X-Ray Diffraction Patterns of 2,4,7-Trinitrofluorenone Derivatives of

L.J.E. Hofer , A. Damick , A F. Headrick , F. Fauth , E H. Bean , and P L. Golden. Analytical Chemistry 1957 29 (10), 1563-1564. Abstract | PDF | PDF ...
0 downloads 0 Views 594KB Size
X-Ray Diffraction Patterns of 2,4,7-Trinitrofluorenone Derivatives ‘of Aromatic Hydrocarbons L. J. E. HOFER AND W. C. PEEBLES Synthetic Liquid Fuels Branch, Bureau of Mines, Bruceton, Pa. X-ray powder diffraction patterns were taken of different 2,4,7-trinitrofluoreone derivatives of aromatic hydrocarbons in order to characterize them more fully and to make future identification more certain. The number of rdections corresponding to the interplanar spacing range 3.1 to 3.5 A. is disproportionately and unexpectedly high. Nevertheless, each diffraction pattern is unique and i t is proposed to use the powder pattern for ultimate positive identification.

I

ganese dioxide filters, and operated a t 40 peak kilovolts and 6 milliamperes. The intensities were estimated by means of a calibrated strip similar to that of Hanawalt, Rinn, and Frevel(2). The strip was prepared with calcite monochromated iron K, radiation and exposures (using a decimal stopwatch) of 0.025, 0.050, 0.100, 0.200, 0.400, 0.800, 1.600, and 3.200 minutes on the same Eastman KO Screen film used for determining the patterns.

T HAS been found that 2,4,7-trinitrofluorenone (TNF) forms

brightly colored complexes of high and sharp melting points with polynuclear hydrocarbons. These complexes are easily purified by crystallization and are readily decomposed into the original componenta. Because of these two properties, the formation of trinitrofluorenone complexes of mixtures of polynuclear hydrocarbons facilitates separation of mixtures, such as isomers, that are difficult to separate. The importance of these complexes makes apparent the value of a series of standard x-ray powder diffraction patterns of them, as this method has been shown (3) to be a quick and positive way of identifying crystalline aromatic hydrocarbons. A new method of preparing oscillating wedge samples ( 1 ) has greatly extended the usefulness of x-ray diffraction analysis as a microtechnique, as it makes possible the analysis of samples weighing about 0.001 mg. as compared with the 2-mg. samples used in this laboratory (4). Chemical Abstracts nomenclature has been used; in addition, Table I contains some commonly used alternative names. Most of the 45 complexes studied were composed of 1molecule of hydrocarbon and 11 molecule of 2,4,7-trinitrofluorenone. However, 2-methylnaphthalene, 1,2’-binaphthyl, and trans-irans-l,4diphenyl-l13-butadiene were combined with 2 molecules of 2,4,7-trinitrofluorenone. As expected, the diffraction patterns of the complexes are characteristic.

DISCUSSION

Table I is a list of the complexes, their melting points (which have been published previously for the identical preparations), and the three strongest reflections. The weighted frequency of occurrence of these reflections is shown in the lower half of Figure 1 as a function of the interplanar spacings. Weighting was done by assigning a value of 3 to the strongest reflection, 2 to the second strongest, and 1 to the third strongest. The tendency of these reflections to cluster in the range of 3.1 to 3.5 A. is apparent. Interplanar spacings in the range of 6.9 to 8.3 A. also seem to be favored. For comparison, a similar chart is presented in the upper half of the figure for the pure aromatic hydrocarbons ( 3 ) ; their reflections are much more uniformly distributed among the interplanar spacings. This clus-

PROCEDURE

The technique used is similar to that used in the preceding study (Q), and is a modific& tion of the technique used by McKinley, Nickels, and Sidhu ( 5 ) .

A finely ground sample of the complex was partly extruded from a 0.75-inch section of 19-gage stainless steel tube with an inside diameter of 0.7 mm. No binder of any sort was used in the extrusion. Details of the sample preparation are described in another paper (3). Each specimen was exposed in a 114.6mm. Debye Schemer camera for 6 hours in order to obtain the long spacings (up to 19 A,) in the small angle region. The specimen was overexposed in the 57.3-mm. Debye Schemer camera for 2 hours to bring out the short spacings. Because of the temperature effect, these short spacings are difficult to record precisely. Data from both patterns were then i n t e grated into the diffraction patterns as here recorded in Table 11. Iron K a ( A = 1.937 A . ) radiation was used as obtained from a sealed off commercial x-ray tube equipped with an iron anode, beryllium windows, and man-

-TTT

100

Trinitrofluarenone a r o m a t i c hydrocarbon Complexe

50

c?

’ W

25

0”

-

-I

-

n I

Figure 1. Distribution as a Function of Interplanar Spacing of Strong Reflections of Some Hydrocarbons and Their Trini trofluorenone Complexes 822

823

V O L U M E 2 4 , NO. 5, M A Y 1 9 5 2 tering tendency of the strongest reflectionsof the trinitrofluorenone complexes diminishes their value for identifying a particular romplex. Nevertheless, the complete diffraction patterns are d i l l characteristic, as can be seen from Table 11. No relationship between these diffraction patterns and those of the pure hydrocarbon is immediately obvious. Except for similarities noted above, the x-ray diffraction patterns of trinitrofluorenone complexes of closely related isomers are completely different. Comparison of the patterns of isomers such as anthracene and phenanthrene, fluoranthene and pyrene, 1,2-benxofluorene, 2,3-beneofluorene, and 3,4-benzofluorene, 5-methylchrysene, and 6-methylchrysene illustrates this fact.

Table I.

Three Strongest Diffraction Lines and Melting Points of Trinitrofluorenone Complexes

1st 8.1 8.1

\o

34 10

26 40 16 18 32

(:g 7.3 7.3 7.1 6.9 3.4i

33

3.44

I1

Strongest Linea 2nd 3rd Melting Point, C. T N F Coinplex of 3.206 210.4-211.0(13) 5-Ethylchrysene 3.41 4.82 182 4-182.8(IS) 3.29 1,2,3,4-Tetrahydroanthracene 3.18 234.2-234.6(13) 5-hlethylchrysene 6.7 3.44 3.38 3.315 3.315 3.37

3.24 3.23 4.97 3.16 8.1

264-265(13) 257.0-257.8(19) 193.8-194.0(13) 221.2-222.0(11) 168.8-169.4(19)

3.325

8.3

205 4-205.8(18)

L1

3.42

i.6

20.0

123.2-124.0(10)

5

3.42

3.29

42

3.41

{ ;:: 3 22

124.6-126.0(11)

45

:5

43

3.40 3.40 3.39 3.36

5.9 3.24 8.1 6.9

4.23 7.8 7.4 4 86

$8

3.36

5.4

- . -S

24

3.35 3.35

30

3.35 3.35

22 28 2 44 39

3.34 3.33

(L::

7.85

{ 7;:: .3 7.2 6.3 9.2

v:::

4

10.2 10.4 3.24 3.22 7.6 11.4 7 1

179.0-179.4 (IS)

Z-hlethylnaphthalene” 1,2’-BinaphthyPo 6 12-Benzofluorene 6-Ethylohrysene brana-trans-l,4-diphenyl-l-3butadiene‘, b 143.0-144.2 (IO) l-Methyl-2-( 1‘naphthyl)naphthalene 228.5-228.8 (IO) 4,9-Dimethylpyrene 163.7-164.2 (10) 1,lO-Trimethylene phenanthrene 345-246(13) Cholanthrene 251.5-253.5 Benzo [klfluoranthenee (8,O) 151.2-154(11! Kaphthalene 282-288(I0) Periflanthene 268-269 ( 1 S ) d Dibenzo[cd, j k ] pyrenee 253-253.6(11) 20-Methylcholanthrene 191.8-192.8(7) 3,4-Benzofluorene 347.8-249(13) Chrysene 251-252 (IS) 6-Met hylchrysene

145.0-146.9(11) 213.5-215.5 7) 215.4-216.8 [IS) 154.2-154.8(11)

37

3.325 3.:325

19 23 ‘7

3.395 3.32 3.315

4 3

3.315 3.315

8.0 7.8 7.75

8 36

3.315 3.315

7.4 7.4

25 L3

3.305 3.305

9.0 7.4

10.0 8.7

186.6-187.6 (IS) 194.4-195.4 (1s)

20 16

3.305 3.308

7.15 3.45

8.7 7.0

229,6-230,6 (I3 ) 169.5-170.5 (IS)

21

3.30

4.95

l?.?,

124.3-125.4 (11)

I1 7 12

3.29 3.27 3.26

6.6 6.1 8.3

12.3 3.58 3.38

{;:;

7.85

7.3

7.2 7.6

7.85 6.7

{ 1;:;

5-Methylpicene Picene Anthracene 2,3-Benzofluorene 2-Phenylphenanthrene 5,6-Dimethylchrysene 1,2,3,4-Tetrahydrophenanthrene Fluorene

6.8 6.7

175-175,s ( 1 8 ) 163.4-164.8 (11)

6.9 3.44

196.4-197.2 (13) 207-209 (6)

Table 11. d/n

1. 2,4,7Trinitrofluorenone 0.06 9.9 0.37 8.1 0.45 6.7 5.4 0.37 0.50 4 . 9 3 (3) 4.68 0.03 0.37 4.41 0.37 4.245 3.81 (2) 0.75 3.54 0.35 3 . 3 9 (1) 1.00 0.01 3.30 3.20 0.01 3.12 0.01 3.04 0.48 2.90 0.03 2.79 0.06 2.70 0.25 2.60 0.40 2.49 0.06 2.45 0.12 2.33 0.01 2.25 0.03 2.16 0.01 2.12 0.09 0.01 1.98 1.945 0.01 1.90 0.01 0.01 1.84 0.03 1.80 1.705 0.06 1.67 0.01 1.64 0.01 1.61 0.02 4.

Acenaphthene T N F 9.45 0.03 8.7 0.03 7.8 (2) 0.50 6.8 (3) 0 . 4 0 6.2 0.25 5.6 0.02 5.1 0.06 4.84 0.25 4.31 0.25 4.03 0.12 3.85 0.02 3.65 0.30 3.44 0.35 3.315 (1) 1 . 0 0 3.05 0.25 2.8s 0.03 2.35 0.03 2.13 0.25 2.04 0.01 1.98 0.01 1.85 0.01 1.78 0.01 1.70 0.01 1.675 0.01 1.31 0.01 1.12 0.01 1.065 0.01

3.25

7.9

15

3.25

3.39

Acenaphthene 1-Methylnaphthalene Phenanthrene Naphtho [1,2-a]fluorene 4-Ethylpyrene 9-Methylphenanthrene 4-Methylpyrene 2-Phenvlnaohthalene. 2-Benzylnaphthalene

7. Diphenylacetylene T N F 12.3 0.40 7.5 0.20 6.1 (2) 0.75 5.5 0.15 4.93 0.20 4.66 0.20 4.38 0.06 4.035 0.06 3.91 0.06 3.73 0.12 3 . 5 8 (3) 0 . 5 0 3.40 0.06 3 . 2 7 (1) 1 . 0 0 3.20 0.20 3.08 0.03 2.93 0.01 2.83 0.02 2.74 0.01 2.53 0.01 2.35 0.01 2.20 0.01 2.07 0.01 2.03 0.02 1.78 0.02 1.75 0.01 1.60 0.01

29 1 a

b

d e

I 0

f.

,. , -

170.6-171.0 (IS) 2,2’-Binaphthylf 122.4-123.5 (IO) Di henylacetylene 211.2-213.0 (IO) 4-8vclonentaldeflphenanthrdneo ’ 215.4-216.0 (IS) Fluoranthene 242-243 (IS)

Pyrene

148.4-148.8 (fa) trans-Stilbene 270-271 (11) Perylene 175.2-176.0 2,4,7-Trinitrofluorenone Combined with 2 moleculea of TNF. 1,2’-Dinaphthyl. 7,s-Benaofluoranthene. Block temperature. Anthanthrene. 2 2’-Dinaphthyl. 4:5-Methylenephenanthrene. 3.24 3.22 3.39

3

6.05 7.3 3.81

Powder-Ditfraction Dataa d/n 2. Naphthalene 10.5 7.6 (3) 6.8 6.3 (2) 6.0 5.6 5.1 4.66 4.46 4.18 3.98 3.795 3.58 3.41 3.34 (1) 3.24 3.04 2.825 2.75 2.68 2.525 2.305 2.23 2.115 1.946 1.85 1.72 1.67 1.61 1.31

!/I1 TNF 0.12 0.60 0.15 0.80 0.40 0.19 0.25 0.50 0.03 0.25 0.06 0.30 0.15 0.45 1.00 0.45 0.35 0.03 0.03 0.03 0.01 0.04 0.03 0.20 0.09 0.06 0.09 0.01 0.02 0.01

5. Fluorene T N F 10.3 0.40 8.0 0.12 7.3 (3) 0.80 6.8 (3) 0.80 0.06 5.85 5.55 0.03 5.2 0.02 4.82 0.50 4.48 0.35 4.01 0.12 3.78 0.30 3.64 0.25 3.42 (2) 0 . 0 0 3.29 (1) 1 . 0 0 3.14 0.02 3.02 0.03 2.89 0.20 2.75 0.01 2.67 0.01 2.35 0.02 2.275 0.01 2.225 0.01 2.13 0.15 2.04 0.02 1.96 0.01 1.855 0.01 1.75 0.12 1.70 0.01 1.66 0.01 1.31 0.01 1.09 0.01

8.

4.L.d

14

I/ll

11.95 3.315 4.93

-

Phenanthrene T N F 15.3 0.01 11.2 0.01 10.05 0.30 8.1 0.03 7.4 (2) 0 . 5 0 6.9 (3) 0 . 4 0 6.0 0.06 5.0 3.20b 4.72 0.12 4.29 0.30 4.02 0.01 3.86 0.01 3.63 0.20 3 . 3 1 5 (1) 1 . 0 0 3.00 0.06 2.87 0.02 2.76 0.01 2.59 0.03 2.47 0.03 2.37 0.03 2.30 0.01 2.225 0.01 2.13 0.02 2.045 0.01 1.93 0.01 1.76 0.06 1.725 0.06 1.66 0.01 1.315 0.01 1.09 0.01

d/n lili 3. 1-Methylnaphthalene T N F 10.7 0.03 9.6 0.06 8 7 0.06 7 . 7 5 ‘2) 0 . 6 0 6.7 13) 0.50 6.1 0.25 5.7 0.06 5.15 0.12 4.76 0.40 4.28 0.35 3.9s 0.15 3.795 0.15 3.62 0.25 3.42 0.45 3.315 (1) 1.00 3.04 0.20 2.87 0.03 2.77 0.01 2.67 0.03 2.35 0.03 2.23 0.03 2.12 0.06 2.02 0.06 1.86 0.01 1.76 0.01 1.70 0.01 1.67 0.01 1.60 0.02 1.31 0.02 1.17 0.01 1.11 0.01 6.

Anthracene T N F 12.0 0.06 9.6 0.30 7.9 0.04 7.1 (1) 1 . 0 0 6.7 0.06 5.7 0.12 4 . 9 7 (3) 0.40 4.625 0.12 4.36 0.12 4.17 0.06 3.77 0.15 3.53 0.35 3.42 0.35 3.315 (2) 0 . 5 0 3.22 0.15 3.095 0.20 2.945 0.06 2.82 0.06 2.61 0.10 2.41 0.10 2.29 0.01 2.23 0.04 2.19 0.04 2.13 0.12 2.07 0.04 2.03 0.04 1.93 0.01 1.83 0.01 1.76 0.02 1.70 0.02 1.66 0.01 1.61 0.01 1.555 0.01 1.31 0.01 9. transStilbene T N F 11.95 (3) 0 . 5 0 7.7 0.20 6.6 0.03 6 . 0 5 (2) 0 . 7 5 0.0 0.05 4.87 0.25 4.45 0.01 4.07 0.12 3.79 0.12 3.655 0.37 3.24 (1) 1 . 0 0 3.05 0.12 2.86 0.03 2.76 0.03 2.53 0.06 2.34 0.06 2.13 0.12 2.06 0.01 2.03 0.01 1.94 0.01 1.855 0.01 1.79 0.01 1.62 0.01 1.31 0.01 1.11 0.01 1.06 0.01

-

d/n interplanar spacing in Angstroms. I / I l estimated relative inteneity; (1) strongest line: (2) 2nd strongeat(1ine; (3) 3rd strongest line. b Broad line probably due t o partial coincidence of 2 or more lines. (I

(Continued on next page)

ANALYTICAL CHEMISTRY

824

Table 11. Powder-Diffraction Data" (Continued) d/n

I/Il 10. 1,2,3,4Tetrahydroanthracene TNF 16.0 0.06 9.8 0.12 8.8 0.12 8.1 (1) 1.00 7.25 0.02 6.4 0.20 5.7 0.25 5.3 0.20 4 . 8 2 (3) 0.60 4.59 0.37 4.29 0.10 4.06 0.12 3.85 0.25 3.71 0.06 3.615 0.25 3.495 0.10 3.35 0.50 3.29 (2) 0 . 9 0 3.13 0.40 3.04 0.01 2.95 0.01 2.87 0.01 2.77 0.01 2.60 0.03 2.47 0.01 2.395 0.01 2.30 0.02 2.24 0.01 2.19 0.01 2.13 0.25 2.02 0.06 1.845 0.03 1.73 0.03 1.68 0.03 1.63 0.03 1.31 0.01 1.12 0.01 1.09 0.01 13. 9-Methylphenanthrene TNF 11.4 0.12 8.7 (3) 0.50 7.4 (2) 0.75 6.45 0.03 5.9 0.03 5.6 0.01 5.05 0.03 4.72 0.20 4.43 0.15 4.26 0.20 3.85 0.12 3.66 0.12 3.56 0.25 3.40 0.25 3.305 (1) 1.00 3.18 0.12 3.07 0.12 2.93 0.01 2.78 0.01 2.69 0.03 2.49 0.02 2.41 0.01 2.33 0.03 2.21 0.02 2.13 0.05 2.00 0.01 1.92 0.01 1.84 0.01 1.78 0.01 1.69 0.03 16.

2-Phenylnaphthalene TNF 13.4 0.40 11.4 0.12 10.0 0.25 8.1 0.50 7.0, (3) 0 . 6 0 6.2 0.40 5.6 0.40 4.80 0.25 4.57 0.25 4.39 0.25 4.11 0.25 3.82 0.12 3.63 0.12 3 . 4 5 (2) 0 . 7 5 3.305 (1) 1.00 3.20 0.40 3.02 0.01 2.715 0.03 2.60 0.03 2.53 0.03 2.42 0.01 2.23 0.01 2.13 0.25 2.02 0.12 1.93 0.06 1.85 0.02 1.745 0.04 1.68 0.01 1.30 0.01 1.11 0.01

d/n I/II 11. 1,2,3,4Tetrahydrophenanthrene TNF 20.0 (3) 0.40 10.2 0.25 7.6 (2) 0 . 5 0 6.8 0.15 5.85 0.12 5.1 0.20 4.72 0.15 4.41 0.03 4.06 0.06 3.77 0.06 3.65 0.04 3 . 4 2 (1) 1.00 3.325 0.15 3.16 0.25 2.85 0.03 2.74 0.01 2.64 0.01 2.50 0.01 2.34 0.01 2.26 0.02 2.18 0.02 2.13 0.02 2.04 0.01 1.95 0.01 1.89 0.01 1.84 0.01 1.71 0.03 1.67 0.02 1.32 0.01 1.18 0.01 14. Fluoranthene TNF 16.0 0.03 10.6 0.01 9.7 (3) 0.50 8.8 0.03 7.9 (2) 0.60 7.3 (3) 0.50 6.3 0.40 5.8 0.06 5.4 0.25 5.15 0.25 4.68 0.03 4.31 0.25 4.17 0.25 4.01 0.12 3.78 0.03 3.55 0.25 3.46 0.20 3.38 0.25 3.25 (1) 1.00 3.16 0.04 2.945 0.06 2.805 0.04 2.66 0.12 2.50 0.03 2.32 0.01 2.26 0.01 2.20 0.02 2.13 0.03 2.05 0.01 1.98 0.01 1,89 0.02 1.72 0.06 1.65 0.01 1.30 0.01 1.17 0.01 1.07 0.01

d/n

1/11

1 2 . 4Cyclopentaldef ] phenanthrene TNF

0.06 0.50 0.06 0.25 .6 0.12 .1 0.12 .90 0.12 .46 0.20 .18 0.02 .99 0.02 .77 0.12 ,605 0.12 . 3 8 (3) 0 . 4 0 .2B (1) 1.00 .02 0.06 .34 0.02 .13 0.20 .85 0.02 .75 0.01 .68 0.01 .30 0.01 .11 0.01 .09 0.01 .07 0.01 .1

.3 .6 .1

(2)

15. Pyrene TNF 10.2 n nfi 9,2 0.06 8.3 (3) 0 . 6 0 7.7 0.06 7.0 (3) 0.60 6.6 0.25 6.2 0.25 4.95 0.25 4.515 0.50 4.245 0.01 4.01 0.02 3.85 0.30 3.745 0.25 3.60 0.25 3.39 (2) 0 . 7 0 3 . 2 5 (1) 1 . 0 0 3.01 0.25 2.89 0.01 2.77 0.01 2.61 0.02 2.55 0.01 2.47 0.03 2.39 0.01 2.13 0.06 2.02 0.03 1.92 0.01 1.88 0.01 1.84 0.01 1.78 0.02 1.75 0.03 1.71 0.01 1.68 0.02 1.65 0.01 1.31 0.01 1.12 0.01

d/n I/Il 19. 3,4-Benzofluorene TNF 10.4 0.25 7.85 (3) 0.50 7.2 (2) 0.60 6.3 0.03 5.9 0.12 5.2 0.06 4.95 0.25 4.46 0.12 4.26 0.12 3.92 0.20 3.67 0.12 3.51 0.40 3.325 (1) 1 . 0 0 3.21 0.40 2.97 0.12 2.70 0.12 2.45 0.01 2.325 0.02 2.21 0.01 2.13 0.15 2.02 0.07 1.94 0.03 1.85 0.03 1.73 0.01 1.68 0.06 1.44 0.01 1.30 0.01 1.17 0.01 1.115 0.01 1.065 0.01 1 10-Trimeth 1 phendnthrene T d f 10.4 (3) 0.50 7.8 (2) 0 . 7 5 7.0 (2) 0.75 6.1 0.03 5 2 0.06 4.82 0.03 4.34 0.03 4.18 0.03 3.90 0.03 3.68 0.37 3.59 0.25 3 . 3 5 (1) 1.00 3.06 0.01 2.89 0.01 2.73 0.01 2.56 0.01 2.45 0.01 2.35 0.01 2.27 0.01 2.13 0.03 1.98 0.02 1.85 0.01 1.77 0.03 1.31 0.01 1.11 0.01

22

11.3 0.60 10.4 0.12 8.6 0.06 7.8 (3) 0.80 7.2 0.70 6.4 0.06 5.7 0.25 5.15 0.50 4.34 0.12 4.08 0.12 3.78 0.25 3.62 0.25 3.40 (1) 1.00 3.24 (2) 0 . 9 0 3.09 0.01 2.625 0.01 2.36 0.01 2.24 0.01 2.13 0.50 2.07 0.03 2.03 0.40 1.85 0.12 1.73 0.25 1.57 0.03 1.16 0.03 1.11 0.03 1.07 0.03

18.

2,3-Benzofluorene TNF 11.4 0.60 7.8 0.12 6.9 (1) 1.00 5.2 0.25 4.95 0.25 4.68 0.25 4.43 0.50 4.29 0.12 3.99 0.12 3.81 0.12 3.60 0.12 3.315 (2) 0.9Ob 3.16 (3) 0 . 8 0 2.98 0.03 2.75 0.06 2.63 0.12 2.44 0.06 2.38 0.06 2.21 0.03 2.13 0.20 2.03 0.03 1.89 0.02 1.84 0.03 1.72 0.20 1.64 0.03 1.25 0.01 1.08 0.02 1.03 0.01 1.01 0.01

23.

Chrysene 11.6 7.6 (2) 6.7 (3) 5.8 4.85 4.525 3.98 3.825 3.68 3.32 (1) 3.115 2.87 2.80 2.69 2.61 2.545 2.235 2.13 2.02 1.96 1.90 1.72 1.67 1.31 1.14 1.09

25 4-Eth 1pjrene T ~ F 18.0 0.12 10.0 (3) 0.20 9.0 (2) 0 . 2 5 8.3 0.12 7.15 0.09 6.3 0.12

fin

17. 1,2-Benzofluorene TNF

1/11

d / n 20. 4-Methylpyrene TNF 11.2 0.12 0.06 9.8 8.7 (3) 0 . 7 0 8.0 0.06 7.15 (2) 0 . 8 0 6.6 0.12 6.0 0.03 5.2 0.09 4.80 0.09 4.41 0.40 4.21 0.03 3.92 0.096 3.73 0.06 3.58 0.40 3.39 0.50 3.305 (1) 1.00 3.20 0.09 3.08 0.09 2.77 0.01 2.69 0.03 2.54 0.01 2.45 0.01 2.34 0.03 2.23 0.01 2.13 0.25 2.08 0.01 2.00 0.02b 1.93 0.01 1.85 0.06 1.78 0.03 1.74 0.03 1.68 0.04 1.31 0.01 1.11 0.01 1.07 0.01

TNF 0.10

0.25 0.12 0.03 0.08 0.06 0.06 0.03 0.08 1.00 0.05 0.02 0.02 0.01 0.02 0.01 0.02 0.03 0.03 0.01 0.01 0.06 0.01 0.01 0.01 0.01

0 06

5.4 0.0s 5.1 0.03 4.90 0.03 4.64 0.12 4.34 0.09 4.15 0.04 3.94 0.03 3.68 0.10 3.305 (1) 1.00 2.99 0.06 2.75 0.03 2.61 0.03 2.13 0.08 2.08 0.01 2.03 0.04 1.86 0.01 1.72 0.09 1.69 0.01 1.31 0.01 1.25 0.01 1.215 0.01 1.18 0.01 1.15 0.01

5-Methylchrysene T N F

26.

10.2 8.85 8.0 7.4 6.7 5.6 4.93 4.43 3.99 3.77 3.39 3.18 2.91 2.70 2.48 2.14 2.03 1.73 1.69

-

(1) (2)

(1) (3)

0.09 0.06 1.00 0.02 0.25 0.01 0.016 0.09 0.02 0.10 1.00 0.12 0.03 0.03 0.01 0.01 0.02 0.06 0.01

a d / n = interplanar spacing in Angstroms; 1/11 estimated relative intensity. (1) strongest line. (2) 2nd ,stro'ngest line; (3) 3rd strongest line. b Broad line probably due to partial coincidence of 2 or more lines.

d/n

1,111 21.

2-Benzylnaphthalene TNF 16.4 0.50 10.8 (3) 0.70 8.85 0.60 8.1 0.50 6.3 0.50 5.85 0.40 4.95 (2) 0.80 4.68 0.40 4.29 (3) 0.70b 4.08 0.37 3.87 0.37 3.72 0.03 3.60 0.06 3.495 0.50 3.42 0.50 3.30 (1) 1.00 3.21 0.20 3.12 0.12 3.04 0.12 2.90 0.25 2.78 0 03 2.70 0.04 2.63 0.06 2.48 0.03 2.35 0.03 2.30 0.01 2.24 0.01 2.19 0.03 2.13 0.20 2.07 0.03 2.01 0.01 1.93 0.01 1.86 0.03 1.80 0.01 1.72 0.02 1.57 0.01 1.30 ' 0.01 1.11 0.01 1.07 0.01 24. 4,g-Dirnethylpyrene TNF 10.2 (3) 0 . 2 5 67.85 .8 (2) 0 . 5 1 08 6.2 5.7 5.1 4.70 4.44 4.09 3.94 3.71 3.35 3.24 (1) 3.01 2.84 2.64 2.55 2.47 2.35 2.13 2.02 1.97 1.77 1.73 1.67 1.30 1.11 1.065

0.06 0.03 0.12 0.12 0.06 0.06 0.12 0.25 0.18 1.00

0.06 0.06 0.03 0.03 0.03 0.03 0.12 0.01 0.03 0.06 0.06 0.03 0.01 0.01 0.02 27. 6-Methylchrysene TNF 11.3 (3) 0 . 2 5 8.85 0.04 8.0 (2) 0 . 3 7 6.9 (3) 0 . 2 5 6.3 0.02 5.7 0.02 4.90 0.12 4.39 0.09 4.14 0.03 3.98 0.03 3.66 0.12 3.315 ( 1 ) 1 . 0 0 3.095 0.06 2.94 0.02 2.84 0.06 2.67 0.02 2.57 0.02 2.45 0.02 2.33 0.02' 2.13 0.09 2.02 0.06 1.84 0.03 1.72 0.09 1.675 0.02 1.305 0.02. 1.17 0.01 1.14 0.01 1.115 0.02 1.08 0.01 1.065 0.01

V O L U M E 24, NO. 5, M A Y 1 9 5 2

825

Table 11. Powder-Diffraction Dataa (Continued) d/n 1/11 28. Benzo k ] fluoranthene k N F 11.6 0.30 10.3 0.01 8.5 0.01 7.85 0.30 7.2 (2) 0.50 6.6 0.01 5.9 0.12 5.15 0.12 4.28 0.10 3.94 0.06 3.70 0.06 3.57 0.03 3.35 (1) 1 . 0 0 3 . 2 2 (3) 0 . 3 7 2.57 0.01 2.34 0.01 2.23 0.01 2.13 0.12 2.02 0.05 1.84 0.02 1.705 0.06 1.31 0.02 1.17 0.02 1.11 0.01 1.09 0.01 1.07 0.01

31. 2 2'Binaphthbl TNF 12.3 (3) 0 . 5 0 7.3 0.40 6.6 (2) 0 . 9 0 6.15 0.06 5.1 0.12 4.88 0.15 4.43 0.12 4.12 0.03 3.90 0.03 3.71 0.04 3.58 0.15 3.495 0.15 3 . 2 9 (1) 1 . O O b 3.21 0.25 3.08 0.02 2 , 9%5 0.06 2.84 0.02 2.72 0.01 2.61 0.02 2.48 0.02 2.37 0.02 2.13 0.12 2.02 0.02 1.95 0.01 1.86 0.02 1.77 0.01 1.70 0.03 1.30 0 01 1.11 0.02 1.07 0 02 34. 5-Ethylchrysene TNF 10.3 0.12 9.1 0.12 8.1 (1) 1 . 0 0 6.8 0.25 5.55 0.06 4.93 0.03 4.48 0.12 4.34 0.12 3.99 0.03 3.78 0.12 3 . 4 1 (2) 0 . 9 0 3 . 2 0 5 (3) 0 . 3 0 2.96 0.03 2.86 0.02 2.73 0.02 2.49 0.02 2.35 0.01 2.23 0.01 2.13 0.12 2.02 0.12 1.845 0.03 1.74 0.06 1.305 0.02 1.17 0.02 1.11 0.03 1.06 0.02

b

d/n

29.

I/"

Perylene TNF

2.03 0.06 1.975 0.04 1.90 0.04 1.85 0.03 1.77 0.02 1.71 0.01 1.61 0.06 1.16 0.02 1.01 0.01 32. 2-Phen Iphenanthrene %NF 14.7 10.7 8.65 8.1 6.8 5.8 5.0 4.66 4.38 4.12 3.72 3.47 3.37 3.28 3.10 2.71 2.35 2.13 2.03 1.85 1.76 1.58 1.18 1.11

0.25 0.25 0.37 0.50 0.20 0.30 0.12 0.12 0.03 0.02 0.06b 1.00 0.90 0.40 0.20 0.01 0.01 0.23 0.12 0.02 0.02 0.01 0.02 0.01

(3)

(1) (2)

35. 6-Ethylchrysene TNF 11.2 0.20 9.1 0.02 8.1 (2) 0 . 5 0 7.4 (3) 0 . 3 0 6.7 0.03 6.2 0.01 5.55 0.06 5.15 0.06 4.48 0 02 4.06 0.12 3.76 0.12 3 . 3 9 (1) 1 . 0 0 3.19 0.25 2.83 0.01 2.57 0.01 2.13 0.03 2.02 0.04 1,73 0.02 1.68 0.01 1.31 0.01 1.09 0.01 '

1/11

Cholanthrene TNF 11.9 0.25 8.4 0.03 7.3 (2) 0 . 5 0 6.5 0.01 5.8 0.06 5.3 0.12 4.66 0.12 4.20 0.06 3.91 0.03 3.72 0.10 3.58 0.01 3 . 3 5 (1) 1 . 0 0 3 . 2 4 (3) 0 . 3 0 3.095 0.03 2.975 0.01 2.845 0.04 2.68 0.02 2.52 0.02 2.41 0.01 2.26 0.01 2.13 0.12 2.02 0.01 1.85 0.01 1.71 0.06 1.665 0.03 1.31 0.01 1.12 0.01 1.09 0.01 ":O.

33. 5 6-DimethylchrJsene TNF 11.2 8.3 (3) 7.3 6.8 5.4 5.0 4.625 4.18 3.81 3.66 3.44 (1) 3 . 3 2 5 (2) 3.10 2.75 2.13 2.03 1.85 1.745 1.26 1.17 1.08 LO4

0.50 0.80 0.50 0.01 0.01 0.12 0.03 0.12 0.06 0.03 1.00 0.90 0.02 0.02 0.18 0.06 0.01 0.01 0.03 0.02 0.02 0.02

Naphtho[l 2-a] fluorene T N ~ 12.1 0.50 8.3 0.02 7.4 (2) 0 . 9 0 6.1 0.01 5.8 0.01 5.4 0.12 5.1 0.12 4.70 0.12 4.34 0.02 4.17 0.02 3.85 0.18 3.66 0.09 3.44 (3) 0.60 3.313 (1) 1 . 0 0 3.07 0.01 2.89 0.01 2.74 0.01 2.37 0 01 2.13 0.12 2.02 0.09 1.85 0.02 1.745 0.02 1.31 0.01 1.17 0.02 1.115 0.01 1.08 0.01

36.

d/n

1/11

37. 20-Methylcholanthrene TNF 13.6 0.25 12.25 0.40 10.3 0.25 8.65 0.12 7 . 8 5 (2) 0 . 8 0 7.3 (3) 0 . 5 0 6.9 0.12 6.1 0.18 5.4 0.18 5.2 0.18 4.93 0.18 4.43 0.06 4.17 0.09 3.94 0.03 3.67 0.15 3 . 3 2 5 (1) 1 . 0 0 3.095 0.01 2.54 0.01 2.36 0.01 2.13 0.18 2.02 0.12 1.85 0.02 1.70 0.03 1.31 0.02 1.12 0.01 1.09 0.01 40. Picene TNF 12.25 0.50 11.2 0.25 8.0 0.12 7.3 (1) 1.00 6.4 0.12 5.5 0.25 5.1 0.25 4.515 0.03 4.28 0.03 4.06 0.18 3.73 0.12 3.60 0.12 3 48 0.30 3 . 3 8 (2) 0 . 9 0 3 . 2 3 (3) 0 . 8 0 2.975 0.01 2.85 0.01 2.76 0.01 2.64 0.01 2 335 0.02 2.27 0.02 2.13 0.30 2.03 0.18 1.85 0.12s 1.74 0.12 1.705 0.12 1.306 0.02 1.17 0.01 1.115 0.01 1.07 0.01 43. trans, trans-1,4diphenyl-1,3butadiene TNF 12.5 0.03 9.8 0.06 6.9 (2) 0 . 3 0 6.3 0.20 5.9 0.20 5.4 0.01 5.1 0.01 4 . 8 6 (3) 0 . 2 5 4.615 0.12 4.18 0.20 3.90 0.12 3.71 0.20 3,:; 0.12 3 . 3 6 (1) 1 . 0 0 3.18 0.05 3.09 0.05 2.y: 0.09 2.79 0.01 2,44 0.04 2.37 0.04 2.23 0.02 2.13 0.09 2.08 0.01 2.03 0.01 1.97 0.02 1.92 0.01 1.86 0.02 1.69 0 01 1.60 0.01 1.31 0.01

d/n 1/11 38. l-Methyl-2(1'-naphthyl)naphthalene TNF 22.5 0.12 10.2 0.12 7.5 (3) 0 . 7 0 6.6 0.50b 5.85 0.06 5.4 (2) 0 . 8 0 0.06 4.95 4.68 0.25 4.46 0.02 4.18 0.01 3.94 0.12 3.73 0.25 3.63 0.03 3 . 3 6 (1) 1 . 0 0 3.29 0.12 3.17 0.01 3.01 0.01 2.74 0.03 2.64 0.03 2.47 0.02 2.13 0.06 2.03 0.03 1.96 0.01 1.84 0.02 1.75 0.01 1.68 0.01 1.30 0.01 1.11 0.01 41 5-Meth 1 picene T N P 12.25 0.50 10.9 0.03 8.4 0.03 7.3 (1) 1 . 0 0 0 05 6a ..o2o. 0.04 5.1 0.05 4.68 0.02 4.26 0.12 3.795 0.06 3.58 0.03 3 . 4 4 (2) 0 . 8 0 3 . 2 4 (3) 0.60 3.14 0.05 2.85 0.01 2.73 0.01 2.46 0.02 2 36 0.02 2.26 0.02 2.13 0.12 2.03 0.05 L85 0.02 1.71 0.03 1.30 0.02 1 12 0.01 1.07 0.01

-

44. Periflanthene TNF 12.7 0.12 11.4 (3) 0 . 3 0 9.2 (2) 0 . 5 0 7.4 0.06 6.2 0.09 5.2 0.09 4.76 0 03 4.39 0.09 3.84 0.04 3.70 0.07 3.44 0.25 3.33 (1) 1 . 0 0 3.205 0.25 2.34 0.01 2.12 0.18 2.03 0.01 1.845 0.01 1.71 0.02 1 675 0.02 1.31 0.01 1.12 0.01 1.09 0.01

1/11

d/n 39.

Dibenzo [cd, jkl pyrene TNF 11.5 (2) 0 . 5 0 8.3 (2) 0.50 7.1 (3) 0 . 2 5 6.3 0.01 5.7 0.03 4'99 0.12 4.43 0.03 4.14 0.12 3.66 0.12 3 . 3 2 5 (1) 1 . 0 0 3.10 0.03 2.90 0.01 2.73 0.01 2.61 0.01 2.37 0.01 2.23 0.01 2.13 0.12 2.02 0.12 1.86 0.01 1.72 0.10 1.315 0.01 1.17 0.01 1.12 0.01 1.09 0.01

42. 2-Methylnaphthalene TNF 19.3 10.5 8.3 7.3 6.9 6.3 5.7 5.2 4.80 4.48 4.245 4.03 3.81 3.41 3.22 3.03 2.91 2.77 2.67 2.53 2.45 2.39 2.32 2.12 2.01 1.945 1.84 1.73 1.61

(2) (2)

(1) (3)

0.03 0.25 0.06 0.75 0.75 0.18 0.12 0.03 0.25 0.12 0.18 0.06 0.12 1.00 0.50 0.01 0.04 0.04 0.01 0.06 0.02 0.02 0.03 0.06 0.03 0.01 0.01 0.01 0.01

45. 1,2 '-Binaphthyl TNF 12.8 0.02 8.8 0.12 7.15 0.03 6.4 0.12 5.9 (2) 0 . 5 0 5.6 0.03 4.90 0.06b 4.625 0.03 4 3.2 93 4 (3) 0 . 0 13 8 3.71 3.57 3.40 3.26 3.12 2.98 2.86 2.78 2.53 2.41 2.33 2.20 2.12 2.02 1.71

(I)

0.09 0.05 1.00 0.06 0.06 0.03 0.02 0.02 0.03 0.01 0.01 0.01 0.02 0.02 0.01

d/n = interplanar spacing in Angstroms, I / I l = estimated relative intensity; (1) strongest line: (2) 2nd strongest line; (3) 3rd strongest line. Broad line probably due to partial coinoIdence of 2 or more lines,

A N A L Y T I C A L CHEMISTRY

826 ACKNOWLEDGMENT

The authors wish to express their indebtedness to Milton Orchin for making the complexes available and to those who have prepared some of the compounds; their names may be found in the bibliography. Leslie Reggel assisted greatly with preparation of the manuscript.. LITERATURE CITED

(1) Frevel, L.K.,and Anderson, H. C., Acta C r y s t . , 4,186 (1951). 12) Hanawalt, J. D.,Rinn, H. W., and Frevel, L. K., IND. ENQ. CHEM.,ANAL.ED.. 10,457 (1938). (3)Hofer, L. J. E., and Peebles, W. C., ANAL. CHEM.,23, 690 ( 1951).

Hofer, L. J. E., Peebles, W. C.,and Guest, P. G., Ibid., 22, 1218 (1950).

McKinley, J. B.,Nickels, J. E.,and Sidhu, S., IND.ENQ.CHEM.. ANAL.ED., 16, 304 (1944). Orchin, M., unpublished work. Orchin, M., and Friedel, R. A., J . Am. Chem. SOC.,71, 3002 (1949).

Orchin, M., and Reggel, L.! Ibid., 69,505 (1947). Ibid., 73,436 (1951). Orchin, M., and Reggel, L., unpublished werk. Orchin, >I., Reggel, L., and Woolfolk, E. 0.. J. Am. Chem. S o . , 69, 1225 (1947).

Orchin, M., and Wender, I., unpublished work. Orchin, &I., and Woolfolk, E. O., J. Am. Chem. Soc.. 68, 1727 (1946). RECEIVED for review November

14. 1951.

-4ccepted February 6. IS52

Separation of Manganese from Aqueous Using a Mercury Cathode BRUCE MCDUFFIE’ AND LEVEN S. HAZLEGROVE* Emory L’niversity, Emory University, Ga. In order to extend the usefulness of the mercury cathode method of separating metals from aqueous media, the electrolysis of manganese solutions of various composition and pH has been studied. Using a mercury cathode cell with a small platinum anode, manganese has been quantitatively deposited from sulfate, sulfite-sulfate, and oxalate-sulfate media at initial pH values in the region 2.41 to 4.70, the optimum initial pH being about 2.75. Starting with only 10.0 mg. of manganese in a volume of 100

E

LECTRODEPOSITION employing the mercury cathode is a convenient method for quantitatively separating many metals from their aqueous solutions ( 7 , 8). I n fact, because of the high overvoltage of hydrogen on mercury and the decrease in reactivity of metals due to amalgam formation, many of the more reactive metals such as chromium and molybdenum can be quantitatively deposited into mercury from acidic media, provided large concentrations of interfering elements are absent ( 1 ) . Therefore it was of interest to the authors to determine whether or not conditions could be established such that manganese, a still more reactive metal with a standard potential of 1.05 volts for the reduction of manganese(I1) ion (6), could be quantitatively removed from dilute solutions by electrolysis into mercury. Previous work on the electrolysis of manganese solutions with a mercury cathode has been summarized recently by Maxwell and Graham (8),who state, in agreement with Lundell and Hoffman ( 7 ) ,that ‘(manganeseis incompletely deposited on the anode and in the mercury.” Russell, Evans, and Rowell (IO)electrolyzed manganese(I1) chloride solutions with a mercury cathode to prepare manganese amalgams and reported that, in the presence of hydrochloric acid and alcohol, manganese could be driven quantitatively into the mercury. However, no data on the completeness of removal of manganese were given by these authors. Khlopin (Q), investigating the determination of aluminum in manganese steels, was able to remove 98% of the manganesei.e., all but about 1 mg.-along with all the iron by adding phos1 Present address, Department of Chemistry. Washington and Jefferson College, Washington, Pa. 2 Present addrem Department of Chemistry, West Georgia College, Carrollton, Ga.

ml., at least 99.6% of the manganese was removed using the media cited; the time required varied somewhat with the medium. Deposition was fastest (2 hours) from sulfite-sulfate solutions. The changes in pH during electrolysis were observed and explanations are offered. The fact that manganese wan be quantitatively separated from aqueous solutions using the mercury cathode suggests that this technique might serve as the basis of methods for removal or determination of manganese.

phoric acid and hydrogen peroxide t o solutions of the steel in sulfuric acid. An acetic acid medium was used by Holler and Yeager (3),but a t least some manganese dioxide was filtered out of the solution after the electrolysis. Lingane and Rfeites ( 6 ) ,following the method of Khlopin (Q), used phosphoric acid to prevent the formation of manganese dioxide and permanganate ion a t the anode, but made no comment on the completeness of removal of manganese from the solution. Casto and others (2, 9, 11) were able t o remove 99.0 to 99.6% of the manganese from a solution 1.0 N in acid by electrolysis with a mercury cathode for 1hour, no further deposition occurring after 2,3, or 4 hours. As the acidity was increased, the removal became less complete, 82.9% bring deposited after 1 hour and 91.6% after 2 hours in 6 S acid. In the present communication experiments are reported 111 which manganese solutions of various composition and pH have been electrolyzed with a mercury cathode, leading in many casee to the practically complete removal of manganese from the colution. REAGENTS AND APPARATUS

Standard Manganese Solution. A weighed amount of 99.9+ 70 pure electrolytic manganese from the Electro Manganese Corp., Knowille, Tenn., was dissolved in a slight excess of sulfuric acid and diluted to a volume such that 1.00 ml. of the solution contained 1.00 mg. of manganese. For calibration purposes a solution containing 0.100 mg. per ml. was also prepared Reagents. Reagent grade chemicals and distilled water were used throughout. Apparatus. The type of electrolysis cell used in these experiments was a 250-ml., tall-form beaker with 20 ml. of mercury in the bottom as cathode; electrical contact was made through a glass-enclosed platinum electrode. A small platinum wire of 1mm. diameter, immersed in the electrolysis solution to a depth of 0.5 to 1.0 em., served as the anode.