 1.8
187.5 ± 0.2 186.4 ± 0.3 185.1 ± 0.4 184.0 ± 0.3
189.0 ± 0.3
293.15 K
192.8 ± 0.2
190.6 ± 0.1 189.3 ± 0.2 188.0 ± 0.3 186.9 ± 0.3
192.0 ± 0.4
323.15 K Ethanol
182.5 ± 0.2 181.4 ± 0.2 118.1 ± 0.9 124.1 ± 1.1 130.9 ± 1.2 136.5 ± 1.5
318.15 K
190.5 ± 0.3
192.7 ± 0.1 191.7 ± 0.4 190.5 ± 0.1 189.2 ± 0.2
194.4 ± 0.3
313.15 K
195.2 ± 0.2 193.4 ± 0.3 191.9 ± 0.3 190.9 ± 0.1
308.15 K
186.5 ± 0.4 185.6 ± 0.1 184.7 ± 0.1 183.6 ± 0.2
303.15 K
196.5 ± 0.2
298.15 K
187.3 ± 0.3
293.15 K
SV(×106)/m3·kg·mol−2
a
msolvent and Wsolvent are the molality and the mass fraction of ethanol or 1-propanol in aqueous solutions. Standard uncertainty u for the molality of solvent is u(msolvent) = 0.01 mol·kg−1, u(T) = 0.01 K; the relative standard uncertainty ur(Vϕ(×106)) = 0.01 and ur(SV(×106)) = 0.01
0.6579
32.00
0.6481
40.00
0.6273
0.6237
36.00
0.5906
0.5957
32.00
28.00
0.5632
28.00
24.00
0.5249
24.00
msolvent / mol·kg−1 Wsolvent
V0ϕ(×106)/m3·mol−1
Table 4. Values of Standard Partial Molar Volumes (Vϕ0) and Experimental Slope (SV) of Naringenin in Aqueous Ethanol/1-Propanol Solutions at T = (293.15 to 323.15) Ka
mnaringenin and Wnaringenin are the molality and the mass percent of naringenin in aqueous ethanol or 1-propanol solutions. methanol and m1‑propanol are the molality of ethanol or 1-propanol inaqueous solutions, respectively. Wethanol and W1‑propanol are the mass fraction of ethanol or 1-propanol in aqueous solutions. Standard uncertainties u for the molality of solute and solvents are u(mnaringenin) = 0.0001 mol·kg−1; u(methanol) = u(m1‑propanol) = 0.01 mol·kg−1, u(T) = 0.01 K, u(P) = 5 KPa, and the relative standard uncertainties u for densities and Vϕ are ur(ρ) = 0.005 and ur(Vϕ(×106)) = 0.01
a
0.8101
%
mol·kg−1
0.0300
Wnaringenin
mnaringenin
Table 3. continued
Journal of Chemical & Engineering Data Article
DOI: 10.1021/acs.jced.7b00299 J. Chem. Eng. Data 2017, 62, 3229−3240
Journal of Chemical & Engineering Data
■
Article
RESULTS AND DISCUSSION Volumetric Properties. To evaluate volumetric properties and intermolecular interactions of naringenin in aqueous ethanol/1-propanol solutions, the values of apparent molar volumes (Vϕ) were calculated. The apparent molar volume (Vϕ) of naringenin in the (ethanol/1-propanol + water) solutions at T = (293.15 to 323.15) K and alcohols molality = (24.00, 28.00, 32.00, 36.00 and 40.00) mol·kg−1 was computed from the experimental density data using the following equation: Vφ = M /ρ − 1000(ρ − ρ0 )/(mρρ0 )
(2)
where M and m are the molar mass and molality of naringenin, ρ0 and ρ are the densities of solvent (ethanol/1-propanol + water) and the solution (naringenin + ethanol/1-propanol + water), respectively. The data of density for naringenin in aqueous solutions of ethanol/1-propanol are reported in Table 3 and were plotted in Figures S2 and S3 (Supporting Information). The (Vϕ) values of the investigated systems at T = (293.15 to 323.15) K are presented in Table 3 and depicted graphically in Figures S4 and S5 (Supporting Information). According to Table 3, the Vϕ values are positive and decrease with a rise in temperature and increase with increasing the concentration of naringenin in the aqueous solutions at fixed temperature. The standard partial molar volume (V0ϕ) can be described by the linearly analysis of Vϕ versus the molality of naringenin according to the following equation: Vφ = V φ0 + SV m
Figure 1. Variation of standard partial molar volume (Vϕ0) of naringenin versus the molality of ethanol (a) or 1-propanol (b) in aqueous solution at different temperature. 293.15 K (■); 298.15 K (○); 303.15 K (▲); 308.15 K (▽); 313.15 K (●); 318.15 K (□); 323.15 K (◆).
(3)
(V0ϕ)
In this equation is the apparent molar volume at infinite dilution that has the same meaning as the standard partial molar
Table 5. Values of Partial Molar Volumes (V̅ ) of Naringenin in Aqueous Ethanol/1-Propanol Solutions at T = (293.15 to 323.15) Ka V̅ (×106)/m3·mol−1 mnaringenin/mol·kg−1
Wnaringenin/%
293.15 K
298.15 K
303.15 K
308.15 K
methanol = 24.00 mol·kg
−1
313.15 K
318.15 K
323.15 K
(Wethanol = 0.5249)
0.0000 0.0102 0.0201 0.0301 0.0401 0.0501
0.0000 0.2769 0.5442 0.8128 1.0799 1.3456
189.86 191.87 194.46 196.73 199.22
189.07 191.58 193.88 196.34 199.08
188.39 187.55 190.94 190.03 193.62 193.02 196.05 195.86 198.89 198.25 methanol = 28.00 mol·kg−1 (Wethanol
186.58 189.35 192.45 195.25 197.93 = 0.5632)
185.58 188.52 191.71 194.48 197.43
184.42 187.88 190.75 193.59 196.88
0.0000 0.0100 0.0201 0.0300 0.0401 0.0501
0.0000 0.2715 0.5442 0.8101 1.0799 1.3456
199.29 201.85 204.65 207.47 209.94
197.97 200.91 203.48 206.76 209.06
196.46 195.05 199.21 197.59 202.09 200.76 204.89 203.75 208.01 206.67 methanol = 32.00 mol·kg−1 (Wethanol
193.95 197.21 200.21 203.31 206.25 = 0.5957)
192.91 196.54 199.10 202.26 205.69
191.95 195.54 198.56 201.96 205.15
0.0000 0.0102 0.0201 0.0301 0.0401 0.0501
0.0000 0.2769 0.5442 0.8128 1.0799 1.3456
196.94 199.65 202.33 204.73 207.15
195.40 198.08 200.92 203.50 205.96
194.32 193.46 197.49 196.35 200.00 198.97 202.78 202.06 205.43 204.78 methanol = 36.00 mol·kg−1 (Wethanol
192.47 195.09 197.96 200.86 204.28 = 0.6237)
190.86 193.97 197.02 199.95 203.01
190.16 193.49 196.53 199.90 202.92
0.0000 0.0102 0.0201
0.0000 0.2769 0.5442
194.48 196.98
192.99 195.92
189.79 192.39
188.32 191.15
187.47 190.56
191.73 194.71
3234
190.56 193.42
DOI: 10.1021/acs.jced.7b00299 J. Chem. Eng. Data 2017, 62, 3229−3240
Journal of Chemical & Engineering Data
Article
Table 5. continued V̅ (×106)/m3·mol−1 mnaringenin/mol·kg−1
Wnaringenin/%
293.15 K
298.15 K
303.15 K
308.15 K
methanol = 36.00 mol·kg−1 (Wethanol 197.06 196.05 199.69 198.71 202.07 201.10 methanol = 40.00 mol·kg−1 (Wethanol
313.15 K
318.15 K
323.15 K
= 0.6237) 195.52 198.29 200.76 = 0.6481)
194.18 197.11 199.75
193.32 196.54 199.37
0.0300 0.0400 0.0501
0.8101 1.0773 1.3456
199.19 201.72 204.10
198.24 200.75 203.03
0.0000 0.0101 0.0201 0.0301 0.0401 0.0501
0.0000 0.2742 0.5442 0.8128 1.0799 1.3456
191.38 193.58 196.02 198.44 200.57
189.85 192.43 195.14 197.34 199.57
189.19 187.83 186.72 191.44 190.50 189.65 193.99 192.91 192.11 196.85 195.66 194.82 199.22 198.27 197.72 m1‑propanol = 24.00 mol·kg−1 (W1‑propanol = 0.5906)
185.46 188.72 191.21 194.10 196.95
184.30 187.56 190.54 193.47 196.09
0.0000 0.0102 0.0201 0.0301 0.0401 0.0500
0.0000 0.2769 0.5442 0.8128 1.0799 1.3430
193.14 195.77 198.23 200.89 203.41
191.16 194.13 196.68 199.39 201.89
190.82 189.47 188.41 193.25 191.96 191.62 195.97 195.03 194.50 198.97 198.05 197.54 201.65 200.74 200.24 m1‑propanol = 28.00 mol·kg−1 (W1‑propanol = 0.6273)
187.38 190.53 193.40 196.70 199.45
186.47 189.43 192.32 195.87 198.89
0.0000 0.0101 0.0200 0.0300 0.0399 0.0500
0.0000 0.2742 0.5416 0.8101 1.0746 1.3430
195.63 198.28 201.02 203.57 206.51
194.22 197.40 200.00 202.71 205.47
193.33 192.02 190.32 196.30 194.98 193.62 199.14 197.95 196.81 201.82 201.25 200.09 205.05 203.92 202.96 m1‑propanol = 32.00 mol·kg−1 (W1‑propanol = 0.6579)
189.07 192.57 195.88 199.18 202.19
187.79 191.47 194.83 198.08 201.30
0.0000 0.0101 0.0201 0.0300 0.0401 0.0500
0.0000 0.2742 0.5442 0.8101 1.0799 1.3430
202.20 204.55 207.61 210.39 213.34
200.99 203.60 206.90 209.76 212.68
199.62 199.12 197.67 202.73 201.89 201.27 205.85 205.07 204.54 208.92 208.57 207.63 211.79 211.54 210.53 m1‑propanol = 36.00 mol·kg−1 (W1‑propanol = 0.6839)
196.90 200.23 203.56 207.31 210.11
195.39 198.68 202.11 205.56 208.97
0.0000 0.0101 0.0201 0.0301 0.0400 0.0499
0.0000 0.2742 0.5442 0.8128 1.0773 1.3403
195.75 198.70 201.15 203.66 206.61
194.41 197.81 200.20 203.06 205.43
193.72 192.50 191.90 196.16 195.67 194.94 198.89 198.64 198.11 201.82 201.11 200.61 204.95 204.34 204.05 m1‑propanol = 40.00 mol·kg−1 (W1‑propanol = 0.7062)
191.29 194.10 197.61 200.50 203.48
189.92 193.07 196.40 199.34 202.77
0.0000 0.0101 0.0200 0.0300 0.0400 0.0500
0.0000 0.2742 0.5416 0.8101 1.0773 1.3430
192.72 195.47 197.89 200.47 202.99
191.23 193.89 196.73 199.18 201.86
187.41 190.52 193.61 196.58 199.59
185.62 188.76 191.82 195.21 198.03
190.39 192.75 195.74 198.38 201.40
189.38 192.00 195.12 198.04 200.73
188.21 191.32 194.06 197.11 200.18
a
mnaringenin and Wnaringenin are the molality and the mass percent of naringenin in aqueous ethanol or 1-propanol solutions. methanol and m1‑propanol are the molality of ethanol or 1-propanol in aqueous solutions, respectively. Wethanol and W1‑propanol are the mass fraction of ethanol or 1-propanol in aqueous solutions. Standard uncertainties u for the molality of solute and solvents are u(mnaringenin) = 0.0001 mol·kg−1; u(methanol) = u(m1‑propanol) = 0.01 mol·kg−1, u(T) = 0.01 K.
volume and SV is the experimental slope which indicates the solute−solute interactions. At infinite dilution, each solute is surrounded only by the solvent molecules and is infinitely distant from other solutes. It follows that V0ϕ is unaffected by solute− solute interaction, and it is a measure only of the solute−solvent interaction.7 Values of V0ϕand SV are given in Table 4. From Table 4, it is also observed that the SV values for the studied systems are positive which indicate the presence of solute−solute interactions. The smaller values of SV compared to V0ϕ emphasize
that solute−solvent interactions dominate over solute−solute interactions. The variation tendency of the standard partial molar volume (V0ϕ) of naringenin with the molality of ethanol and 1-propanol were plotted in Figure 1a,b. It also can be seen from Figure 1 that at low concentrations of alcohols the V0ϕ values of naringenin increased at first then by rising the ethanol/ 1-propanol concentration decreased. The maximum value of corresponding molality of ethanol and 1-propanol was 28.00 and 32.00 mol·kg−1, respectively. The large amount of (V0ϕ) in 3235
DOI: 10.1021/acs.jced.7b00299 J. Chem. Eng. Data 2017, 62, 3229−3240
Journal of Chemical & Engineering Data
Article
Table 6. Values of Viscosities (η) of Naringenin in Aqueous Ethanol/1-Propanol Solutions at T = (293.15 to 323.15) K and p = 0.1 MPaa η/mPa·s mnaringenin/mol·kg−1
Wnaringenin/%
293.15 K
298.15 K
0.0000 0.0102 0.0201 0.0301 0.0401 0.0501
0.0000 0.2769 0.5442 0.8128 1.0799 1.3456
2.786 2.797 2.819 2.840 2.854 2.873
2.341 2.357 2.373 2.385 2.398 2.409
0.0000 0.0100 0.0201 0.0300 0.0401 0.0501
0.0000 0.2715 0.5442 0.8101 1.0799 1.3456
2.694 2.715 2.741 2.745 2.776 2.793
2.276 2.296 2.313 2.321 2.342 2.356
0.0000 0.0102 0.0201 0.0301 0.0401 0.0501
0.0000 0.2769 0.5442 0.8128 1.0799 1.3456
2.625 2.632 2.662 2.678 2.699 2.716
2.224 2.235 2.256 2.269 2.286 2.300
0.0000 0.0102 0.0201 0.0300 0.0400 0.0501
0.0000 0.2769 0.5442 0.8101 1.0773 1.3456
2.551 2.573 2.580 2.609 2.616 2.635
2.169 2.179 2.194 2.212 2.225 2.241
0.0000 0.0101 0.0201 0.0301 0.0401 0.0501
0.0000 0.2742 0.5442 0.8128 1.0799 1.3456
2.503 2.514 2.525 2.550 2.568 2.586
2.125 2.140 2.153 2.162 2.174 2.193
0.0000 0.0102 0.0201 0.0301 0.0401 0.0500
0.0000 0.2769 0.5442 0.8128 1.0799 1.3430
3.165 3.188 3.215 3.252 3.276 3.292
2.663 2.684 2.705 2.735 2.754 2.767
0.0000 0.0101 0.0200 0.0300 0.0399 0.0500
0.0000 0.2742 0.5416 0.8101 1.0746 1.3430
3.136 3.158 3.201 3.222 3.248 3.276
2.646 2.665 2.697 2.717 2.738 2.761
0.0000 0.0101 0.0201 0.0300 0.0401 0.0500
0.0000 0.2742 0.5442 0.8101 1.0799 1.3430
3.103 3.129 3.153 3.193 3.226 3.246
2.627 2.657 2.682 2.699 2.726 2.742
0.0000 0.0101 0.0201
0.0000 0.2742 0.5442
3.066 3.106 3.130
2.594 2.622 2.645
303.15 K methanol = 1.995 2.010 2.015 2.030 2.040 2.058 methanol = 1.944 1.960 1.976 1.983 2.000 2.012 methanol = 1.908 1.920 1.934 1.946 1.960 1.971 methanol = 1.869 1.884 1.894 1.908 1.914 1.926 methanol = 1.833 1.848 1.858 1.865 1.875 1.889 m1‑propanol = 2.270 2.289 2.306 2.330 2.346 2.357 m1‑propanol = 2.260 2.276 2.304 2.321 2.337 2.357 m1‑propanol = 2.246 2.272 2.285 2.308 2.331 2.344 m1‑propanol = 2.225 2.245 2.269
3236
308.15 K
313.15 K
24.00 mol·kg−1 (Wethanol = 1.716 1.729 1.736 1.746 1.754 1.765 28.00 mol·kg−1 (Wethanol = 1.678 1.691 1.705 1.708 1.725 1.735 32.00 mol·kg−1 (Wethanol = 1.652 1.660 1.674 1.685 1.696 1.705 36.00 mol·kg−1 (Wethanol = 1.621 1.634 1.638 1.654 1.661 1.671 40.00 mol·kg−1 (Wethanol = 1.595 1.603 1.615 1.624 1.630 1.641 24.00 mol·kg−1 (W1‑propanol 1.955 1.971 1.985 2.006 2.020 2.028 28.00 mol·kg−1 (W1‑propanol 1.950 1.964 1.987 2.000 2.015 2.032 32.00 mol·kg−1 (W1‑propanol 1.941 1.962 1.979 1.993 2.012 2.023 36.00 mol·kg−1 (W1‑propanol 1.929 1.948 1.967
0.5249) 1.492 1.503 1.510 1.516 1.523 1.535 0.5632) 1.462 1.473 1.483 1.490 1.502 1.511 0.5957) 1.443 1.450 1.461 1.470 1.480 1.489 0.6237) 1.418 1.428 1.433 1.446 1.452 1.461 0.6481) 1.401 1.407 1.415 1.424 1.432 1.443 = 0.5906) 1.700 1.714 1.726 1.743 1.755 1.762 = 0.6273) 1.697 1.709 1.728 1.741 1.752 1.767 = 0.6579) 1.691 1.711 1.721 1.735 1.752 1.761 = 0.6839) 1.682 1.697 1.715
318.15 K
323.15 K
1.308 1.317 1.325 1.329 1.335 1.346
1.154 1.164 1.168 1.174 1.179 1.184
1.284 1.293 1.304 1.306 1.318 1.326
1.137 1.145 1.154 1.155 1.166 1.173
1.270 1.276 1.286 1.293 1.302 1.309
1.126 1.135 1.139 1.146 1.154 1.160
1.251 1.260 1.265 1.275 1.280 1.287
1.111 1.119 1.125 1.132 1.136 1.143
1.238 1.243 1.251 1.257 1.266 1.273
1.096 1.101 1.106 1.113 1.121 1.127
1.491 1.503 1.513 1.528 1.537 1.544
1.317 1.327 1.336 1.349 1.357 1.363
1.489 1.499 1.516 1.527 1.535 1.549
1.317 1.325 1.340 1.350 1.357 1.368
1.484 1.500 1.510 1.523 1.538 1.545
1.313 1.328 1.336 1.346 1.359 1.365
1.479 1.493 1.506
1.309 1.320 1.332
DOI: 10.1021/acs.jced.7b00299 J. Chem. Eng. Data 2017, 62, 3229−3240
Journal of Chemical & Engineering Data
Article
Table 6. continued η/mPa·s mnaringenin/mol·kg−1
Wnaringenin/%
293.15 K
298.15 K
0.0301 0.0400 0.0499
0.8128 1.0773 1.3403
3.155 3.171 3.196
2.661 2.685 2.704
0.0000 0.0101 0.0200 0.0300 0.0400 0.0500
0.0000 0.2742 0.5416 0.8101 1.0773 1.3430
3.039 3.053 3.084 3.132 3.140 3.168
2.578 2.591 2.617 2.646 2.664 2.686
303.15 K
308.15 K
313.15 K
m1‑propanol = 36.00 mol·kg−1 (W1‑propanol 2.287 1.978 2.301 1.994 2.315 2.008 m1‑propanol = 40.00 mol·kg−1 (W1‑propanol 2.212 1.916 2.224 1.933 2.246 1.946 2.266 1.965 2.285 1.977 2.303 1.993
= 0.6839) 1.725 1.736 1.751 = 0.7062) 1.672 1.688 1.698 1.713 1.725 1.738
318.15 K
323.15 K
1.515 1.525 1.538
1.340 1.349 1.361
1.470 1.478 1.493 1.502 1.516 1.527
1.301 1.312 1.321 1.330 1.341 1.351
a
mnaringenin and Wnaringenin are the molality and the mass percent of naringenin in aqueous ethanol or 1-propanol solutions. methanol and m1‑propanol are the molality of ethanol and 1-propanol in aqueous solutions, respectively. Wethanol and W1‑propanol are the mass fraction of ethanol or 1-propanol in aqueous solutions. Standard uncertainties u for the molality of solute and solvents are u(mnaringenin) = 0.0001 mol·kg−1; u(methanol) = u(m1‑propanol) = 0.01 mol·kg−1, u(T) = 0.01 K, u(P) = 5 KPa, and the relative standard uncertainties u for viscosity are ur(η) = 0.01
Table 7. B-Coefficient (B) of Naringenin in Aqueous Ethanol/1-Propanol Solutions at T = (293.15 to 323.15) Ka B(×103)/m3·mol−1 msolvent/ mol·kg
−1
Wsolvent
293.15 K
298.15 K
303.15 K
308.15 K
24.00 28.00 32.00 36.00 40.00
0.5249 0.5632 0.5957 0.6237 0.6481
0.614 ± 0.008 0.736 ± 0.011 0.690 ± 0.009 0.664 ± 0.007 0.635 ± 0.002
0.604 ± 0.004 0.710 ± 0.008 0.681 ± 0.007 0.643 ± 0.005 0.614 ± 0.011
0.595 ± 0.007 0.703 ± 0.009 0.661 ± 0.012 0.629 ± 0.008 0.598 ± 0.015
24.00 28.00 32.00 36.00 40.00
0.5906 0.6273 0.6579 0.6839 0.7062
0.835 ± 0.017 0.899 ± 0.009 0.941 ± 0.007 0.894 ± 0.005 0.851 ± 0.006
0.820 ± 0.009 0.883 ± 0.011 0.921 ± 0.015 0.875 ± 0.005 0.834 ± 0.007
0.807 ± 0.011 0.866 ± 0.010 0.905 ± 0.019 0.863 ± 0.009 0.820 ± 0.007
Ethanol 0.578 ± 0.003 0.687 ± 0.009 0.646 ± 0.007 0.614 ± 0.011 0.582 ± 0.009 1-Propanol 0.789 ± 0.007 0.842 ± 0.015 0.885 ± 0.009 0.845 ± 0.003 0.807 ± 0.005
313.15 K
318.15 K
323.15 K
0.565 ± 0.007 0.678 ± 0.005 0.638 ± 0.005 0.609 ± 0.006 0.568 ± 0.004
0.550 ± 0.002 0.657 ± 0.004 0.628 ± 0.011 0.592 ± 0.009 0.551 ± 0.013
0.541 ± 0.003 0.637 ± 0.008 0.617 ± 0.009 0.572 ± 0.010 0.545 ± 0.015
0.769 ± 0.006 0.829 ± 0.008 0.870 ± 0.012 0.827 ± 0.012 0.788 ± 0.008
0.750 ± 0.007 0.807 ± 0.013 0.855 ± 0.009 0.809 ± 0.005 0.772 ± 0.007
0.737 ± 0.004 0.782 ± 0.003 0.841 ± 0.008 0.794 ± 0.012 0.758 ± 0.009
a
msolvent and Wsolvent are the molality and the mass fraction of ethanol and 1-propanol in aqueous solutions, respectively. u(methanol) = u(m1‑propanol) = 0.01 mol·kg−1, u(T) = 0.01 K, and the combined expanded uncertainties uc(B (×103)) = 0.02 m3·mol−1
The partial molar volume of the solute (V̅ ) in the studied system could be calculated by apparent molar volume (Vϕ) according to eq 4:
1-propanol solutions can be explained by the longer alkyl chains in the 1-propanol molecule. The 1-propanol’s longer alkyl chains reinforce the cooperativity of hydrogen bonds between 1-propanol and water molecules in the hydration shell. This phenomenon weakens the hydrophobic interactions more than it does in ethanol, so the values of (V0ϕ) are larger in the 1-propanol solution. The variation tendency of the standard partial molar volume (V0ϕ) may be explained that at the water-rich region, the nonpolar group of naringenin makes a hydrophobic hydration layer. By increasing the alcohols concentration, the hydrophobic hydration layer of naringenin was disrupted and resulted in the increase values of V0ϕ due to the strong hydrogen bonding between alcohols and water molecules. This effect is highest at maximum value of V0ϕ. A greater increase of alcohols concentration in the alcohol-rich region causes an increase in the hydrophobic−hydrophobic and hydrophilic−hydrophobic interactions between naringenin and alcohols. These interactions have a negative contribution on volume and would lead to a reduction in the standard partial molar volume (V0ϕ). It can be seen from Figure 1 that the V0ϕ values of naringenin decrease with the increase in temperature. This can be interpreted in terms of releasing some water molecules from the hydrophobic hydration layer,13 which leads to a negative contribution to V0ϕ. Similar results have been obtained for (7-hydroxy-4-methylcoumarin + ethanol/1-propanol + water) systems.6
⎛ ∂Vφ ⎞ V̅ = Vφ + ms⎜ ⎟ ⎝ ∂ms ⎠
(4)
ms represents the molality of the solute in the studied system. The calculated V̅ of naringenin in the aqueous alcohol solution were shown in Table 5. These values increase with the increasing concentration of naringenin and decrease with rising temperature in the aqueous solutions. In fact, the variation tendency of V̅ is the same as the apparent molar volume (Vϕ). Viscometric Properties. The measured viscosities of ternary system containing different molalities of (naringenin + ethanol/ 1-propanol + water) at different temperatures were presented in Table 6. These measured data were plotted in Figures S6 and S7. The result showed that the viscosity of the studied solutions increases with a rise in naringenin molality at different concentrations of alcohols. The measured viscosity was analyzed with the Jones−Dole equation,5 The Jones−Dole equation introduce the relative viscosities of solutions as functions of its concentration: ηr = 3237
η = 1 + Ac1/2 + Bc η0
(5) DOI: 10.1021/acs.jced.7b00299 J. Chem. Eng. Data 2017, 62, 3229−3240
Journal of Chemical & Engineering Data
Article
where ηr is the relative viscosity. η and η0 represent the viscosity of the solution (naringenin + ethanol/1-propanol + water) and solvent (ethanol/1-propanol + water), respectively, c is the molarity of the solution in (mol·dm−3), calculated from molality and density data. The A-coefficient (called Falkenhagen coefficient, representing the solute−solute interactions) can be calculated theoretically but is usually very small for nonelectrolytes and is neglected in eq 5.14 The viscosity B-coefficients were obtained from the slope of linear plot (η/η0 − 1) versus c. The viscosity B-coefficient is a tool to provide valuable information concerning the solute−solvent interactions and their effects on the structure of the solvent in the near environment of the solute molecules.7 Obtained viscosity B-coefficients for ternary solutions (naringenin + ethanol/ 1-propanol + water) are shown in Table 7. The obtained viscosity B-coefficients for the studied system are positive and decrease with increasing temperature. This means that the interactions between solute−solvent are strong and these interactions are further weakened with the increase in temperature. According to Table 7, the higher positive values of the viscosity B-coefficients in the case of 1-propanol as compared to ethanol solutions is due to the hydrophobic side chain in 1-propanol being longer than that of ethanol. The dB/dT values, which give important information regarding the structure-making and structure-breaking role of the solute in solvent media, are a better criterion15 than the B-coefficient. According to the presented values in Table 7, the negative dB/dT values of naringenin in aqueous alcohols solutions show that naringenin acts as a structure maker in aqueous alcohol solutions. The variation of B-coefficients versus the molality of ethanol/ 1-propanol is plotted in Figure 2. As can be from Figure 2, the
Figure 2. Variation of viscosity B-coefficients (B) of naringenin versus the molality of ethanol (a) or 1-propanol (b) in aqueous solution at different temperatures: 293.15 K(■); 298.15 K (○); 303.15 K (▲); 308.15 K (▽); 313.15 K (●); 318.15 K (□); 323.15 K (◆).
Table 8. Refractive Indices (nD) and Molar Refraction (Rm) of Naringenin in Aqueous Ethanol/1-Propanol Solutions at 298.15 K and P = 0.1 MPaa mnaringenin/mol·kg−1
Wnaringenin/%
nD −1
0.0000 0.0102 0.0201 0.0301 0.0401 0.0501 0.0000 0.0100 0.0201 0.0300 0.0401 0.0501 0.0000 0.0102 0.0201 0.0301 0.0401 0.0501 0.0000 0.0102 0.0201 0.0300 0.0400
methanol = 24.00 mol·kg 0.0000 0.2769 0.5442 0.8128 1.0799 1.3456 methanol = 28.00 mol·kg−1 0.0000 0.2715 0.5442 0.8101 1.0799 1.3456 methanol = 32.00 mol·kg−1 0.0000 0.2769 0.5442 0.8128 1.0799 1.3456 methanol = 36.00 mol·kg−1 0.0000 0.2769 0.5442 0.8101 1.0773
(Wethanol 1.3601 1.3606 1.3610 1.3617 1.3622 1.3627 (Wethanol 1.3611 1.3617 1.3624 1.3629 1.3634 1.3640 (Wethanol 1.3616 1.3622 1.3627 1.3633 1.3639 1.3644 (Wethanol 1.3623 1.3626 1.3630 1.3636 1.3642
Rm(×106)/m3·mol−1 = 0.5249) 6.4569 6.4739 6.4897 6.5110 6.5288 6.5468 = 0.5632) 6.7679 6.7887 6.8103 6.8290 6.8482 6.8685 = 0.5957) 7.0456 7.0664 7.0860 7.1070 7.1283 7.1479 = 0.6237) 7.3058 7.3228 7.3398 7.3612 7.3829
mnaringenin/mol·kg−1
Wnaringenin/%
nD −1
± ± ± ± ± ±
0.0046 0.0046 0.0046 0.0046 0.0046 0.0046
0.0000 0.0102 0.0201 0.0301 0.0401 0.0500
± ± ± ± ± ±
0.0046 0.0046 0.0046 0.0046 0.0046 0.0046
0.0000 0.0101 0.0200 0.0300 0.0399 0.0500
± ± ± ± ± ±
0.0047 0.0047 0.0047 0.0047 0.0047 0.0047
0.0000 0.0101 0.0201 0.0300 0.0401 0.0500
± ± ± ± ±
0.0047 0.0047 0.0047 0.0047 0.0047
0.0000 0.0101 0.0201 0.0301 0.0400 3238
m1‑propanol = 24.00 mol·kg 0.0000 0.2769 0.5442 0.8128 1.0799 1.3430 m1‑propanol = 28.00 mol·kg−1 0.0000 0.2742 0.5416 0.8101 1.0746 1.3430 m1‑propanol = 32.00 mol·kg−1 0.0000 0.2742 0.5442 0.8101 1.0799 1.3430 m1‑propanol = 36.00 mol·kg−1 0.0000 0.2742 0.5442 0.8128 1.0773
(W1‑propanol 1.3714 1.3721 1.3724 1.3730 1.3733 1.3738 (W1‑propanol 1.3729 1.3734 1.3738 1.3744 1.3749 1.3755 (W1‑propanol 1.3740 1.3746 1.3750 1.3756 1.3762 1.3767 (W1‑propanol 1.3750 1.3756 1.3760 1.3766 1.3770
Rm(×106)/m3·mol−1 = 0.5906) 7.8591 7.8833 7.9006 7.9219 7.9396 7.9606 = 0.6273) 8.3236 8.3445 8.3641 8.3872 8.4092 8.4343 = 0.6579) 8.7370 8.7613 8.7821 8.8081 8.8336 8.8573 = 0.6839) 9.1207 9.1452 9.1671 9.1926 9.2142
± ± ± ± ± ±
0.0049 0.0049 0.0049 0.0049 0.0049 0.0049
± ± ± ± ± ±
0.0049 0.0049 0.0049 0.0049 0.0049 0.0049
± ± ± ± ± ±
0.0050 0.0050 0.0050 0.0050 0.0050 0.0050
± ± ± ± ±
0.0051 0.0051 0.0051 0.0051 0.0051
DOI: 10.1021/acs.jced.7b00299 J. Chem. Eng. Data 2017, 62, 3229−3240
Journal of Chemical & Engineering Data
Article
Table 8. continued mnaringenin/mol·kg−1
Wnaringenin/%
nD −1
0.0501 0.0000 0.0101 0.0201 0.0301 0.0401 0.0501
methanol = 36.00 mol·kg 1.3456 methanol = 40.00 mol·kg−1 0.0000 0.2742 0.5442 0.8128 1.0799 1.3456
Rm(×106)/m3·mol−1
(Wethanol = 0.6237) 1.3647 7.4023 (Wethanol = 0.6481) 1.3627 7.5411 1.3633 7.5621 1.3636 7.5780 1.3640 7.5968 1.3643 7.6137 1.3649 7.6345
mnaringenin/mol·kg−1
Wnaringenin/%
nD −1
± 0.0047
0.0499
± ± ± ± ± ±
0.0000 0.0101 0.0200 0.0300 0.0400 0.0500
0.0048 0.0048 0.0048 0.0048 0.0048 0.0048
m1‑propanol = 36.00 mol·kg 1.3403 m1‑propanol = 40.00 mol·kg−1 0.0000 0.2742 0.5416 0.8101 1.0773 1.3430
Rm(×106)/m3·mol−1
(W1‑propanol = 0.6839) 1.3777 9.2423 (W1‑propanol = 0.7062) 1.3757 9.4700 1.3764 9.4965 1.3768 9.5185 1.3774 9.5439 1.3777 9.5642 1.3785 9.5953
± 0.0051 ± ± ± ± ± ±
0.0052 0.0052 0.0052 0.0052 0.0052 0.0052
a
mnaringenin and Wnaringenin are the molality and the mass fractions of naringenin in aqueous ethanol/1-propanol solutions. methanol and m1‑propanol are the molality of ethanol/1-propanol in aqueous solutions. Wethanol and W1‑propanol are the mass fraction of ethanol or 1-propanol in aqueous solutions. Standard uncertainties u for the molality of solute and solvents are u(mnaringenin) = 0.0001 mol·kg−1; u(methanol) = u(m1‑propanol) = 0.01 mol·kg−1, u(T) = 0.01 K, u(P) = 5 KPa. The standard uncertainty of refractive indices is u(nD) = 0.0005 and the combined expanded uncertainties of molar refraction is uc(Rm(×106)) = 0.005 m3·mol−1.
tendency of B-coefficients versus the molality of ethanol/ 1-propanol is consistent with the result obtained of the (V0ϕ) values. Refractometric Results. Experimental refractive indices data nD for the ternary solutions (naringenin + ethanol/ 1-propanol + water) were measured at T = 298.15 K, and their values were reported in Table 8. There is not much change in Rm within the temperature range, so in this work the refractive indices were measured at 298.25 K. The molar refraction Rm was calculated using Lorentz−Lorenz equation:5 3
R m = [(nD2 − 1)/(nD2 + 2)](∑ xiMi /ρ) i=1
(6)
where xi and Mi are the mole fraction and molecular mass of the components of the ternary solutions. In this work, eq 6 can be described as Rm =
M1 (nD2 − 1) ρ (nD2 + 2)
[1 + m2M 2 + m3M3(1 + m2M 2)] [1 + m2M1 + m3M1(1 + m2M 2)] (7)
M1, M2, and M3 represent the molar mass of water, ethanol/ propanol, and naringenin. m2 represents the molality of ethanol or propanol in water, m3 represents the molality of naringenin in the alcohol aqueous solution. The calculated molar refractions of the investigated solutions are also shown in Table 8. The variation of Rm at 298.15 K against different molalities of naringenin in ethanol/propanol is plotted in Figure 3. The value of Rm is a measure of molecular polarizability. As can be seen from Figure 3, the Rm values increase linearly with rising concentration of alcohols which indicates high polarizability of naringenin in aqueous ethanol/propanol solutions.7
Figure 3. Variation of molar refraction (Rm) of naringenin versus the molality of naringeninin ethanol (a) or 1-propanol (b) solution at 298.15 K: 24.00 mol·kg−1 (■); 28.00 mol·kg−1 (□); 32.00 mol·kg−1 (▲); 36.00 mol·kg−1 (△); 40.00 mol·kg−1 (●).
■
CONCLUSIONS In this work, various thermophysical parameters were calculated for the alcohol aqueous solutions of (naringenin + ethanol/ 1-propanol + water) at different temperatures and alcohol concentrations from the experimental density, viscosity, and refractive index data. The calculated parameters, such as standard partial molar volume and viscosity B-coefficients, decrease with an increase in temperature and reach a maximum with increasing solvent concentration, suggesting that with an increase in alcohols concentration the hydrophobic hydration layer of naringenin was disrupted, providing an enhancement in hydrophobic−hydrophobic and hydrophilic−hydrophobic interactions between solute and solvent in the alcohol-rich region.
The viscosity B-coefficient values of naringenin in the ternary aqueous solutions of ethanol/1-propanol show that naringenin acts as a structure-making agent because of the negative dB/dT values. The high polarizability of naringenin in aqueous ethanol/ 1-propanol solutions causes the Rm values to increase linearly with an increase in the concentration of alcohols.
■
ASSOCIATED CONTENT
S Supporting Information *
The Supporting Information is available free of charge on the ACS Publications Web site at . The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.jced.7b00299. 3239
DOI: 10.1021/acs.jced.7b00299 J. Chem. Eng. Data 2017, 62, 3229−3240
Journal of Chemical & Engineering Data
■
Article
Application of McMillan-Mayer and Kirkwood-Buff Theories. J. Phys. Chem. B 2006, 110, 18583−18593. (14) Zhao, H.; Jackson, L.; Song, Z.; Olubajo, O. Enhancing Protease Enantioselectivity by Ionic Liquids Based on Chiral-or ω-Amino Acids. Tetrahedron: Asymmetry 2006, 17, 1549−1553. (15) Sarma, T. S.; Ahluwalia, J. C. Experimental Studies on the Structures of Aqueous Solutions of Hydrophobic Solutes. Chem. Soc. Rev. 1973, 2, 203−232.
Weight of the solute and solvent in the studied system; 1 H NMR and 13C NMR spectra of naringenin; density, apparent molar volume (Vϕ), and viscosity of naringenin in aqueous ethanol solutions and in aqueous 1-propanol solutions (PDF)
AUTHOR INFORMATION
Corresponding Author
*Tel: +86-571-87951430. Fax: +86-571-87951895. E-mail:
[email protected]. ORCID
Weidong Yan: 0000-0002-5125-310X Notes
The authors declare no competing financial interest. Present Address †
(Y.S.) College of Chemistry Sciene, Qufu Normal University, Qufu 273165, China
■
REFERENCES
(1) Jeon, S. M.; Kim, H. K.; Kim, H. J.; Do, G. M.; Jeong, T. S.; Park, Y. B.; Choi, M. S. Hypocholesterolemic and Antioxidative Effects of Naringenin and Its Two Metabolites in High-cholesterol Fed Rats. Transl. Res. 2007, 149, 15−21. (2) Martin, M. J.; Motilva, V.; On de la Lastra, C. A. Quercetin and Naringenin; Effects on Ulcer Formation and Gastric Secretion in Rats. Phytother. Res. 1993, 7, 150−153. (3) Santos, K. F. R.; Oliveira, T. T.; Nagem, T. J.; Pinto, A. S.; Oliveira, M. G. A. Hypolipidaemic Effects of Naringenin, Rutin, Nicotinic Acid and Their Associations. Pharmacol. Res. 1999, 40, 493−496. (4) Tsai, S. J.; Huang, C. S.; Mong, M. C.; Kam, W. Y.; Huang, H. Y.; Yin, M. C. Anti-inflammatory and Antifibrotic Effects of Naringenin in Diabetic Mice. J. Agric. Food Chem. 2011, 60, 514−521. (5) Malham, I. B.; Turmine, M. Viscosities and Refractive Indices of Binary Mixtures of 1-Butyl-3-methylimidazolium Tetrafluoroborate and 1-Butyl-2, 3-dimethylimidazolium Tetrafluoroborate with Water at 298K. J. Chem. Thermodyn. 2008, 40, 718−723. (6) Chen, A. J.; Liu, M.; Zheng, Y.; Sun, D. Z.; Wang, B. G.; Wang, L. P. Volumetric, Viscometric, and Refractive Index Behavior of 7-Hydroxy-4methylcoumarin in Aqueous Ethanol or 1-Propanol Solutions in the Temperature Range of (293.15 to 313.15) K. J. Chem. Eng. Data 2013, 58, 2474−2482. (7) Shekaari, H.; Zafarani-Moattar, M. T.; Mirheydari, S. N. Density, Viscosity, Speed of Sound, and Refractive Index of a Ternary Solution of Aspirin, 1-Butyl-3-methylimidazolium Bromide, and Acetonitrile at Different Temperatures T= (288.15 to 318.15) K. J. Chem. Eng. Data 2015, 60, 1572−1583. (8) Zhao, H. Viscosity B-coefficients and standard partial molar volumes of amino acids, and their roles in interpreting the protein (enzyme) stabilization. Biophys. Chem. 2006, 122, 157−183. (9) Khanlarzadeh, K.; Iloukhani, H. Application of ERAS-model and Prigogine−Flory−Patterson theory to excess molar volumes for ternary mixtures of (2-chlorobutane+ butylacetate+ isobutanol) at T= 298.15 K. J. Chem. Thermodyn. 2011, 43, 1583−1590. (10) Li, H.; Xu, X. Y.; Chi, C. J.; Di, Y. Y.; Sun, D. Z.; Liu, M. Molar volumes and refractive indexes of hexane-1, 2, 3, 4, 5, 6-hexol in aqueous solutions of 1-propanol and 2-propanol. J. Chem. Eng. Data 2010, 55, 2909−2913. (11) Zhang, L.; Song, L.; Zhang, P.; Liu, T.; Zhou, L.; Yang, G.; Lin, R.; Zhang, J. Solubilities of Naringin and Naringenin in Different Solvents and Dissociation Constants of Naringenin. J. Chem. Eng. Data 2015, 60, 932−940. (12) Zhang, P.; Lin, R.; Yang, G.; Zhang, J.; Zhou, L.; Liu, T. Solubility of Naringenin in Ethanol and Water Mixtures. J. Chem. Eng. Data 2013, 58, 2402−2404. (13) Terdale, S. S.; Dagade, D. H.; Patil, K. J. Thermodynamic Studies of Molecular Interactions in Aqueous α-Cyclodextrin Solutions: 3240
DOI: 10.1021/acs.jced.7b00299 J. Chem. Eng. Data 2017, 62, 3229−3240