reaction. Quantitation is possible with photographic detection. The end point is reached rapidly, and levels as low as 1 pg of DNA can be easily detected. This has also been recently developed commercially (19).
Optical sensors Because of the simple instrumentation and sensitivity of CL measurements, CL methods should be advantageous in doing on-site detection, a growing trend in analytical chemistry demon strated by the current interest in opti cal sensors. Two sensors based on CL have been reported in the literature. The first was used to detect oxygen in the gas and liquid phases using the tetrakis (dimethylamino)ethylene oxidation reac tion (20). Reagent is held behind a Tef lon poly(tetrafluoroethylene) membrane through which oxygen diffuses while light is transmitted to the photomultiplier detector. Detection limits of 1 ppm (v/v) in the gas phase should be achievable, and response is similar to that of the oxygen electrode in that the measurement is temperature-sensitive and determines the partial pressure of oxygen. However, the optical probe should not be subject to the same inter ferences as the electrode, including chlorine and hydrogen sulfide, because these have not been shown to affect the chemiluminescent reaction.
HPLC
The second sensor determines hy drogen peroxide with horseradish per oxidase immobilized on a photodiode, which is immersed in a basic solution of luminol and analyte. Glucose can also be detected with a bienzyme sensor containing both HRP and glucose oxi dase. Hydrogen peroxide concentra tions are detectable from 1 to 10 mM; the range reported for glucose is 100 mM-1.5 M (21).
Future trends CL measurements have been demon strated to be suitable for a wide variety of analytes. Difficulties such as a lack of mechanistic information and the need to modify chemical and instru mental parameters to measure the transient CL signal continue to affect method development. However, proba ble trends will include further work in DNA hybridization assays, immunoas says, or other applications that would benefit from the low detection limits and simple instrumentation character istic of CL measurements.
References (1) Carrico, R. J.; Johnson, D. R.; and Boguslaski, R. C. Methods in Enzymology; Academic: New York, 1978; Vol. 17, pp. 113-22. (2) Wannlund, J.; DeLuca, M. In Biolumi nescence and Chemiluminescence, Basic Chemistry and Analytical Applications; DeLuca, M.; McElroy, W. D., Eds.; Aca demic: New York, 1981, pp. 693-96.
Pump
MODEL 760 • Flows from 2μί to 20mL/minute • Pressures to 7200 psi • No pulse dampeners, even for detectors such as Rl or Electro chemical The NEW Model 760 HPLC Pump from Micromeritics is now available for demonstration and shipment. It is the newest HPLC pump on the market and offers the latest in LC technology and cost effective reliability.
mi® micromeritics One Micromeritics Drive, Norcross, GA 30093-1877 Telephone (404) 662-3669 FAX (404) 662-3696 CIRCLE 102 ON READER SERVICE CARD
1256 A · ANALYTICAL CHEMISTRY, VOL. 59, NO. 21, NOVEMBER 1, 1987
3) Yein, F. S.; Marschke, C. K.; Deming, P. C; Holznan, T. F.; Satoh, P. S. Anal. Biochem. 1985,149, 309-15. 4) Kohen, F.; Kim, J. B.; Lindner, H. R.; Barnard, G. In Bioluminescence and Chemiluminescence, Basic Chemistry and Analytical Applications; DeLuca, M.; McElroy, W. D., Eds.; Academic: New York, 1981, pp. 351-56. 5) Arakawa, H.; Maeda, M.; Tsuji, Α.; Kembegawa, A. Steroids 1981,38(4), 45364. 6) Hara, T.; Toriyama, M; Tsubagoshi, K. Bull. Chem. Soc. Jpn. 1983,56, 2267-71. 7) Mahant, V. K.; Miller, J. N.; Thakvar, H. Anal. Chim. Acta 1983,145, 203-6. 8) Grayeski, M. L.; Seitz, W. R. Anal. Bio chem. 1984,136, 277-84. 9) Arakawa, H.; Maeda, M.; Tsuji, A. Clin. Chem. (Winston-Salem, N.C.) 1985, 37(3), 430-34. 10) Weeks, I.; Woodhead, J. S. Clin Chim. Acta 1984,141, 275-80. 11) Neary, M. P.; Seitz, W. R.; Hercules, D. M. Anal. Lett. 1974, 7, 583-90. 12) Gandelman, M. L.; Birks, J. W. J. Chromatogr. 1982, 242, 21-31. 13) Kawasaki, T.; Masako, M.; Tsuji, A. J. Chromatogr. 1985,328,121-26. 14) Bostick, W. P.; Denton, M. S.; Dinsmore, S. R. In Bioluminescence and Che miluminescence, Instruments and Ap plications; Van Dyke, K., Ed.; CRC: Boca Raton, 1985; Vol. II, pp. 227-46. 15) Arisue, K.; Marui, Y.; Yoshida, T.; Ogawa, Z.; Kohda, K.; Hayashi, C; Ishidi, Y. Rinsho Byori 1981,29(5), 459-62. 16) Kobayashi, S.; Imai, K. Anal. Chem. 1980,52,424-27. 17) Sigvardson, K. W.; Kennish, J. M.; Birks, J. W. Anal. Chem. 1984, 56(7), 1096-1102. 18) Veazey, R. L.; Nieman, T. A. J. Chro matogr. 1980,200,153-62. 19) Matthews, J. Α.; Batki, Α.; Hynds, C; Kricka, L. J. Anal. Biochem. 1985, 151, 205-9. 20) Freeman, T. M.; Seitz, W. R. Anal. Chem. 1981,53,98-102. 21) Aizawa, M.; Ikariyama, Y.; Kuno, H. Anal. Lett. 1984, J7(B7), 555-64.
Suggested reading 1) Clinical and Biochemical Lumines cence; Kricka, L. J.; Carter, T.J.N., Eds.; Dekker: New York, 1982. 2) Chemi- and Bioluminescence; Burr, J. G., Ed.; Dekker: New York, 1985. 3) Bioluminescence and Chemilumines cence: Instruments and Applications; Van Dyke, K., Ed.; CRC: Cleveland, 1985; Vols I and II. 4) Seitz, W. R. CRC Crit. Rev. Anal. Chem. 1981,1. 5) Bioluminescence and Chemilumines cence, Methods of Enzymology; Deluca, M., Ed.; Academic: New York, 1978; Vol. 57. _ 6) Seitz, W. R. Clin. Biochem. Amsterdam 1984,17,120. 7) Seitz, W. R.; Neary, M. P. Anal. Chem. 1974,46,188 A. 8) Isacsson V.; Wettermark, G. Anal. Chim. Acta 1974, 68, 339. 9) McCapra, F. Ace. Chem. Res. 1976, 9, 201. 10) Schuster, G. B. Ace. Chem. Res. 1979, 12, 366. Mary Lynn Grayeski received her Ph.D. in analytical chemistry from the University of New Hampshire. She then joined the faculty at Seton Hall University, where her research inter ests include chemiluminescence meth ods of analysis, HPLC detection, and flow injection analysis.