23 Effect of Aluminum Additions on the Thermodynamic and Structural Properties of LaNi - Al Hydrides Downloaded by UNIV OF MICHIGAN ANN ARBOR on October 2, 2017 | http://pubs.acs.org Publication Date: May 5, 1979 | doi: 10.1021/ba-1979-0173.ch023
5
x
MARSHALL
x
H.
MENDELSOHN
and
DIETER
M.
GRUEN
Chemistry Division, Argonne National Laboratory, Argonne, IL 60439 AUSTIN E. DWIGHT
1
Materials Science D i v i s i o n , Argonne National Laboratory, Argonne, IL 60439
Desorption isotherms for the hydrides of LaNi Al 4.6
LaNi Al 4.5
0.5
0.4
and
are presented and values for the enthalpy and
entropy changes of the hydriding reactions are calculated from the van't Hoff plots of log P vs. 1/T. A crystallographic model of LaNi Al is shown and consideration of the nearest 4
neighbor atom distribution leads to a rationalization of the observed linear relationship between the enthalpy change, ∆H, and the aluminum composition. Brief discussions of methods to predict dissociation pressures or interstitial site occupation are included.
The cubic and hexagonal AB
5
phases are compared and, finally, the application of these alloys in chemical heat pump systems is noted.
great d e a l of interest exists i n alloys o f general c o m p o s i t i o n A B , 5
m a i n l y because o f their
x
remarkable
r a p i d l y a n d r e v e r s i b l y at m o d e r a t e
pressures near r o o m
L a N i , w h i c h crystallizes w i t h t h e C a C u 5
investigated.
A l t h o u g h substitutions
ability to absorb
5
hydrogen
temperature.
structure, has b e e n t h o r o u g h l y
of 2 0 % o f other l a n t h a n i d e s f o r
l a n t h a n u m o r other transition metals f o r n i c k e l h a v e b e e n k n o w n f o r some t i m e to c h a n g e t h e e q u i l i b r i u m h y d r o g e n pressure b y a f a c t o r o f Present address: Department of Physics, Northern Illinois University, Dekalb, IL 60115 1
0-8412-0429-2/79/33-173-279$05.00/0 © 1979 American Chemical Society King; Inorganic Compounds with Unusual Properties—II Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
280
INORGANIC
COMPOUNDS WITH UNUSUAL
PROPERTIES
II
a b o u t f o u r ( 1 ) , i t has b e e n s h o w n r e c e n t l y that a l u m i n u m substitutions are p a r t i c u l a r l y effective i n l o w e r i n g the h y d r o g e n pressure b y a f a c t o r of a b o u t 300 i n g o i n g f r o m L a N i
5
to L a N i A l
(2,3).
4
A l u m i n u m substitutions h a v e b e e n s t u d i e d i n f o u r other A B i n a d d i t i o n to L a N i .
T h e hexagonal C a C u
5
t a i n e d u p to the c o m p o s i t i o n T h N i A l 2
t r a n s i t i o n (4).
Cubic U C u
structure of T h N i
5
Downloaded by UNIV OF MICHIGAN ANN ARBOR on October 2, 2017 | http://pubs.acs.org Publication Date: May 5, 1979 | doi: 10.1021/ba-1979-0173.ch023
at the c o m p o s i t i o n UCU4.5AI0.5 a n d to the h e x a g o n a l C a C u the composition U C u . A l i . 3
5
(5).
5
Cubic ZrNi
5
and cubic U N i
5
5
alloys
is m a i n -
without undergoing a
3
transforms to the h e x a g o n a l M g Z n
5
5
phase
structure
2
s t r u c t u r e at 5
both form
single-phase s o l i d solutions u p to the c o m p o s i t i o n s Z r N i A l a n d U N i A I 4
(6,7).
4
O f these systems, o n l y the h y d r o g e n a b s o r p t i o n p r o p e r t i e s
Th(Ni,Al)
5
ternaries h a v e b e e n s t u d i e d r e c e n t l y ( 8 ) .
of
As with L a ( N i , A l )
5
ternaries, there appears to be a l a r g e decrease i n the e q u i l i b r i u m p l a t e a u pressure for T h ( N i , A l ) , except that T h N i A l 5
any hydrogen
2
3
d i d not a p p e a r to a b s o r b
(8).
T h e present w o r k reports h y d r o g e n d i s s o c i a t i o n pressures o b t a i n e d as a f u n c t i o n of t e m p e r a t u r e
on homogeneous
samples of
LaNis^Al^.
t e r n a r y a l l o y s . T h e d e r i v e d t h e r m o d y n a m i c values are c o n s i d e r e d to b e more
accurate
samples (2).
t h a n those
reported by
us o n less w e l l - c h a r a c t e r i z e d
S o m e a p p a r e n t r e l a t i o n s h i p s of the s t r u c t u r e of the a l l o y s
to the c h e m i c a l p r o p e r t i e s of the h y d r i d e s are also d i s c u s s e d .
Experimental L a N i . A l o . 4 a n d L a N i . A l o . 5 w e r e b o t h p r e p a r e d b y the D e n v e r R e s e a r c h Institute u n d e r a c o n t r a c t to A r g o n n e N a t i o n a l L a b o r a t o r y . T h e alloys w e r e p r e p a r e d b y s t a n d a r d i n e r t a t m o s p h e r e , arc m e l t i n g p r o c e dures. A f t e r m e l t i n g , the alloys w e r e heat t r e a t e d at 1 0 5 0 ° C f o r 2 h r i n a sealed q u a r t z t u b e i n a n i n e r t a t m o s p h e r e . W e i g h t losses d u r i n g m e l t i n g w e r e o n the o r d e r of 0 . 1 % . T h e samples w e r e c h a r a c t e r i z e d m e t a l l o g r a p h i c a l l y as a single-phase m a t e r i a l a n d w e r e also c h e c k e d at A r g o n n e b y x-ray d i f f r a c t i o n . S a m p l e s , w e i g h e d to =b 0.0001 g, w e r e p l a c e d i n a n all-316 stainless steel reactor e q u i p p e d w i t h a w e l d e d 1/x p o r o u s stainless steel filter disk. T h e reactor w a s c o n n e c t e d to a n all-316 stainless steel h i g h pressure m a n i f o l d w i t h connections to 0 - 1 0 0 0 p s i a a n d 0-100 p s i a Sensotec pressure t r a n s d u c e r s ( a c c u r a c y ± 0 . 1 % ) , a v a c u u m p u m p , a n d a h i g h pressure h y d r o g e n gas c y l i n d e r . H y d r o g e n was M a t h e s o n s u l t r a - h i g h p u r i t y g r a d e ( 9 9 . 9 9 9 % m i n ) . T h e reactor w a s i m m e r s e d i n a b a t h of d i x y l y l e t h a n e at t e m p e r a t u r e s u p to 1 3 0 ° C a n d D o w C o r n i n g 710 s i l i c o n e o i l a b o v e 1 3 0 ° C . T e m p e r a t u r e s w e r e m a i n t a i n e d to ± 0 . 2 ° C at the l o w e r t e m p e r a t u r e s to ± 0 . 8 ° C at the h i g h e r t e m p e r a t u r e s w i t h Y S I m o d e l s 71 a n d 72 t e m p e r a t u r e c o n t r o l l e r s . E q u i l i b r a t i o n w a s c o n s i d e r e d a c h i e v e d w h e n the pressure r e m a i n e d constant f o r a p e r i o d of a b o u t 15 m i n . E q u i l i b r a t i o n times w e r e f r o m 30 m i n to 16 h r . T o o b t a i n a n a l l o y that r a p i d l y absorbs a n d desorbs h y d r o g e n , it is necessary i n m o s t cases to use a n a c t i v a t i o n p r o c e d u r e . 4
G
4
5
King; Inorganic Compounds with Unusual Properties—II Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
23.
MENDELSOHN E T A L .
LaNi
_ Al
5
x
x
281
Hydrides
A c t i v a t i o n is u s u a l l y a c c o m p l i s h e d b y e x p o s i n g the a l l o y to h i g h e r pressures a n d / o r t e m p e r a t u r e s t h a n s u b s e q u e n t l y r e q u i r e d f o r h y d r o g e n a b s o r p t i o n . I n m a n y cases these c o n d i t i o n s c a n o n l y b e d e t e r m i n e d b y t r i a l a n d error. L a N i 4 . A l . w a s a c t i v a t e d b y s i m p l y e v a c u a t i n g the reactor c o n t a i n i n g the a l l o y f o r several m i n u t e s a n d e x p o s i n g the s a m p l e to 250 p s i H f o r 1 h r . T h e L a N i . A l . 5 s a m p l e w a s s l i g h t l y m o r e d i f f i c u l t to activate. T h i s s a m p l e w a s h e a t e d to a b o u t 9 0 ° C i n 200 p s i H , t h e n e v a c u a t e d a n d p u m p e d o n f o r a b o u t 20 m i n w h i l e c o o l i n g , a n d finally e x p o s e d to 300 p s i H f o r a b o u t 2 h r . D e s o r p t i o n isotherms w e r e determ i n e d b y r e m o v i n g m e a s u r e d a m o u n t s of h y d r o g e n a n d e q u i l i b r a t i n g the system. 6
0
4
2
4
5
0
2
Downloaded by UNIV OF MICHIGAN ANN ARBOR on October 2, 2017 | http://pubs.acs.org Publication Date: May 5, 1979 | doi: 10.1021/ba-1979-0173.ch023
2
Results O n e m e t h o d of d e t e r m i n i n g the t h e r m o d y n a m i c p r o p e r t i e s of a l l o y h y d r o g e n systems is to measure t h e i r h y d r o g e n e q u i l i b r i u m pressures a f u n c t i o n of the h y d r o g e n c o n t a i n e d i n the s o l i d phases.
c o m p o s i t i o n isotherms g e n e r a l l y c a n be d i v i d e d i n t o three regions. i n g w i t h the h y d r i d e d a l l o y , there is first a r e g i o n of r a p i d decrease w i t h o u t m u c h c h a n g e
as
These pressure-
i n hydrogen composition.
Start-
pressure
T h i s is
the
ft phase or h y d r i d e r e g i o n . N e x t there is a p l a t e a u r e g i o n of constant or r e l a t i v e l y constant pressure w h e r e the t w o s o l i d phases
+
co-exist.
F i n a l l y , there is a g a i n a r e g i o n of r a p i d decrease i n pressure, this b e i n g the a p h a s e or s o l i d s o l u t i o n r e g i o n of h y d r o g e n i n the a l l o y . H y d r o g e n d i s s o c i a t i o n pressures f o r the p l a t e a u r e g i o n of L a N i . e 4
A l o ^ H y are s h o w n i n F i g u r e l a at t w o t e m p e r a t u r e s
comparing data
f r o m the h o m o g e n e o u s samples to earlier results. T h e r e p r o d u c i b i l i t y of a d e s o r p t i o n i s o t h e r m is i n d i c a t e d b y the d a t a i n F i g u r e l b t a k e n f r o m t w o separate r u n s . T h e error i n /?-phase c o m p o s i t i o n appears to b e w h i l e the error i n the p l a t e a u pressure r e g i o n appears Tables
I and II
to be
± 2 % ±
g i v e the e x p e r i m e n t a l p r e s s u r e - c o m p o s i t i o n d a t a
1%. for
L a N L ^ A l o ^ H y at six temperatures a n d L a N L i . 5 A l o . 5 H y at five t e m p e r a t u r e s , respectively.
F i g u r e s 2 a n d 3 s h o w a p l o t of these d a t a f o r three t e m -
peratures. F i g u r e 4 shows a p l o t of l o g P vs. 1/T f o r b o t h a l l o y h y d r i d e s . F o r LaNi4.eAlo.4Hy, the pressures s h o w n i n F i g u r e 4 w e r e o b t a i n e d at a composition
y
o b t a i n e d at y = AH
=
2.75 2.50.
w h i l e for
L a N i 4 . 5 A l o . 5 H y , the
pressures
were
T h e errors i n t r o d u c e d i n t o the d e t e r m i n a t i o n of
r e s u l t i n g f r o m the s o m e w h a t a r b i t r a r y d e c i s i o n to use
pressures.near
the m i d d l e of the p l a t e a u are g r e a t l y r e d u c e d i n the present w o r k o v e r the e a r l i e r d a t a ( 2 )
because of the r e l a t i v e "flatness" of the
plateaus.
F r o m a least squares fit of the l o g P vs. 1/T p l o t , the e n t h a l p y ( A f f ) a n d t h e e n t r o p y ( A S ) of t r a n s i t i o n w e r e c a l c u l a t e d f r o m the slope a n d i n t e r cept, r e s p e c t i v e l y . T h e s e v a l u e s are g i v e n i n T a b l e I I I a n d f o r L a N i . 4
A l o ^ H y are c o m p a r e d w i t h a n e a r l i e r r e p o r t e d v a l u e .
T h e errors
King; Inorganic Compounds with Unusual Properties—II Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
6
are
282
INORGANIC
COMPOUNDS
WITH
UNUSUAL PROPERTIES
II
O THIS WORK -
Downloaded by UNIV OF MICHIGAN ANN ARBOR on October 2, 2017 | http://pubs.acs.org Publication Date: May 5, 1979 | doi: 10.1021/ba-1979-0173.ch023
• PREVIOUS WORK
0
1
3 4 H/mole La NL
2
5
4.6
o
r u n
•
r u n
#
7
0.4
1
1
1
—
6
Al
1
1 O
1 *2
O a
O u 12
—
•
8
—
in i o o 0
00
°
—
dO
o o
0
Figure I .
°
1 I
(a) Comparison
1
I
2 3 H/mole L a N i
I
4 4 5
AI
I
5
6
Q 5
of plateau pressure data; (b) reproducibility separate runs
King; Inorganic Compounds with Unusual Properties—II Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
of two
23.
MENDELSOHN E T AL. Table I.
Downloaded by UNIV OF MICHIGAN ANN ARBOR on October 2, 2017 | http://pubs.acs.org Publication Date: May 5, 1979 | doi: 10.1021/ba-1979-0173.ch023
30° ±
48° ±
0.2
0.2
C
C
6 0 ° ± 0.2°
5
x
x
283
Hydrides
Pressure—Composition D a t a for LaNi4.6Alo.4 (H:M)
(°C)
LaNi _ Al
5.87 5.76 5.59 5.18 4.93 4.48 3.94 3.38 2.81 1.73 1.22 0.83 5.78 5.69 5.60 5.46 5.22 4.79 4.20 3.66 3.13 2.59 2.11 1.57 1.04 0.55 0.29 5.60 5.55 5.47 5.35 5.16 4.90 4.56 4.10 3.59 3.07 2.56 2.03 1.51 1.01 0.52 0.28
(Atm) 7.72 4.18 1.91 0.89 0.54 0.34 0.30 0.29 0.28 0.26 0.24 0.22 7.79 5.34 3.89 2.52 1.48 0.86 0.71 0.66 0.63 0.61 0.58 0.55 0.51 0.43 0.22 9.78 7.89 6.12 4.13 2.89 1.87 1.27 1.07 1.02 0.98 0.95 0.92 0.87 0.80 0.68 0.28
(°C) 8 0 ° ± 0.2° 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11
100° ± 0.5° 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11
126° ± 0.8° 11 11 11 11 11 11 11 11 11 11 11 11 11
(H:M) 5.50 5.42 5.34 5.23 5.07 4.85 4.57 4.14 3.63 3.13 2.62 2.11 1.58 1.12 0.64 0.40 4.99 4.88 4.73 4.54 4.47 4.18 3.70 3.41 3.04 2.74 2.41 1.82 1.25 0.73 0.43 0.26 0.15 4.90 4.75 4.51 4.24 3.87 3.35 2.77 2.19 1.67 1.26 0.75 0.56 0.38 0.27
King; Inorganic Compounds with Unusual Properties—II Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
(Atm) 12.1 9.69 7.75 6.09 4.56 3.37 2.63 2.27 2.16 2.08 2.01 1.93 1.88 1.67 1.47 0.67 12.3 10.4 8.23 6.54 5.41 5.03 4.54 4.46 4.23 4.22 4.07 3.82 3.64 3.27 2.46 0.95 0.26 16.2 13.8 11.5 10.3 9.59 9.13 8.74 8.42 8.06 7.50 6.53 4.52 1.39 0.24
INORGANIC
COMPOUNDS
WITH
UNUSUAL PROPERTIES
Downloaded by UNIV OF MICHIGAN ANN ARBOR on October 2, 2017 | http://pubs.acs.org Publication Date: May 5, 1979 | doi: 10.1021/ba-1979-0173.ch023
284
King; Inorganic Compounds with Unusual Properties—II Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
II
MENDELSOHN ET AL.
LaNi .^Al 5
x
Hydrides
Downloaded by UNIV OF MICHIGAN ANN ARBOR on October 2, 2017 | http://pubs.acs.org Publication Date: May 5, 1979 | doi: 10.1021/ba-1979-0173.ch023
23.
King; Inorganic Compounds with Unusual Properties—II Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
285
286
INORGANIC
Table II.
Downloaded by UNIV OF MICHIGAN ANN ARBOR on October 2, 2017 | http://pubs.acs.org Publication Date: May 5, 1979 | doi: 10.1021/ba-1979-0173.ch023
Temperature (°c) 60° ± 0.2°
8 0 ° ± 0.2
100° ± 0.6°
COMPOUNDS
WITH
UNUSUAL PROPERTIES
II
Pressure—Composition D a t a for L a N i ^ A l o . s
Composition (H:M) 5.63 5.59 5.53 5.46 5.32 5.12 4.81 4.38 3.78 3.19 2.60 1.96 1.35 0.79 0.35 5.36 5.28 5.15 4.98 4.73 4.22 3.69 3.11 2.50 1.91 1.33 0.79 0.40 5.35 5.30 5.24 5.12 4.98 4.80 4.52 3.96 3.30
Pressure (Attn) 12.2 10.2 8.07 6.24 3.91 2.23 1.19 0.78 0.67 0.63 0.59 0.55 0.50 0.44 0.18 10.5 8.12 5.86 3.99 2.55 1.65 1.47 1.38 1.31 1.22 1.12 0.99 0.57 16.7 13.9 11.2 8.98 6.84 5.09 3.82 3.12 2.86
Temperature (°C) -• 100° ± 0.6° V yy
yy
120° ± 0.8° )) yy
V yy yy
V
yy
V
yy
yy yy
138° ± 1 ° ° )) yy yy yy yy yy yy yy yy yy yy yy yy yy
Composition (H:M) 2.64 1.97 1.34 0.77 0.51 0.38 5.16 5.07 4.96 4.81 4.58 4.30 3.96 3.48 3.08 2.52 2.02 1.50 1.04 0.65 0.44 0.32 4.97 4.87 4.72 4.56 4.32 3.89 3.38 2.91 2.40 1.95 1.54 1.11 0.72 0.53 0.38
" R u n #1.
King; Inorganic Compounds with Unusual Properties—II Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
Pressure (Attn) • • 2.69 2.43 2.23 1.84 0.94 0.17 19.3 16.3 13.4 10.6 8.13 6.60 5.84 5.43 5.17 4.90 4.63 4.29 3.88 3.22 1.76 0.63 20.0 17.3 14.7 12.6 10.9 9.59 8.97 8.54 8.12 7.69 7.20 6.56 5.40 3.14 0.97
23.
LaNi _ Al
MENDELSOHN ET A L .
Table -
Alloy 4
6
III. A
H
x
287
Hydrides
x
Derived Thermodynamic
Data
( \ - A S ( ° \ \ mol H J \deg — mol H ) k
0
a
l
a l
2
LaNi . Al .4 LaNi .6Al .4 LaNi4. Al . LaNi
8.7 9.1 9.21 7.2
0
4
5
0
5
0
5
Downloaded by UNIV OF MICHIGAN ANN ARBOR on October 2, 2017 | http://pubs.acs.org Publication Date: May 5, 1979 | doi: 10.1021/ba-1979-0173.ch023
5
2.2
± ± ± ±
1
1
2.4
2.6
Figure 4.
0.1 0.2 0.04 0.1
Log V
R f,
2
26.1 28.1 26.6 26.1
1
1
2.8 3.0 IOOO/T (°K) p l a t e a u s
vs.
± ± ± ±
0.3 0.7 0.1 0.4
e
This work 2 This work 2
r
3.2
3.4
1000/temperature
King; Inorganic Compounds with Unusual Properties—II Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
3.6
INORGANIC
Downloaded by UNIV OF MICHIGAN ANN ARBOR on October 2, 2017 | http://pubs.acs.org Publication Date: May 5, 1979 | doi: 10.1021/ba-1979-0173.ch023
288
-20.
COMPOUNDS
0.5
I
X IN Figure 5.
Temp. (°C) 4
0
yy yy yy
LaNi . Alu.5 4
5
yy
yy yy
LaNi * a
1
LaNi
UNUSUAL PROPERTIES
1.5 5 - x
Al
A H vs. x in LaNi
5
x
_ Al x
x
Hysteresis in L a N i s - o A l * Alloys
Table I V .
LaNi .6Al .4
WITH
H:M
(atm)
(atm)
P .P 4
30 48 60 80 100
3.09 3.10 3.10 2.84 2.75
0.31 0.71 1.16 2.41 4.77
0.28 0.64 1.00 2.05 4.20
1.11 1.11 1.16 1.18 1.14
60 80 100 120
2.64 2.48 2.83 2.40
0.65 1.36 2.99 5.27
0.59 1.29 2.73 4.80
1.10 1.05 1.10 1.10
3.0
2.0
1.6
1.25
20
From Ref. 9.
King; Inorganic Compounds with Unusual Properties—II Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
II
23.
MENDELSOHN E T A L .
LaNi _ Al 5
Table V . Compound 0
LaNi4.eAlo.4H5
LaNi . Alo.5
Downloaded by UNIV OF MICHIGAN ANN ARBOR on October 2, 2017 | http://pubs.acs.org Publication Date: May 5, 1979 | doi: 10.1021/ba-1979-0173.ch023
4
5
LaNi4.5Al . H4. 0
0
5
5
289
Hydrides
x
Crystallographic Data
a (A)
c (A)
5.018 (5.037)• 5.358 (5.343) 5.049 (5.037) 5.340
4.030 (4.017) 4.207 (4.233) 4.021 (4.032) 4.201
0
LaNi4. Al .4 6
x
AV/V
V(A')
0
87.89 (88.24) 104.6 (104.7) 88.77 (88.59) 103.7
0.19 (0.19)
— —
0.17
Values in parenthesis from Ref. 21.
d e v i a t i o n s f r o m a least squares fit of t h e d a t a .
A plot of the available
d a t a f o r A H v s . t h e a l u m i n u m c o m p o s i t i o n is s h o w n i n F i g u r e 5 . T h e a p p a r e n t l i n e a r r e l a t i o n s h i p w i l l b e d i s c u s s e d later. I n g e n e r a l , a b s o r p t i o n pressures d o n o t a p p e a r t o b e as r e p r o d u c i b l e as d e s o r p t i o n pressures, a n d n o extensive d a t a of t h e a b s o r p t i o n isotherms w e r e o b t a i n e d . H o w e v e r , f o r p r a c t i c a l a p p l i c a t i o n s a b s o r p t i o n pressures n e e d to b e k n o w n at least a p p r o x i m a t e l y . T h e r e f o r e , s i n g l e d a t a p o i n t s o n t h e a b s o r p t i o n p r e s s u r e - c o m p o s i t i o n d i a g r a m w e r e t a k e n at s e v e r a l t e m p e r a t u r e s f o r b o t h alloys a n d are l i s t e d i n T a b l e I V . A s c a n b e seen f r o m this t a b l e , t h e m a g n i t u d e of t h e hysteresis as m e a s u r e d b y t h e r a t i o F b orption:F e orption is less t h a n that o b s e r v e d f o r L a N i . a
S
d
5
S
Crystallographic
d a t a o b t a i n e d o n b o t h alloys a n d b o t h c o r r e s p o n d i n g h y d r i d e s are c o l lected
i n Table
V
a n d are c o m p a r e d
with
p r e v i o u s results
where
available . Discussion T h e c o n c l u s i o n that s l o p i n g plateaus are a t t r i b u t a b l e t o c o m p o s i t i o n a l i n h o m o g e n e i t i e s i n t h e i n i t i a l a l l o y s a m p l e ( J O ) seems r e a s o n a b l e carefully prepared alloys w i t h CaCu
phase
5
field,
different L a : N i
since
ratios, b u t w i t h i n t h e
d i s p l a y d i f f e r e n t p l a t e a u pressures
(10).
Therefore,
t h e " f l a t t e r " p l a t e a u s of the present series of samples ( s h o w n i n F i g u r e la)
are i n d i c a t i v e o f a b e t t e r degree of h o m o g e n e i t y t h a n t h e e a r l i e r
samples. T h e r e h a v e b e e n several discussions i n t h e l i t e r a t u r e o f t h e r e l a t i o n ships o f structure t o h y d r i d e s t a b i l i t y (11,12).
I t is o f interest t o discuss
t h e i n f l u e n c e of a l u m i n u m o n t h e structure a n d o n t h e p l a t e a u pressure of A B alloys. U p to the c o m p o s i t i o n L a N i . A l i . , t h e L a N i s - a A l * a l l o y s 5
3
crystallize w i t h the C a C u
5
structure.
5
5
T w o v i e w s of a m o d e l o f this
s t r u c t u r e f o r L a N i A l are s h o w n i n F i g u r e 6. F i g u r e 6 a is a v i e w l o o k i n g 4
d o w n t h e c axis a n d shows t h e c o n f i g u r a t i o n of n i c k e l a n d a l u m i n u m atoms a r o u n d t h e c e n t r a l l a n t h a n i u m atoms.
F i g u r e 6b shows the layer-
King; Inorganic Compounds with Unusual Properties—II Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
COMPOUNDS
WITH
UNUSUAL
PROPERTTES-
Downloaded by UNIV OF MICHIGAN ANN ARBOR on October 2, 2017 | http://pubs.acs.org Publication Date: May 5, 1979 | doi: 10.1021/ba-1979-0173.ch023
INORGANIC
ure 6.
Two
views of a model of
LaNi^Al
King; Inorganic Compounds with Unusual Properties—II Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
23.
MENDELSOHN
LaNi _ Al
ET AL.
5
x
x
291
Hydrides
t y p e structure p a r a l l e l to t h e b a s a l p l a n e . T h i s v i e w a l l o w s o n e to d i s c e r n the d i s t i n c t 2c a n d 3 g sites of n i c k e l . O n t h e basis of x - r a y d i f f r a c t i o n intensities ( 2 ) , i t has b e e n s h o w n t h a t t h e a l u m i n u m atoms p r e f e r e n t i a l l y o c c u p y t h e 3 g sites.
I n the L a N i A l 4
m o d e l s h o w n i n F i g u r e 6, t h e
a l u m i n u m atoms also h a v e b e e n o r d e r e d i n t h e 3 g sites w i t h o u t e x p e r i mental evidence.
O n t h e basis of this m o d e l , a c o m p a r i s o n of nearest
n e i g h b o r d i s t r i b u t i o n s is g i v e n i n T a b l e V I f o r six different types of i n t e r -
Downloaded by UNIV OF MICHIGAN ANN ARBOR on October 2, 2017 | http://pubs.acs.org Publication Date: May 5, 1979 | doi: 10.1021/ba-1979-0173.ch023
stitial sites. S e v e r a l w o r k e r s r e c e n t l y h a v e r e p o r t e d results o n n e u t r o n d i f f r a c t i o n investigations of L a N i D 5
6
(13,14,15).
I n e a c h of these p a p e r s , i t is
c o n c l u d e d that t h e s y m m e t r y of t h e a l l o y is l o w e r e d to space g r o u p p 3 1 m o n d e u t e r a t i o n a n d that t h e d e u t e r i u m atoms o c c u p y 3c a n d 6d t e t r a h e d r a l sites. T h e s e sites i n t h e d e u t e r i d e are closely r e l a t e d s p a t i a l l y to t h e 12n a n d 12o t e t r a h e d r a l sites of t h e a l l o y h a v i n g P 6 / m m m s y m metry.
C o n c e n t r a t i n g o n t h e n a n d o sites o n l y , o n e notes that t h e
f r a c t i o n of those sites c o n t a i n i n g o n e a l u m i n u m nearest n e i g h b o r is o n e half for L a N i A I a n d one-fourth for L a N i . A l . 5 . 4
4
5
0
T h u s , i f o n e assumes
the a l u m i n u m atoms to r e p l a c e n i c k e l i n the o r d e r e d m a n n e r d e p i c t e d i n F i g u r e 6, t h e n t h e f r a c t i o n of n a n d o sites w i t h one a l u m i n u m nearest n e i g h b o r is a l i n e a r f u n c t i o n of t h e a l u m i n u m c o m p o s i t i o n . I f o n e f u r t h e r assumes t h a t h y d r o g e n s i n n a n d o sites are b o u n d w i t h energies a v e r a g e d over a l l a v a i l a b l e sites, t h e n t h e " a v e r a g e " i n t e r s t i t i a l site b o n d i n g e n e r g y also w o u l d b e e x p e c t e d to b e p r o p o r t i o n a l to t h e a l u m i n u m c o m p o s i t i o n , thus p r o v i d i n g a r a t i o n a l e f o r t h e o b s e r v e d l i n e a r r e l a t i o n s h i p b e t w e e n AH a n d a l u m i n u m c o m p o s i t i o n s h o w n i n F i g u r e 5. S h i n a r et a l . (16)
h a v e p r o p o s e d that specific i n t e r s t i t i a l site o c c u p a -
tions c a n b e d e t e r m i n e d b y associating different b i n d i n g energies
Table V I .
Nearest Neighbor Distribution around Alloy Interstitial Sites
LaNi
LaNi Al
5
J?. Designation
Neighbors
k
AT
7
Number of Sites
La
Ni
f
2 2
6 4
1 3
h m
0 2
4 2
4 6
n
1
3
12
0
1
3
12
b
with
La 2 2 2 0 2 2 1 1 1 1
Neighbors Ni 4 2 4 3 2 1 2 3 2 3
Al
, Number of Sites
2 2 0 1 0 1 1 0 1 0
1 1 2 4 2 4 4 8 8 4
A r
King; Inorganic Compounds with Unusual Properties—II Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
292
INORGANIC COMPOUNDS W I T H UNUSUAL
PROPERTIES
II
h y d r o g e n atoms i n different i n t e r s t i t i a l sites. T h e b i n d i n g energies w o u l d b e p r o p o r t i o n a l to A H , the s u m of the heats of f o r m a t i o n of
(imaginary)
b i n a r y h y d r i d e s f o r m e d w i t h the A a n d B atoms s u r r o u n d i n g a p a r t i c u l a r site.
O n the basis of this scheme, one w o u l d p r e d i c t t h a t the h y d r o g e n
atoms p r e f e r sites h a v i n g a n a l u m i n u m nearest n e i g h b o r since t h e heat of f o r m a t i o n of a l u m i n u m h y d r i d e is c o n s i d e r e d to b e m o r e negative t h a n that of n i c k e l h y d r i d e (17).
H o w e v e r , b e c a u s e the m o s t recent
measured
Downloaded by UNIV OF MICHIGAN ANN ARBOR on October 2, 2017 | http://pubs.acs.org Publication Date: May 5, 1979 | doi: 10.1021/ba-1979-0173.ch023
values of A S f o r the a l u m i n u m - c o n t a i n i n g alloys are almost i d e n t i c a l to those of L a N i
5
(see
T a b l e I I I ) , c o n f i g u r a t i o n a l e n t r o p y calculations
i n d i c a t e that the d i s t r i b u t i o n of o c c u p i e d sites is the same f o r L a N i
5
(12) as f o r
the L a N i s ^ A l z alloys. It s h o u l d b e n o t e d that a l t h o u g h the present A S values are c o n s i d e r e d to b e m o r e a c c u r a t e t h a n those p r e v i o u s l y r e p o r t e d ( 2 ) , m o r e precise A S values s h o u l d b e a v a i l a b l e soon f r o m p r e c i s i o n calor i m e t r i c experiments b e i n g p e r f o r m e d i n c o l l a b o r a t i o n w i t h the A r g o n n e National Laboratory C h e m i c a l Engineering Division calorimetry group. C a l c u l a t i o n s f r o m S h i n a r et a l . f o r L a N i H 5
6
s h o w that the o c t a h e d r a l
3/ a n d t e t r a h e d r a l 6 m sites w o u l d b e p r e f e r r e d for h y d r o g e n o c c u p a t i o n , a n d c o n t e n t i o n is m a d e that this result is s u p p o r t e d b y n e u t r o n d i f f r a c t i o n data.
T h e y state t h a t t h e 3c a n d 6d t e t r a h e d r a l i n t e r s t i t i a l sites f o r the
d e u t e r i d e "are analogous to the 3/ a n d 6m c o m p o u n d ( P 6 / m m m space g r o u p ) " (16).
sites i n the ( L a N i ) 5
mother
H o w e v e r , the occupied
3c
sites i n the d e u t e r i d e are d i s p l a c e d ~ 0.08 A f r o m 3/ i n t e r s t i t i a l sites i n LaNi
5
a n d are, i n fact, closer to 12n i n t e r s t i t i a l sites ( 1 5 ) , as a l r e a d y n o t e d .
F u r t h e r m o r e , 6d sites are never e q u i v a l e n t to 6 m i n t e r s t i t i a l sites except i n one s p e c i a l case w h i c h does not p e r t a i n to the d e u t e r i d e , b u t t h e y are closely r e l a t e d to the 12o i n t e r s t i t i a l sites. It seems t h e r e f o r e m o r e reasona b l e to c o n c l u d e that the h y d r o g e n s o c c u p y t e t r a h e d r a l sites i n L a N i H 5
a n d that the n e u t r o n d i f f r a c t i o n results s u p p o r t a n " a v e r a g e "
6
interstitial
site b o n d i n g energy m o d e l o v e r m o d e l s w h i c h assume discrete b o n d i n g energies associated w i t h e v e r y c r y s t a l l o g r a p h i c a l l y d i s t i n c t site o c c u p i e d b y h y d r o g e n . I n a n y event, the q u e s t i o n of site o c c u p a t i o n of h y d r o g e n i n the A B
5
h y d r i d e s r e m a i n s a n i n t r i g u i n g one a n d w i l l r e q u i r e
more
precise s t r u c t u r a l a n d t h e r m o d y n a m i c measurements o n w h i c h to base m o r e a c c u r a t e t h e o r e t i c a l c a l c u l a t i o n s f o r its s o l u t i o n . A scheme f o r c o r r e l a t i n g h y d r i d e stabilities, t h e so c a l l e d " r u l e of r e v e r s e d s t a b i l i t y " (see
e.g., 18,19),
states t h a t f o r a series of
analogous
alloys, the m o r e stable the a l l o y , the less stable (i.e., h i g h e r d i s s o c i a t i o n p r e s s u r e ) the c o r r e s p o n d i n g h y d r i d e .
Using Miedema's formula
the c a l c u l a t e d heat of f o r m a t i o n f o r L a N i is — 42.1 k j / m o l . S i n c e L a A l
5
5
(20),
is — 11.2 k j / m o l a n d f o r L a A l
5
is m o r e stable ( m o r e n e g a t i v e A H ) t h a n
L a N i , the r u l e of r e v e r s e d s t a b i l i t y p r e d i c t s the L a N i s . ^ A l ^ h y d r i d e s to 5
be less stable t h a n L a N i H 5
6
c o n t r a r y to o b s e r v a t i o n .
S i m i l a r l y , S h i n a r et
King; Inorganic Compounds with Unusual Properties—II Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
23.
LaNi . Al
MENDELSOHN E T AL.
5 x
x
293
Hydrides
a l . (16) h a v e f o u n d disagreement w i t h t h e r u l e o f r e v e r s e d s t a b i l i t y f o r the LaNis.^Cutf h y d r i d e s . I t appears that i n t h e case o f t h e a l u m i n u m a n d c o p p e r ternaries,
as i n m a n y other A B h y d r i d e systems,
t h e factors
5
d e t e r m i n i n g t h e h y d r o g e n d i s s o c i a t i o n pressures
a r e closely
correlated
w i t h c e l l v o l u m e s (2) o r i n t e r s t i t i a l h o l e sizes ( I I ) . T h e t w o most c o m m o n l y o b s e r v e d structure types f o r c o m p o u n d s having the composition A B Downloaded by UNIV OF MICHIGAN ANN ARBOR on October 2, 2017 | http://pubs.acs.org Publication Date: May 5, 1979 | doi: 10.1021/ba-1979-0173.ch023
agonal C a C u
5
structure.
5
are t h e c u b i c U N i
5
structure a n d t h e hex-
T h e relationships these structures b e a r t o o n e
another a r e i m p o r t a n t because, t o o u r k n o w l e d g e , alloys of c o m p o s i t i o n AB
w h i c h h a v e b e e n r e p o r t e d t o absorb large quantities of h y d r o g e n
5
are e x c l u s i v e l y of the C a C u
5
structure t y p e , a l t h o u g h u p t o n o w i t appears
that t h e o n l y c u b i c c o m p o u n d tested f o r h y d r o g e n a b s o r p t i o n is Y N i M n 4
T h e C a C u h e x a g o n a l phase, i n a c c o r d a n c e w i t h D w i g h t ' s e m p i r i c a l
(21).
5
r u l e (22),
is o n l y stable i f t h e r a d i u s r a t i o r :r
w i t h r :r
< 1.30 c r y s t a l l i z e i n the c u b i c U N i
A
B
A
1.30.
Compounds
structure.
However, it
>
B
5
has b e e n f o u n d that t h e l i m i t 1.30 is n o t c r i t i c a l f o r t h e c u b i c structure, a n d i n d e e d c u b i c c o m p o u n d s a r e k n o w n - w i t h r a d i u s ratios u p t o
1.42
I f one examines the i o n i c c r y s t a l r a d i i f o r l a n t h a n u m , n e o d y m i u m ,
(23).
t h o r i u m , e r b i u m , a n d u r a n i u m , a n d t h e structures a n d v o l u m e s of t h e i r corresponding A N i UNi
5
5
c o m p o u n d s , as s h o w n i n T a b l e V I I , t h e v o l u m e of
seems t o b e a n o m a l o u s l y s m a l l . H o w e v e r , t h e m e t a l l i c r a d i u s o f
u r a n i u m is s m a l l e r t h a n a l l o f t h e rare earth m e t a l l i c r a d i i .
This implies
that u r a n i u m is n o t t r i - v a l e n t i n this m e t a l l i c c o m p o u n d b u t rather o f higher valency.
L a c k i n g a n estimate o f t h e m e t a l l i c r a d i u s o f u r a n i u m
i n U N i , a d v a n t a g e has b e e n t a k e n o f t h e a p p a r e n t l i n e a r r e l a t i o n s h i p 5
b e t w e e n i o n i c c r y s t a l r a d i i a n d a l l o y c e l l v o l u m e f o r several A N i
com-
5
p o u n d s . I n fact, b y e x t r a p o l a t i n g s u c h a p l o t , one w o u l d expect t h e i o n i c r a d i u s of u r a n i u m t o b e a b o u t 0.98 A f o r t h e c e l l v o l u m e to b e 77.9 A . 3
T h u s , u r a n i u m c o u l d b e either tetra-valent
(CR =
1.03,
R e f . 24) o r
p e n t a - v a l e n t ( C R = 0.90, R e f . 24) o r p o s s i b l y o f i n t e r m e d i a t e v a l e n c y . Table V I I . Ion La Nd Th Er U
3 + 3 + 4 +
3 +
+ 3
Crystal Radius (A) 1.172 1.123 1.08 1.030 1.165
ANi
5
ANi
5
Structure
hexagonal hexagonal hexagonal hexagonal cubic
Volume (A ) 3
86.7 84.3 84.r 81.0
b 6
6
77.9
A l l values from Ref. 24. From Ref. 25. From Ref. 4. * From Ref. 6. a
b
0
King; Inorganic Compounds with Unusual Properties—II Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
d
294
INORGANIC COMPOUNDS W I T H UNUSUAL PROPERTIES
II
F i n a l l y , a t w o - m e t a l h y d r i d e c o n c e p t o p e r a t i n g as a c h e m i c a l heat p u m p f o r storage a n d r e c o v e r y of t h e r m a l energy f o r h e a t i n g , c o o l i n g , a n d energy c o n v e r s i o n has b e e n p r o p o s e d ( 2 6 ) a n d is c u r r e n t l y b e i n g tested
(27).
H y d r o g e n gas is t r a n s f e r r e d
t h e r m a l energy i n p u t at a characteristic
f r o m one h y d r i d e b e d b y
temperature
to a s e c o n d b e d
w h e r e h y d r o g e n is a b s o r b e d , a n d t h e r m a l energy is released at another characteristic
temperature.
T h i s c o n c e p t is i l l u s t r a t e d d i a g r a m m a t i c a l l y
Downloaded by UNIV OF MICHIGAN ANN ARBOR on October 2, 2017 | http://pubs.acs.org Publication Date: May 5, 1979 | doi: 10.1021/ba-1979-0173.ch023
i n F i g u r e 7. T h e heat p u m p a p p l i c a t i o n becomes most efficient f o r t h e case w h e n t h e values o f A S f o r t h e h y d r i d i n g reactions h y d r i d e p a i r are e q u a l L a N i . . A l . alloys. 5
a
( Z
of t h e m e t a l
( 2 8 ) , a p r o p e r t y closely a p p r o x i m a t e d b y t h e
T h i s p r o p e r t y together w i t h t h e a b i l i t y t o v a r y t h e
h y d r o g e n d i s s o c i a t i o n pressure
o v e r w i d e ranges m a k e t h e
LaNi . A\ 5 w
a l l o y system of p a r t i c u l a r interest f o r c h e m i c a l heat p u m p a p p l i c a t i o n s .
IOOO/T(°K) Figure 7.
Representation
of a two metal hydride chemical heat pump
King; Inorganic Compounds with Unusual Properties—II Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
x
23.
MENDELSOHN E T A L .
LaNi
5
_ Al x
x
Hydrides
295
Acknowledgment W e w i s h t o t h a n k S. P e t e r s o n f o r h e l p f u l discussions.
Downloaded by UNIV OF MICHIGAN ANN ARBOR on October 2, 2017 | http://pubs.acs.org Publication Date: May 5, 1979 | doi: 10.1021/ba-1979-0173.ch023
Literature Cited 1. van Mal, H. H., Buschow, K. H. J., Miedema, A. R., J. Less-Common Met. (1974) 35, 65. 2. Mendelsohn, M. H., Gruen, D. M., Dwight, A. E., Nature (1977) 269, 45. 3. Achard, J.C.,Percheron-Guegan, A., Diaz, H., Briancourt, F., Denany, F., Int. Congr. on Hydrogen in Metals, 2nd, Paris, France, 1977. 4. Ban, Z., Sikirica, M., Raseta, R., J. Less-Common Met. (1967) 12, 478. 5. Blazina, Z., Ban, Z., Z. Naturforsch. (1973) 28b, 561. 6. Blazina, Z., Ban, Z., J. Less-Common Met. (1973) 33, 321. 7. Blazina, Z., Ban, Z., Croat. Chem. Acta (1971) 43, 59. 8. Takeshita, T., Wallace, W. E., J. Less-Common Met. (1977) 55, 61. 9. Kuijpers, F. A., van Mal, H. H., J. Less-Common Met. (1971) 23, 395. 10. Buschow, K. H. J., van Mal, H. H., J. Less-Common Met. (1972) 29, 203. 11. Lundin, C. E., Lynch, F. E., Magee, C. B., J. Less-Common Met. (1977) 56, 19. 12. Gruen, D. M., Mendelsohn, M. H., J. Less-Common Met. (1977) 55, 149. 13. Andresen, A. F., Proc. Int. Symp. on Hydrides for Energy Storage, Geilo, Norway, August 1977. 14. Fischer, P., Furrer, A., Busch, G., Schlapbach, L., Proc. Int. Symp. on Hydrides for Energy Storage, Geilo, Norway, August, 1977. 15. Bowmann, A. L., Anderson, J. L., Nereson, N. G., Proc. Rare Earth Res. Conf., 10th, Carefree, Arizona, 1973. 16. Shinar, J., Jacob, I., Davidov, D., Shaltiel, D., Proc. Int. Symp. on Hydrides for Energy Storage, Geilo, Norway, August, 1977. 17. "Metal Hydrides," W. M. Mueller, J. P. Blackledge, G. G. Libowitz, Eds., Academic, New York, 1968. 18. vanMal,H. H., Buschow, K. H. J., Miedema, A. R., J. Less-Common Met. (1974) 35, 65. 19. Buschow, K. H. J., vanMal,H. H., Miedema, A. R., J. Less-Common Met. (1975) 42, 163. 20. Miedema, A. R., J. Less-Common Met. (1976) 46, 67. 21. Mendelsohn, M. H., Gruen, D. M., Dwight, A. E., Proc. Rare Earth Res. Conf., 13th, Wheeling, West Virginia, October, 1977. 22. Dwight, A. E., Trans. ASM (1961) 53, 479. 23. Buschow, K. H. J., van der Goot, A. S., Birkham, J., J. Less-Common Met. (1969) 19, 433. 24. Shannon, R. D., Acta Crystallogr. (1976) A32, 751. 25. Wernick, J.H.,Geller, S., Acta Crystallogr. (1959) 12, 662. 26. Gruen, D. M., et al., Proc. Intersoc. Energy Conver. Engin. Conf., 11th, Stateline, Nevada, 1976. 27. Gruen, D. M., et al., Argonne National Laboratory Report, ANL-77-39, June, 1977. 28. Gruen, D. M., Mendelsohn, M. H., Sheft, I., Sol. Energy (1978) 21 (2). RECEIVED March 7, 1977. Work performed under the auspices of the Division of Basic Energy Sciences of the Department of Energy.
King; Inorganic Compounds with Unusual Properties—II Advances in Chemistry; American Chemical Society: Washington, DC, 1979.