dR + H20 - American Chemical Society

to form peroxo species ~P0,[M(0)(Oz)z]4])- and [M203(02)4(H20),]z-. These anions .... 0109273, 1983. (14) (a) Napier, D. R.; Starks, C. M. Continental...
4 downloads 0 Views 844KB Size
Inorg. Chem. 1991, 30, 4409-4415

4409

Contribution from the DCpartement de Chimie, Universitt P. et M.Curie, Boite 196, 4 Place Jussieu, 75252 Paris Cedex 05, France, ITODYS, Universite de Paris VII, 1 Rue Guy de la Brosse, 75005 Paris, France, and L'Air Liquide, 75 Quai d'Orsay, 75321 Paris Cedex 07,France

Reinvestigation of Epoxidation Using Tungsten-Based Precursors and Hydrogen Peroxide in a Biphase Medium Catherine Aubry,? GeneviZve Chottard,* Nicole Platzer,g Jean-Marie Brtgeault,**tRene Thowenot,* Franqoise Chauveau," Catherine Huet,l and Henry Ledonl Received November I o I990 The reaction of hydrogen peroxide with tungstic acid, YH2W04",and various types of polyoxometalates (isopolyanions, [M,O,]", and heteropolyanions, [XM,,O& and [X2Mla062]XC-, where M = Mo and W and X = P, B, and Si) has been studied by several physicochemical techniques (UV, IR, Raman, and ,IP and ls3W NMR spectroscopy). On the basis of these results, an interpretation of the differences in the catalytic activity of these precursors in the epoxidation of I-octene by H202in a biphase medium is proposed. Heteropolyacids (HPA) with the Keggin structure, H3[PMl,0,] (M = Mo, W), are degraded in the presence of excess H202 to form peroxo species ~P0,[M(0)(Oz)z]4])-and [M203(02)4(H20),]z-.These anions were isolated in the form of salts and identified by elemental and spectroscopic analyses; it appears that the former is responsible for the catalytic activity of phase-transfer systems involving H3[PMI2O4]as a precursor. Polyoxometalates, in particular those with the Keggin structure, have been used in recent years for the selective oxidation of organic substrates with dioxygen,'+ alkyl hydroperoxide^,^^^ PhIO,' and hydrogen peroxide.8-10 It has long been known that, with hydrogen peroxide, more simple materials containing molybdenum or tungsten are also effective in homogeneous catalytic systems."J2 More recently, an original catalytic epoxidation process with solutions of hydrogen peroxide under phase-transfer conditions (PTC) was reported by Venturello et aI.:I3 H~0*~O~27P0~-lQ'X-

p + x - -onium

R

=/

+

H202

dR + H20 0

salt)

H20/CICH&H2C1;704:

Related systems, for example those involving tungstic acid, "H2WO4". as a precursor, also lead to high activities.I4 Under phase-transfer-reaction conditions, which are particularly suited to nonfunctionalized terminal olefins, such anionic species as (P04[W(0)(02)2]4J313b or [W203(02)4(H20)2]2-14b have been proposed as active oxygen-to-olefin transfer agents in association with an onium salt; the former is also a stoichiometric oxidizing agent.'3b In a very similar approach, polyoxometalates based on molybdenum or tungsten have been used recently in systems operating under phase-transfer conditions. Thus, Ishii et a1.% studied the epoxidation of olefins with heteropolyacids, HPA, Hn[XMI2Oa] (X = P, Si; M = Mo, W), with the Keggin structure, in the presence of a quaternary ammonium chloride. The formation of polynuclear peroxo species from H3[PMI2Oa] was proposed, but these cannot yet be completely identified.gJ5-17 At first sight, the lack of reactivity of H4[SiW120a]9Cis difficult to understand. From these results, it is not clear whether the peroxo complexes formed from HPAs are really more active than those obtained from tungstic acid, YH2W04",or those obtained by association of Po4'- and W042-. First, in order to compare the catalytic activities of some polyoxometalates and other precursors, we employed lsctene as the model substrate and used the epoxidation reaction with hydrogen peroxide under phase-transfer-catalysis conditions. On the basis of initial results, we could not establish a clear relationship between the structure of the starting polyoxometalate and catalytic activity. In an attempt to interpret these results, we have analyzed the aqueous and organic phases by various physicochemical methods and isolated some salts, in order to confirm the spectroscopic analysis of the solutions (Raman, visible, +Universit&P. et M. Curie, URA D1428. *URA 419. SURA 455.

Universit&de Paris VII, URA 34.

* L'Air

Liquide.

UV, and 31Pand Ia3W N M R spectroscopy).

Results Epoxidation tests on 1-octene with hydrogen peroxide in a biphase medium (H20/CHC13) were performed in the presence of polyoxometalates, some of which had already been used in earlier work: [ M O ~ O ~[PMI2Oal3~ ] ~ , ~ ( M = Mo, W).% In addition, other precursors with oxo groups, such as "H2W04",or a mixture Na2W04/H3P04, were included for a comparative study. In all cases, the phase-transfer agent was a quaternary ammonium chloride, Arquad 2 H T (see Experimental Section). The results obtained are reported in Table I. Sheldon, R. A. In New Developmenfsin Selecfive Oxidation;Centi. G., Trifiro, F., Eds.; Elsevier: Amsterdam, 1990; p 1. (2) Neumann, R.; Assael, 1. J. Chem. Soc., Chem. Commun. 1988, 1285. (3) (a) Kozhevnikov, I. V.; Matveev, K. I. Appl. Caral. 1983,5, 135. (b) Kozhevnikov, I. V. Russ. Chem. Reo. (Engl. Transl.) 1987, 56, 811. (4) (a) El Ali, B.; Br&geault,J. M.; Mercier, J.; Martin, J.; Martin, C.; Convert, 0.J . Chem.Soc., Chem. Commun. 1989,825. (b) Br€geault, J. M.; El Ali, B.; Mercier, J.; Martin, J.; Martin, C. C. R. Acad. Sci. Ser. 11 1989, 309, 459. (c) Br6geault, J. M.; El Ali, B.; Mercier, J.; Martin, J.; Martin, C.; Mohammedi, 0. In New Developmenrs in SeElsevier: Amsterdam, lecriue Oxidation; Centi, G., Trifiro, F., Us.; (1)

1990; p 205. (5) Kulikov, S.M.; Kozhevnikov, 1. V. Kine?. i Karal. 1983, 24, 42. (6) Faraj. M.; Hill, C. L. J . Chem. Soc., Chem. Commun. 1987, 1487. (7) Hill, C. L.; Brown, R. B. J. Am. Chem. SOC.1986, 108, 536. (8) (a) Trost, B. M.; Masuyama, Y. Terrahedron fer?.1984,25, 173. (b) Trost, B. M.; Masuyama, Y. Isr. J. Chem. 1984, 24, 134. (9) (a) Matoba, Y.; Inoue, H.; Akagi, J.; Okabayashi, T.; Ishii, Y.; Ogawa, M. Syn. Commun. 1984,14,865. (b) Okabayashi, T.; Nishimura, T.;

(IO) (1 1) (12) (13)

(14)

Matoba, Y.; Yamawaki, K.; Ishii, Y.; Hamanaka, S.;Ogawa, M. Sekiyu Gakkaishi 1986, 29,419. (c) Ishii, Y.; Yamawaki, K.;Ura, T.; Yamada, H.; Yoshida, T.; Ogawa, M. J. Org. Chem. 1988,53, 3587. (d) Ishii, Y. San-PetrochemicalsCo. Jpn. Pat. 62234550, 1987; Chem. Abstr. 1988,109, 75696j. Schwegler, M. A.; Floor, M.; Van Bekkum, H. Tefrahedronfen. 1988, 29, 823. (a) Mugdan, M.; Young, D. P. J. Chem. Soc. 1949,2988. (b) Young, D. P. Distillers Co. Brit. Pat. 654764, 1951. Smith, C. W.; Payne, G.B. Shell Co. US. Pat. 2786854, 1957. (a) Venturello, C.; Alneri, E.; Ricci, M. J. Org. Chem. 1983,48, 3831. (b) Venturello, C.; DAloisio, R.; Bart, J. C. J.; Ricci, M. J. Mol. Car. 1985, 32, 107. (c) Venturello, C.; DAloisio, R. J. Org. Chem. 1988, 53, 1553. (d) Venturello, C. Montedison Co. Eur. Pat. 0109273, 1983. (a) Napier, D. R.; Starks, C. M. Continental Oil Co. U S . Pat. 3992432,1976. (b) Randi, J.; Kagan, H.B.; Mimoun, H. Terrahedron Left. 1986, 27, 2617.

(a) Kuznetsova, L.I.; Maksimovskaya, R. I.; Fedotov, M. A.; Matveev, K. I. Izv. Akad. Nauk. SSSR,Ser. Khim. (Engl. Transl.) 1983, 666. (b) Kuznetsova, L.I.; Maksimovskaya, R. I.; Fedotov, M. A. Izv. Akad. Nauk. SSSR,Ser. Khim. (Engl. Transl.) 1985, 488. Csanyi, L. J.; Jaky, K. J. Mol. Caral. 1990, 61, 75. Keita, B.; Bouaziz, D.; Nadjo, L. J. Elecrroanal. Chem. Inferfacial Elecfrochem. 1990, 296, 275. Keggin, J. F. Nafure 1933, 131, 909. Dawson, B. Acra Crysfallogr. 1953, 6, 1 1 3. Fuchs, J.; Hartl, H.; Schiller, W.; Gerlach, U. Acfo Crysfallogr.1976, 832. 740.

0020-1669/91/ 1330-4409%02.50/0 -~ , 0 1991 American Chemical Society

+

2 b

-do0

I " " I " ' .

-360

-400

' - " l ' " '

-he0

-600 rpn

'

.

I

.

'

'

-do0

-$SO

7

'

-

460

9

.

.

-7bO

200.00

400.00

wo.OO

0 la4-11

800.00

1000.00

Figure 6. Raman spectra: (a) K2[W203(02)4(H20)21.2H~0 in H2O; (b) (P04[WO(02)2]4)~ in dilute H202.

20

Hz

a 0

4:O

416

I

I

b.4

4.3

412

rrn

411

4:O

3:D

0.400

..

310

Figure 5. 3'P and la3W NMR spectra of a CH3CN/CDC13 (90/10) solution of ( B u ~ N ) ~ ~ P O ~ [ W Oprecipited ( O ~ ) ~ ] ~from } a H3[PWi20,]/ HIOlmixture (molar ratio 1/500): (a) I ~ ~ - M H3lpZ spectrum (48 scans, without exponential multiplication); (b) 16.6-MHz l * W spectrum (737 scans, line broadening I Hz). heteroplyacids (entries 1-5), procedure A, in which hydrogen peroxide is introduced after transfer of the precursor to the organic phase (in the form of a quaternary ammonium salt), does not lead

200.00

400.00

wo.00

J (CM-11

BOO.00

1000 .oo

Fipre 7. Raman spectra in H20 of H3[PW120a]: (a) no H202; (b) [Hz0zI/[Wl 1; (c) [Hz0zI/[Wl = 15.

to catalytic systems. The olefin is not epoxidized, while the hydrogen peroxide is not, or is only partially, consumed. In contrast, if the hydrogen peroxide is mixed with the heteropolyacid in an aqueous solution before the fwophusesare mixed

4412 Inorganic Chemistry, Vol. 30, No. 23, 1991

Aubry et al.

Table 11. Absorption Spectral Data for Polyoxomctalate/H202Systems@

run I

2 3 4

5 6

precursor H O W12041 H4[SiWl20401 H,[PMo,2O41 H3[PW120401 H6[P2W18O621 K4[WlOOJ2I (N H4) IO [HZWI 2 0 4 2 1 (N Hds [ M070241

H20solution:c ,A, (t,Ib

H202solution:d [H2021/IMl 355 355 30 30 355 350

256 (3450) 262 (3550)