Water for Energy: Challenges at the Energy-Water-Climate

November 16, 2009 Page 2. Energy and Water are … Inextricably linked ... 3.0 3.0 3.0 Cellulosic Ethanol Production 2 - 6 2- 6 2- 6 Ethanol Water ...
1 downloads 12 Views 665KB Size
Water for Energy: Challenges at the Energy-Water-Climate Nexus Presented by John Gasper Argonne National Laboratory To the  American Chemical Society Science and the Congress Project Panel: Energy, Water and Climate: Connecting the Dots November 16, 2009

Energy and Water are … Inextricably linked Water for Energy

Energy for Water

American Chemical Society Science and the Congress Project Panel “Energy, Water and Climate: Connecting the Dots” November 16, 2009  2

Energy requires Water • Thermoelectric generation •fossil •nuclear •renewable  • Hydropower generation • Energy minerals extraction / mining • Fuel Production  •fossil fuels  •hydrogen •biofuels/ethanol •Emission control

American Chemical Society Science and the Congress Project Panel “Energy, Water and Climate: Connecting the Dots” November 16, 2009  3

Energy related water withdrawals exceed all others in the U.S.

Estimated freshwater withdrawal  2005 41% thermoelectric generation 37% irrigation 13% public supplies 6% industrial 3% livestock 

Source: USGS Circular 1344, Estimated Use of Water in the U.S. in 2005, 2009

American Chemical Society Science and the Congress Project Panel “Energy, Water and Climate: Connecting the Dots” November 16, 2009  4

Energy accounts for a growing portion of water consumption U.S. Freshwater Consumption, 100 Bgal/day Livestock 3.3%

Domestic 7.1%

Commercial 1.2%

Thermoelectric 3.3% Irrigation 80.6%

Industrial 3.3%

Mining 1.2% Source: U.S. Department of Energy Report to Congress:  Energy Demands on Water Resources, 2006

Thermoelectric energy accounts for 27 percent of non‐agricultural fresh water  consumption Biofuels production and processing not included here American Chemical Society Science and the Congress Project Panel “Energy, Water and Climate: Connecting the Dots” November 16, 2009  5

Future increases in energy demand will place additional pressure on water ƒ

ƒ

ƒ ƒ

The Energy Information  Administration estimates that by   2030 energy electricity generation  will increase from 17 to 39%  (reference case 24%) Thermoelectric generation will  continue to account for up to 80%  of generation  Coal fired generation will account  for over 50 % of generation Electricity from renewable sources  is expected to increase to nearly  15% of total generation

Source: EIA Energy Outlook 2009

Related increases will occur in water demand for cooling, feedstock and fuel  production, and emission controls American Chemical Society Science and the Congress Project Panel “Energy, Water and Climate: Connecting the Dots” November 16, 2009  6

Climate change shifts the basis for meeting energy and water challenges ƒ ƒ ƒ ƒ ƒ

Energy use is the primary driver on climate change Changes to the water cycle may be one of the most significant impacts of  climate change Water cycle changes may decrease water available for energy while  increasing energy‐related  water needs Some water supply solutions require additional energy for long‐distance  transfers or desalination Key energy‐related climate mitigation measures (e.g., emission control, fuel  switching) can increase energy and water demand 

American Chemical Society Science and the Congress Project Panel “Energy, Water and Climate: Connecting the Dots” November 16, 2009  7

Controlling carbon increases demand for water and energy H2O, N2 & other

Water, energy directly  needed for the CO2 capture process

Conventional Pulverized Coal  Combustion



Stack

Coal

Gas  Cleanup 

Air

Removal of  SO2, NOx, PM,  trace metals

Boiler

Water, energy indirectly needed  to offset parasitic power  required to operate CO2 capture  technology



5–30% parasitic energy loss



35–110% increase in capital cost



30–80% increase in cost of electricity

Solvent‐based CO2 Capture

Compression

Enhance oil  recovery

Geological  sequestration

Source: NETL “2007 Pulverized Coal Oxyfuel Combustion Power Plants” August 2007 Final Report.

American Chemical Society Science and the Congress Project Panel “Energy, Water and Climate: Connecting the Dots” November 16, 2009  8

Capturing carbon from fossil fueled power plants will increase water withdrawal requirements 30 25.7

Water Withdrawal, gpm/MWh

25 20 15 8.8

10

9.9

9.7

6.0 4.5

5 0 Integrated Gasification  Combined Cycle New Technology

Pulverized Coal

Natural Gas

Existing Technology

WITHOUT CO2 WITH CO2

Source:  Coal and Performance Baseline for Fossil Energy Power Plants, Volume 1: Bituminous Coal and Natural Gas to Electricity; NETL, May 2007

Switching energy sources will not necessarily reduce the amounts of water required for thermoelectric cooling Plant Type

Water Intensity  (gal/MWhe) Withdrawal

Consumption

Solar Trough

760‐920

760 ‐ 920

Solar Tower

~750

~750

Geothermal

~2000

~1400

Biomass

300‐50000

300‐480

Coal

300‐50000

300‐480

Nuclear

500‐60000

400‐720

Natural Gas

230‐20000

100‐180

Renewable

Conventional

Advanced  Conventional

Integrated  ~250 Gasification  Combined Cycle 

~200‐330

Source: U.S. DOE Report to Congress: Energy Demands on Water 2006 American Chemical Society Science and the Congress Project Panel “Energy, Water and Climate: Connecting the Dots” November 16, 2009  10

A shift to alternative transportation fuels is not water neutral Current transport fuel demand  consumes 1.2 billion gallons of  U.S. water daily  Level of increased consumption  will depend on market  penetration of alternate fuels

Source: U.S. Department of Energy Report to Congress:  Energy Demands on Water Resources, 2006 American Chemical Society Science and the Congress Project Panel “Energy, Water and Climate: Connecting the Dots” November 16, 2009  11

Alternate cooling technologies result in energy-water tradeoffs

Technology

Water Use (Gallons/MWH)

Energy Penalty 

Withdrawal

Consumption

Annual average %  of plant output

Once Through

20,000 – 60, 000

100 ‐ 400

0.15

Wet Cooling

500 – 1,100

180 ‐ 720

0.39 – 1.8

Dry

0

0

3.0 – 7.0

Source: U.S. Department of Energy Report to Congress:  Energy Demands on Water Resources, 2006 American Chemical Society Science and the Congress Project Panel “Energy, Water and Climate: Connecting the Dots” November 16, 2009  12

Increasing reliance on renewable technologies can alter regional water demand

Ethanol Water  Consumption (gal. water/ gal.  product)

USDA REGION

5

6

7

Surface Water Irrigation

6.7

10.7

281.2

Ground Water Irrigation

0.4

3.2

39.4

Corn Ethanol Production

3.0

3.0

3.0

Cellulosic Ethanol Production 2 ‐ 6

2‐ 6 

2‐ 6

Total

16.9

323.6

10.1

Source: Wu, et.al., Argonne National Laboratory January 2009

Changes to the water cycle may have significant impacts on hydropower generation ƒ

ƒ

ƒ

ƒ

Conventional hydropower  currently contributes 12%  of  electricity generated in U.S.  Marine hydro‐kinetic technology  and low impact new capacity  (equipment upgrades, generation  at non‐powered dams) could  significantly increase contribution Installed capacity and generation  potential reflects historic water  cycles Climate change threats to  hydropower include: – Shifts in precipitation patterns – Decreasing snowpack – Competing water demands

Key challenges for development of sustainable energy and water policy:

ƒ

Supplying sufficient energy in the future, with limited water supplies

ƒ

Maintaining a sustainable water supply in the future without greatly  increasing energy use

ƒ

Managing energy and water supplies in the context of land‐use and other  natural resource issues

American Chemical Society Science and the Congress Project Panel “Energy, Water and Climate: Connecting the Dots” November 16, 2009  15

Meeting challenges require rethinking our approaches ƒ Energy intensity of water – Use of water for cooling – Heat recovery  – Life cycle based decisions

ƒ To water supply – Cost of water – Reallocation of water through water markets  – Water reuse and reclamation on a larger scale

ƒ To energy, water, land, natural resource planning – Integrated analysis and planning – Regional‐based decisions Source: Jeffrey Koseff presentation to CCST, May 12, 2008 American Chemical Society Science and the Congress Project Panel “Energy, Water and Climate: Connecting the Dots” November 16, 2009  16

Water for energy challenges at the EnergyWater-Climate Nexus ƒ ƒ

ƒ ƒ

ƒ

Energy and water are inextricably Water for Energy and Energy for Water linked. Future increases in energy demand will place additional pressure on water resources Climate change shifts the basis for meeting energy and water challenges Key energy‐related climate mitigation  measures (emission control, fuel  switching) can increase energy and water  demand  Meeting challenges at the energywater- climate nexus requires More information:     John Gasper rethinking our approaches Argonne National  Laboratory [email protected] 202‐488‐2420

American Chemical Society Science and the Congress Project Panel “Energy, Water and Climate: Connecting the Dots” November 16, 2009  17