X-Ray Diffraction Patterns for Some Tetrazole Derivatives - Analytical

Note: In lieu of an abstract, this is the article's first page. Click to increase image size Free first page. View: PDF | PDF w/ Links. Citing Article...
0 downloads 7 Views 486KB Size
1579

V O L U M E 2 4 , NO. 10, O C T O B E R 1 9 5 2

--

_...........

_..-..

O t

PREPARATION M P 2 PREPARATION (CRUDE) M P 5 HEXANE-TREATED M P 5 REPRECIPITATED M P I , FIRST RUN REPRECIPITATED M P5, SECOND RUN

minor components, as well as noncarbohydrate constituents, undoubtedly vary appreciably in the preparations obtained from different bacteria, different cultures of the same or different bacterial strains, or even different fractions obtained from the same culture. The use of anthrone factors and anthrone reaction rate curves appears useful in detecting variations of thi. kind and aid- in the study of natural polysaccharide mixtures. ACKNOWLEDGMENT

L

I

0

I

2

3

4

5 6 7 8 TIME, MINUTES

9

IO

II

12

Figuie 3. .knthrone Reaction Rate Curves, Bacterial Polysaccharides (Serratia marcescens)

To illustrate the application of anthrone time-curve analysis to bacterial polysaccharides, results are shown in Figure 5 for two preparations, MP2 and MP5, of a polysaccharide-lipide complex from Serratza marcescens. These were processed from bacterial paste, kindly supplied by Lferck & Co., Inc., and obtained from r,ultures of different strains of the organism. Trypsin-digested hIP5 gave appreciably less color per unit weight-Le., a lower anthrone factor-than the two runs of the product after reprecipitation by n-propyl alcohol. The latter gave essentially the same reaction curve a8 material treated with hexane by the method of Perrault and Shear (IS). Reprecipitation with n-propyl alcohol thus appears t o eliminate some components inert to the anthrone reagent. Comparison of the curves obtained from the two different preparations MP2 and hIP5, hoxever, reveals a significant difference in the color depth per unit aeight and also in the reaction rate. At a heating time of 1.5 minutes, only 18% of the maximum color was developed by XIP2, as against 50% produced by the 11P5 preparations a t the corresponding time. Besides indicating nonidentity of these two preparations, the anthrone time curve difference shows the probability that MP2 is lacking in the component of MP5, which causes it to react more rapidly with anthrone than aldohexoses do, since the curve for MP2 more closely resembles those of the aldohexose~. Meth~-Ipentoseand glucosamine were demonstrated by Hartwell. Shear, Adams, and Perrault (6) to be present among the hydrolysis products of this polysaccharide along M ith the predominant carbohydrate, an aldohexose shown not to be galactose 01 111:i11no=e3 and "pi.ovisionally regarded a3 glucose." These

The counsel and encouragement of Hugh J. Creech are gratefully acknowledged. The author is indebted to R. L. Whistler of Purdue Cniversity, to Elias Tanovsky of the Eastern Regional Research Laboratories, and to T. J. Schoch of Corn Products Refining c'o., who very kindly furnished materials. LITERATURE CITED

(1) Albaum, H. G., and L-mbreit, IT. W,, J . Biol. Chem., 167, 389 (1947). (2) Bloom, IT.L., and Wilcox, XI. L., Proc. Soc. Erptl. Bid. M e d . , 76,3-4 (1951). (3) Dreywood, R., ISD. Esc. CHEM.,- 1 s ~ED., ~ . 18, 499 (1946). (4) Durham, W.F., Bloom, W ,L., Lewis, G. T., and Mandel, E. E., L-. S . Public Health Service, Pub. Health Repts., 65, 670 (1950). (5) Eastnian Kodak Co., Orguriic Cherii. BUZZ.,23 ( l ) ,6 (1951). (6) Hartwell. J. L., Shear, AI. J., -idanis, J. R., and Perrault, A , , J . T a t l . CanccrInst., 4, 107 (1943). (7) Kapp, E., J . Biol. Chein., 134, 143 (1940). ( ~ 8 Kibrick, ) A. C., Rosers, H. E., aud Skupp. S., Ihid., 190, 10; ( 1951). (9) Koehler, L. H., Proc. Peim. d c n d . Sci.. 23, 196 (1949). (10) Kowald, J. -I., and IIacCormark, R. B., ABAL.CHEM.,21, 1383 (1919). (11) AIeyer, K. H . , "Organic Syntheses," Coll. Vol. 1, p. 52, S e n Tork, John TTiley & Sons, 1932. (12) Morris, D. L., Science, 107, 254-5 (1948). (13) Perrault, -1.. and Shear, M.J., Cancer Research. 7, 714 (1947). (14) Sattler, L., and Zerban, F. W.,J . Am. Chem. Soc., 72, 3815 (1950). (15) Sattler, L., and Zerban, F. W., Scierzcr. 108, 207 (1948). (16) Seifter, S., Dayton, S., S o r i c , B., and Muntwyler, E., r l ~ c h . Biochtm., 25,191 (1950). RECEIVED for review February 7 , 1952. Accepted July 23, 1952. M-ork supported in part hs a grant-in-aid to Hugh J. Creech from the American Cancer Society upon recoinmendation by the Committee on Growth of the Srttional Research Council.

X-Ray Diffract ion Patterns for Some Tet razole Derivatives LOHR A. BURKARDT AND DONALD W. MOORE Chemistry Division, c'. S . .Vat.al Ordnance Test Station, China Lake, Calij. Where x-ray diffraction powder patterns of known materials are available, they offer a means of identifying the components of a crystalline material without separation of such components. This feature of x-ray analysis was utilized to assist another group of investigators in this laboratory engaged in a study of reactions producing tetrazole derivatives. A group of x-ray diffraction patterns of various tetrazole derivatives from know-n materials has been accumulated. These patterns are made available for anal>-ticalpurposes to other investigators of tetrazole derivatives.

T

HE use of x-ray diffraction methods as an aid in the study of

high-nitrogen compounds being carried out by others in this laboratoi y hac resulted in the accumulation of powder data on a number of tetrazole derivatives. X-ray spectrometer patterns are relatively insensitive to impurities and will permit the identification of the results of reactions with a minimum of effort spent on purification of reaction products. Compounds which have poor melting point characteristics or which derompose before melting are readily identified.

These data are presented here in a form similar to that used by Hanawalt (1) for the presentation of x-ray powder data for analytical purposes. It should be borne in mind that these compounds may exist in several crystalline forms and hence different x-ray diffraction patterns would be obtained, depending on the form present. The intensities observed on x-ray spectrometer patterns exhibit marked variations with differences in crystal habit and size. These variations arise from the presence of preferred orientation in the samples. Efforts to avoid this

ANALYTICAL CHEMISTRY

1580

E + z

z z

z

z

0 c

LA

d e

&

r-' 3

s

5

0 N

N 3

..

3

m

3

d M

V O L U M E 24, NO. 10, O C T O B E R 1 9 5 2 ~

~~

1581

.____

-

Table 11. Interplanar Spacings and Line Intensities 28,

d , A. 1. Tetrazole

0

I/Ia

28,

4. 0.01 0.01 0.02 0.01 0.60 0.35 0.38 1.oo

0.06 0.04 0.02 0.01

2.289 2.223 2,098 1.915 1.892 1.814 1,775 1.614 1.569

39.3 40.5 43.0 47.4 48.0 50.2 51.4 56.9 58.7

5.

0.05

0.02 0.02 0.01 0.02 0.02 0.01 0.01 0.02 0.02 0.01

2.

1-Methyltetrazole 0.03 0.10 0.29 0.90 0.03 0.03 0.03 0.57 0.03 0.25 1.00 0.03 0.16 0.34 0.07 0.03 0.01 0.01 0.03 0.01 0.03 0.03 0.03 0.01 0.06 0.03 0.03 0.04

3.

1-Phenyltetrazole

4.

r/IQ 0.03 0.01 0.03 0.01 0.01 0.01 0.01 0.01 0.06

5-Iodotetcazole 0.01 0.12 0.02 0.02 0.02 0.03 1.00 0.03 0.17 0.04 0.01 0.03 0.09 0.01 0.01 0.01 0.02 0.02 0 08 0.02

11.1 12.9 18.8 23.2 24.8 25.8 27.4 28.4 29.2 30.3 34.6 38.0 41.5 45.8 46.4 48.4 49.4 54.7 56.3 58.1

6. 5-Hvdroxytetrazole 18.1 20.7 22.9 24.4 28.0 29.1 32.1 32.6 33.4 36.2 36.6 37.5 40.0

0.09 0.02 1.00 0.05 0.37 0.08 0.09 0.02 0.07 0.05 0.05 0.01 0.01 0.01 0.02 0.02 0.02 0.02 0.01 0.02 0.02 0.01 0.02 0.02 0.02 0 01

40 9

43.9

46.5 47.5 49.4 50.4 52.9 53.2 54.8 5.5 3 55.7 57.8 58.5 ~~

0.01 0.01 0.21 0.03 1.00 0.10 0.50 0.25 0.70 0.08 0.20 0.61 0.02 0.37 0.18 0.04 0.04 0.04 0.03 0.03 0.01 0.03 0.01 0.01 0.01 0.01 0.03 0.03 0.03 0.01 0.01

d , A. 5-Bromotetrazole (Contd.)

~

7.

5-Aminotetrazole (anhydrous)

5-Bromotetrazole 0.03 0.01 0.01 0.01 0.02 0.04 1.00 0.05 0.03 0.01

8.

5-Aminotetrazole hydrate (mono-) 7.07 6.41 4.90 4.79 4.30 3.89

0.02 1.00 0.14 0.03 0.02 0.14

ANALYTICAL CHEMISTRY

1582 Table 11.

Interplanar Spacings and Line Intensities (Continued)

28, d , A. I/Io 8. 5-Aminotetrazole hydrate (mono-)(Contd.)

43.5 44.1 45.0 49.7 52.1 53.1 54.0 55.4 57.3 58.9

24,4 25.3 28.1 29.6 30.5 33.3 35.6 39.3 41.2 41.7 44.2 45.2 46.5 48.0 49.5 50.1 52.2 53.0 55.6 57.6 58.3 59.1 5-Aminotetrazole nitrate 10.64 5.30 4.32 3.67 3.54 3.42 3.33 3.25 3.17 3.02 2.926 2.880 2.759 2.647 2.538 2.498 2.464 2.364 2.218 2.119 2.032 2.003 1.957 1.814 1.765 1.719 1.684

0.26 1.00 0.34 0.07 0.71 0.04 0.11 0.18 0.34 0.03 0.29 0.03 0.03 0.29 0.03 0.04 0.03 0.06 0.03 0.41 0.04 0.01 0.01 0.01 0.04 0.01 0.01

10. 5-Phenyltetrazole 10.4 11.6 14.6 16.1 20.3 21.5 22.3 23.3 24.5 26.2 27.8 29.6 32.0 34.1 35.3 36.1 36.5 38.1 39.8 42.1 45.6 46.1 49.8 51.6 52.2 53.9 54.8

9.4 12.5 13.8 15.7 17.5 18.8 21.6 25 4 27.8 29 0 30.6 34.2 37.8 39.1 40.8 41.1 41 6 42 2

d , A. 11. 5-Methyltetrazole (Contd.) 2 077 2.048 2.011 1.831 1.752 1.722 1.695 1.656 1,605 1 . ,563

I/IQ 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01

12. 5-Methylaminotetrawle

9.

8.3 16.7 20.5 24.2 25.1 26.0 26.7 27.4 28.1 29.5 30.5 31.0 32.4 33.8 35.3 35.9 36.4 38.0 40.6 42.6 44.5 45.2 46.3 50.2 51.7 53.2 54.4

29,

11. 5-Methyltetrazole 9 40 7 07 6 41 5 62 5 06 4 71 4 11 3 50 3 20 3 07 2 917 2 617 2 376 2 300 2 208 2 192 2 167 2 138

0 01 0 01 1 00 0 01 0 01 0 02 0 04 0 03 0 20 0 03 0 03 0 01

0 01 0 0 0 0 0

01 01 01 01 01

11.8 13.0 15.0 18.7 20.0 20.4 23.0 23.7 26.0 26.7 27.5 29.3 30.2 33.2 34.8 35.3 37.9 38.4 38.9 39.4 41.8 42.6 43.2 44.0 46.9 48.7 49.6 53.3 55.2 56.5 57.3

7.50 6.80 5.90 4.74 1.43 4.35 3.86 3.75 3.42 3.33 3.24 3.04 2.954 2.m4 2.574 2 , ,538 2.370 2.340 2.312 2.283 2.157 2.119 2,090 2.054 1 934 1.866 1.835 1.i16 1 661

1 626 1.605 13.

0.02 1.00 0.09 0.07 0.02 0.03 0.14 0.16 0.82 0.62 0.61 0.06 0.03 0.03 0.01 0.02 0.02 0.02 0.03 0.07 0.07 0.02 0.02 0.02 0.02 0.02 0.01 0.03 0.03 0.02 0.02

1-Methyl-5-aminotetraoole

9.8 15.9 16.7 20.2 21.1 22.4 26.6 28.0 28.7 29.6 30.0 30.6 32.5 33.1 34.2 39.5 42.3 44.0 45.8 48.1 50.1 51.6 53.7 55.0 36.0

9.01 5.56 5.30 4.39 4.20 3.96 3.34 3.18 3.10 3.01 2.973 2.917 2,750 2.702 2.617 2.277 2.133 2.054 1.978 1.888 1.817 1.768 1.704 1.667 1.639

10.6 14.4 16.1 17.4 18.6 19.8 21.4 22.2 22.8 23.6 26.3 27.8 29.2 30 0 31.1 31.7 32.4 33.4 33.8 34 8 36.0 37.4 38.8 39.7 41.2 43.2 47.7 49.8

14. 1-Ethyl-5-aminotetrazole 8.34 6.14 5 . .iO 5,09 4.76 4.48 4.15 4.00 3.89 3.76 3.38 3.20 3.05 2.973 2.871 2.818 2.759 2.678 2.647 2.574 2.490 2.400 2.317 2.267 2.187 2.090 1.903 1.828

0.03 0.26 1.00 0.58 0.01 0.03 0.18 0.04 0.02 0.03 0.03 0.02 0.18 0.33 0.02 0.01 0.01 0.02 0.02 0.02 0.01 0.07 0.01 0.01 0.02

0.41 0.92 0.26 0.18 0.08 0.11 1.00 0.32 0.26 0.06 0.18 0.15 0.14 0.05

0.23 0.18 0.24 0.02 0.02 0.04 0.03 0.02 0.02 0.02 0.02

0.08 0.02 0.02

V O L U M E 2 4 , NO. 10, O C T O B E R 1 9 5 2

1583 _--__.___

Table 11. 28, 0 14. 52.2 55.5 57.7

1,749

1.653 1 593 15.

5-Acetamidotetrazole 8.93 7 07 6 62 6.33 5.98 4 18 4 38 3 91

3.66 3.38 3 3.5 3 16 2 993 2.936 2,678 2 280 2.477 2.388 2,239 2 192 2 114 2 054 1 998 1 938 1 91.7 1 872 181, 1 72.; 1 ,580

16. 11.6 12.8 15.6 16.2 17.9 22.0 23.5 25.9 27.4 29.6 29.9 31.5 34.5 36.3 37.6 39.2 39.8 40.6 43.3 44.7 45.0 45.6 46.5 47.5 49.0 50.4 51.8 53.0 53.8 54.2 56.3 58.4

18. 7.4 8.6 12.9 15.1 15.6 16.1

5-Dimethy laminotetrazole 7.61

5.n:

67 5 . $6 4.9.; 4 03 3 78 3.43 3.25 3 01 2,984 2,835 2.593 2.470 2.388 2.294 2 239 2 218 2.086 2 024 2 011 1,986 .I.

1.4.50

1.911 I 886 1.808 1.762 1.723 1.701 1.688 1.631 1.377 17.

9.6 12.7 16.3 17.7 20.9 25.6 26.1 28.1 30.5 31.4 33.6 35.6 38.0 38.8 41,9 44.4 50.4 52.6 55.4 58.0

5-Guanylaminotetrazole 9.20 6.96 5.43 5.00 4.23 3.47 3 40 3 17 2 926 2 844 2 663 2 518 2 364 2 317 2 . 132 2.037 1.808

1.737 1,656 1.587

_______

Interplanar Spacings and Line Intensities (Continued)

d , A. I Io 1-Eth? I-5-aminotetrazole (Contd.)

9.9 12 5 13.3 14.0 14.8 19.8 20.2 22.7 24.3 24.8 26.6 28.2 29.8 30.4 33.4 34.7 36.2 37.6 40.2 41.1 42.7 44.0 45.3 46.8 47.4 48.6 50.1 53.0 58.3

~-

0 02 0.03 0.02

1 00

02 01 03 02 0 20 0 07 0 10 0 02 0 01 0 01 0 12

0 0 0 0

0 0 0 0 0 0 0

08 01 01

02 01 01 01

0 01 04

0 0 0 0 0 0 0 0 0

01 01 01

01 01 01 02 01

0 02 1.00 0.05 0.02 0 25 0 08 0 06

0 08 0 30 0 02 0 01 0 03 0 01 0 02 0 03 0 09 0 02 0 01 0 01 0 01 0 01 0 01 0.01 0 01 0 01 0 01 0 01 0 04 0 02 0 01 0 01 0 01

0 01 0 08 0 14

0 36 0 03 0 11 0 1 0 0 0

14

00 06

03 01

0 01

0 03 0 03 0 02 0 01 0 02 0 01 0 01 0 03

5-Guanylaminotetrazole nitrate 11 87 0 01 IO. 27 0 06 6.85 0 01 3.88 0 01 5 67 0 02 3 48 0 02

28, d, A. I I, 18. 5-Guanylaminotetrazole nitrate (Lon td.) 17.3 1.00 5.12 0 02 18.0 4.92 4.52 19.6 0 01 21.2 4.18 0 07 21.8 0 01 4.07 22.9 0 01 3.88 23.7 0 02 3.75 24.5 0 01 3.63 25.3 3.52 0 01 26 0 0 06 3.42 27.4 3.25 0 01 28.1 3.17 0 Oh 3.04 29 3 0 01 31.9 2 801 0 09 34.6 2.588 0 03 2 490 36 0 0 05 2.328 0 02 38 2 n 01 2,267 39, 2.24,; 40.1 0 02 4.5 0 2.011 0 01 47 2 1.922 n 01 53.4 1.713 o 01 55.4 1.656 0 01 58 1 0 02 1.583 19. 0.8 13 9 15.3 17.9 19.3 21 . 0 21.7 23. I 23 0 26 8 28.4 31.3 32 9 34 6 36.1 37.0 37.7 38 3 40.4 42.8 44.0 45.3 47.4 48.2 51 8 53.3 56.3 57.2 58.0 58.7 20.

9.9 15.0 16.4 20.0 20.7 22.7 24.7 25.2 27.4 27.8 28.5 29.6 30.1 31.2 32.7 33.7 38.7 40.6 42.2 43.3 45.3 46.2 47.6 50.2 50.6 52.9 56.2 57.0

0 01 0 02 1 00

0 07 0 26

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

o

0 0 0 0 0

33 02 32 05 10 3!3 00 02 01 01 03 02 01 01 02 01 01 02 02 02 02 01 01 01 01

1-hiethj I-5-phenjltetrazole 8.93 5.90 5 39 4.43 4 28 3.91 3.60 3 53 3.25 3.20 3.13 3.01 2.964 2.862 2.733 2.655 2.323 2.218 2.138 2 086 1 998 1.961 1.907 1.814

1,801

1.728 1.634 1.613 21.

10 0 11.8 13.1 13.8 16.8 18.9 19.4 20.1 25.2 26.5 27.9 28.7

l,5-Dimethyltetrazole 9.01 6.36 5 . 77 4.95 4.5.5 4 22 4.09 3.84 3 56 3.32 3.14 2.849 2.718 2.588 2.481 2.425 2.379 2.346 2 229 2.104 2 054 1.998 1.913 1 885 1.762 1.715 1.631 1 ,608 1 587 1.670

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

10

14 00 18

01 01 18 04 02 01 02

02 03 04 02 01

0 03

0 0 0 0 0 0 0 0 0 0 0

01 01 01

01 02

01 01 01 01 01 01

1-Pheni I-5-methy ltetrazole 8 83 7.49 6.75 6.41 5.27 4.69

4.57 4.41 3.53 3.36 3.19 3 10

0 Oi 0 03 1 00 0 73 0 03 0 10 0 li 0 OL5 0 53 0 23 0 35 0 08

ANALYTICAL CHEMISTRY

1584

28,

Table 11. Interplanar Spacings and Line Intensities (Continued) d , A. ID0 28, 0 a, A.

0

1-Phenyl-5-methyltetrazole(Contd.) 3.06 0.07 3.03 0.06 2.954 0.04 0.02 2.686 2.633 0.01 2.358 0.02 2.305 0.01 2.218 0.02 2.128 0.01 2.028 0.01 1.946 0.01 1.856 0.01 1.768 0.02 1.707 0.02 1.634 0.01 1,558 0.01

21.

29.1 29.4 30.2 33.3 34.0 38.1 39.0 40.6 42.4 44.6 46.6 49.0 51.6 53.6 56.2 59.2

22. 10.3 10.8 12.1 16.3 17.6 19.4 20.0 20.8 21.7 22.3 23.8 24.1 26.1 27.4 28.2 28.8 29.4 31.0 32.8 34.2 35.6 36.3 37.8 39.3 40.5 42.6 43.9 46.1 46.9 47.9 49.1 49.8 50.6 52.6 53.2 55.2 56.2 58.6

1,5-Diphenyltetrazole

8.59 8.18 7.31 5.43 5.03 4.57 4.43 4.26 4.08 3.98 3.73 3.69 3.41 3.25 3.16 3.10 3.03 2.880 2.726 2.617 2.518 2,470 2.376 2.289 2.223 2.119 2.059 1,965 1,934 1.896 1,852 1,828 1.801 1.737 1,719 1.661 1.634 1.573

23. 9.2 13.6 15.0 16.2 18.6 20.5 22.4 24.1 25.6 26.7 28.1 28.8 29.3 29.9 31.1 31.5 32.8 34.1 37.8 38.7 39.3 41.0 44.6 47.9 49.3 51.8 52.7 55.0 59.0

24.

0.25 0.07 0.10 0.76 0.08 1.00 0.15 0.07 0.61 0.20 0.30 0.25 0.58 0.80 0.10 0.14 0.30 0.05 0.25 0.01 0.01 0.04 0.02 0.05

0.05 0.02 0.05 0.05 0.03 0.03 0.02 0.02 0.03 0.02 0.02 0 01 0.01 0.01

1-Phenyl-5-hydroxytetrazole 0.70 9.61 0.05 6.50 0.24 5.90 0.21 5.45 0.01 4.76 1.00 4.32 0.03 3.96 0.01 3.69 0.03 3.47 0.28 3.33 0.10 3.17 0.03 3.10 0.02 3.04 0.02 2.984 0.19 2.871 0.03 2.835 0.02 2.726 0.02 2.624 2.376 0.02 0.02 2,323 0.01 2.289 0.05 2.197 0.03 2.028 0.02 1,896 0.02 1.845 0.02 1,762 0.01 1.734 0.01 1.667 0.01 1.563

1-Methyl-5-methylaminotetrazole

I/IQ 24. 1-Methyl-5-methplaminotetrawle(Contd.) 17.8 4.97 0.10 19.1 4.64 0.06 21.1 4.20 0.01 21.6 4.11 0.03 3.86 0.07 23.0 23.8 3.73 0.41 25.1 3 d4 0.62 3.40 0.16 26.1 3.34 0.05 26.6 3.23 0.29 27.6 29.1 3.06 0.03 0.04 29.6 3 01 2.877 31.0 0.05 2 818 31.7 0.03 2.624 34.1 0.04 0.01 34.7 2.580 0.01 2.538 35.3 0.15 2.364 38.0 2.305 34.0 0.01 39.8 0.01 2.261 2.208 40.8 0.01 0.01 43.4 2.081 44.1 2.050 0.01 47.0 1.930 0.01 48.2 0.01 1 ,88.5 0.01 48.5 1.874 49.4 1,840 0.01 1.828 49.8 0.01 1,794 0.03 50.8 1 ,773 0.01 51,4 1.751 0.01 52.1 1.722 0.01 53.1 53.8 1.701 0.01 1.678 54.6 0.01 1 . A67 0.01 55,O 1 623 56.6 0.01 0.01 1.602 57.4 0.01 1 . ,585 58.1

25. 2,CDiphenj ltetrawle 8.3 12.5 13.8 16.8 17.5 20.0 22.3 24.3 24.8 25.9 26.7 27.2 28.3 29.2 30.7 31.4 31.8 32.8 34.2 36.5 38.1 39.0 39.7 40.7 42.0 42.5 43.0 43.4 46.3 49.4 50.9 51.8 53.8 54.0 56.6 57.4

10.58 7.05 fi.39 5.27 5.06 4.43 3.98 3.66 3.58 3.43 3.33 3.27 3.15 3.05 2.904 2.844 2,809 2.726 2.617 2.458 2.358 2.305 2.267 2.213 2.148 2.123 2.100 2.081 1.957 1,842 1.791 1,760 1.701 1.695 1.623 1.602

0.03 1.00 0.40 0.22 0.47 0.40 0.16 0.10 0.06 0.12 0.14 0.08 0.10 0.03 0.09 0.05 0.06 0.02 0.02 0.01 0.01 0.02 0.02 0.01 0.01 0.01 0.01 0.01 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.01

26. 2-Methyl-5-phenyltetrazole 4.7 9.3 12.3 13.0 14.0 15.0 17.2 17.8 18.8 19.0 20.0 20.8 22.0 23.0 23.6 23.9 24.9 25.5 26.1 27.0 28.2 29.1

18.6 9.50 7.18 6.80 6.33 5.90 5.15 4.97 4.71 4.66 4.43 4.26 4.03 3.86 3.76 3.72 3.57 3.49 3.41 3.30 3.16 3.06

0.06 1 .oo 0.27 0.07 0.25

0.74 0.18 0.05 0.53 0.10 0.04 0.02 0.34 0 27 0.09 0.08 0.34 0.43 0.30 0.33 0.18 0.11

V O L U M E 24, NO. 10, O C T O B E R 1 9 5 2

1585

Table 11. Interplanar Spacings and Line Intensities (Concluded) 28, d , A. I/Io 26. 2-Methyl-5-phenyltetrazole (Contd.) 29.6 3.01 0.02 30.4 2.936 0.02 31.3 2.853 0.02 32.0 2 792 0.03 32.4 2.759 0.02 32.9 2.718 0.02 33.5 2.671 0.02 35.5 2.498 0.02 36.7 2.444 0.02 37.5 2.394 0.02 38.6 2.328 0.02 40.3 2.234 0.02 44.9 2.015 0.01 46.8 1.938 0.02 48.0 1.892 0.02 49.2 1.849 0.01 50.9 1.791 0.01 52.3 1.746 0.02 54 6 1 . ti78 0.01 27.

2-~henyl-5-methyltetrazole

. -.

.45 .06

.04 ,993 880 ,818 ,750 ,691 ,602 ,545 ,438 364 ,305 192 ,114

. 05Y

020 ,998 ,976 863 845 808 ,775 ,731 ,707

,691

667 639 ,195 300

0.29 0.10 0.13 0.02 0.01 0.01 0.02 0.01 0.01 0.01 0.01 0.01 0.02 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01

coriditioii were riot too successful. \\-here doubt exists as to the correspondence of the spectrometer patterns, it is suggested that both known material and the ssmple be recrystallized under the ~ a m econditions to produce similarity with respect t o habit and size. Heats of combustion determined on some of the samples reported on here have been published by McEwan and Rigg ( 3 ) . Lieber, Levering, and Pattenon ( 2 ) have recently published infrared absorpt,ion spectra on some of these compounds. Analytical data on the compounds used in this study have been reported in part in these two papers. EXPERIMENI'AL PROCEDURE

Samples were ground t o a suitable state in an agate mortar. I n order to secure a dense flat bample surface, the powdered sample was loosely placed in a sarnple holder held in a hand press and the sample compressed Kith s downward thrust on the side of the sample opposite to that plared in the x-ray beam. Patterns were obtained on a Norelco recording x-ray spectrometer using copper K , ( A = 1.539 A . ) radiation filtered through nickel foil. D a t a were taken from 28 = 4' to 28 = 60"; this region contains all lines important for identification purposes. The

I /Io

28. 2-Phenyl-5-tetrazole carboxylic acid 17.3 0 02 5.1 10.4 8.5 0 02 8.74 0 03 10.1 7.36 12.0 0 02 6.91 12.8 0 02 6.23 14.2 0 02 5.98 14.8 0 04 5.64 15.7 0 07 5.43 16.3 0 09 4.90 18.1 0 15 4.69 18.9 0 04 4.50 19.7 0 02 4.30 20.6 0 07 4.22 21.0 0 06 3.70 24.0 0 13 3.50 25.4 100 3.18 28.0 0 12 3.14 28.4 0 11 3.02 29.5 0 06 2.917 30.6 0 06 2.792 32.0 0 02 33.6 2.663 0 02 2.552 35.1 0 02 36.3 2.470 0 02 2.425 37.0 0 03 37.4 2,400 0 03 2.346 38.3 0 01 41.2 2.187 0 02 41,s 2.157 0 01 1.811 50.3 0 02 52.1 1.752 0 02 57.6 1.597 0 01

9,6

10.4 12.0 13.9 16.9 19.2 20.1 22.3 23.8 24.2 25.8 29.1 29.3 29.8 31.0 31.7 32.5 33.2 34.4 35.2 36.8 38.0 39.0 41.1 42.7 43.9 44.8 45.3 45.8 48.8 49.3 50.4 51.4 52.8 53.6 54.1 55.0 56 0 57.7 59 1

d , .i.

28,

29. Guanidine salt of 5-nitroaminotetrazole 7.1 12.4 0.34 7.8 11.3 0.02 10.0 8.83 0.03 12.6 7.07 0.02 14.3 6.19 0.21 15.8 5.60 0.02 16.9 5.24 0.02 17.6 5.03 0.18 18.5 4.79 0.01 19.4 4.57 0.02 21.5 4.13 1.00 23.8 3.73 0.15 25.3 3.51 0.02 27.1 3.29 0.06 28.0 3.18 0.02 3.10 28.8 0.06 2.917 30.6 0.07 36.1 2.484 0 29 37.5 2.394 0.06 2.157 41,s 0.01 43.7 2.068 0.10 44.9 2.016 0.02 48,6 1 870 0.02 51.4 1.775 0.03 55.7 1.647 0.03 55.5 1.551 0.04

names and formulas of the 29 compounds for which data were obtained are presented in Table I. EXPERIMENTAL D 4 T 4

The interplanar spacings calculated from the diffraction record, the line position in degrees 28, and the line intensities are given in Table 11. Intensities were determined directly a8 peak heights above the background level and are reported with the most intenPe line given a value of 1. ACKNOW LEDGME3T

The compounds reported on here were prepared by Ronald il. Henry of this laboratory. LITERATURE CITED

Hanawalt, J. D . , Rinn, H. IT., and Frevel, L. K., IND. ENG. CHEM.,ANAL.ED.,10, 457-613 (1938). ( 2 ) Lieber, E., Levering, D. IT., and Patterson, L. J., ASAL. CHEM.,

(1)

23, 1594-604 (1951).

(3) hlcEwan, W. S., and Rigg, M. W., 6.A m . Chem. SOC.,73, 4725-7 (1951).

RECEIVED for review April 26, 1952. Accepted June 9, 1962. Published with the approval of the Technical Dlrector, U. 5. Naval Ordnance Test Station.