7 Effect of Coordination on the Reactivity of Aromatic Ligands General Patterns of Reactivity
Downloaded via UNIV OF MINNESOTA on July 10, 2018 at 04:44:22 (UTC). See https://pubs.acs.org/sharingguidelines for options on how to legitimately share published articles.
MARK M. JONES Vanderbilt
University, Nashville,
Tenn.
The aromatic portion of a ligand will generally exhibit the same qualitative pattern for electrophilic substitution reactions, whether present in a coordination compound or not. The reactions of the extra-aromatic portion of such a ligand will usually show a pattern of reactivity similar to that of the free ligand but modified by the effects of masking and polarization which result from coordination. For heterocyclic ligands containing donor atoms integral with the aromatic systems, more profound changes may occur, but have been demonstrated only for the case of pyridine-N-oxide to date. When redox or autoxidation reactions are considered, coordination may result in very profound changes in the rates of these reactions. It is in this latter class of reaction that the most startling effects of coordination are to be seen.
M t the p r e s e n t t i m e t h e p a u c i t y of d a t a renders
i t i m p o s s i b l e to g i v e a
complete
p i c t u r e of the various w a y s i n w h i c h c o o r d i n a t i o n m a y affect the reactivity aromatic
ligands.
It
is p o s s i b l e
to
indicate
process m a y h a v e o n the a r o m a t i c reactivity, polarization m a y
affect reactivities,
a n d to
the
effects w h i c h
however, show
at
the
to s h o w h o w m a s k i n g
least a f e w
of
coordination
instances
and
where
c o o r d i n a t i o n m a y p r o v i d e u s e f u l s y n t h e t i c r o u t e s to s o m e a r o m a t i c c o m p o u n d s . While
it m a y
ultimately prove more
f r u i t f u l to
develop
a completely
inde-
p e n d e n t m e t h o d for p r e d i c t i n g t h e r e a c t i o n s of c o o r d i n a t e d l i g a n d s , at p r e s e n t most promising approach
is to see h o w t h e
usual methods
c h e m i s t r y c a n b e u s e d o r m o d i f i e d to c o v e r t h e s e c a s e s . aspects of o r g a n i c
reactions
(as
compared
i n w h i c h the
different parts of the
molecule
the
organic
O n e of t h e m o s t s t r i k i n g
w i t h inorganic reactions)
i n v o l v e m e n t of o n l y a s m a l l p o r t i o n of the m o l e c u l e way
of theoretical
(functional
preserve their
is t h e
group) typical
p a t t e r n s as t h e g r o s s s t r u c t u r e o f t h e m o l e c u l e is s u b j e c t e d t o c h a n g e s .
116 Busch; Reactions of Coordinated Ligands Advances in Chemistry; American Chemical Society: Washington, DC, 1962.
usual
and
the
reaction
Put
more
JONES
117
Reactivity of Aromatic Ligands
directly,
organic
chemistry
is b u i l t
u p o n the
assumption
that
a
change
in
one
p o r t i o n of a m o l e c u l e w i l l u s u a l l y h a v e little or n o effect o n the q u a l i t a t i v e aspects of reactivity
o f o t h e r p o r t i o n s , t h o u g h it m a y
affect
t h e rates of these
reactions.
T h u s w e s h o u l d e x p e c t a b e n z e n e r i n g i n a c o o r d i n a t i o n c o m p l e x to s h o w t h e general properties
as a r e f o u n d f o r b e n z e n e r i n g s i n t y p i c a l o r g a n i c
Metal-arene complexes
must be excepted
same
compounds.
f r o m this s t a t e m e n t a n d the
discussion
w h i c h follows. F o r c o n v e n i e n c e , the reactions of a r o m a t i c l i g a n d s m a y b e d i v i d e d into three groups: I.
R e a c t i o n s w h e r e t h e d o n o r a t o m is e x t e r n a l t o t h e a r o m a t i c
II.
Reactions
i n w h i c h the
aromatic
system
contains
the
system
donor atom
as
an
integral part III.
R e d o x reactions in w h i c h the c o m p l e x participates
via changes
involving
b o t h the l i g a n d a n d central m e t a l i o n
Aromatic Systems with an External Donor Atom W h e n t h e d o n o r a t o m is a n i t r o g e n o r a n o x y g e n a t o m a d j a c e n t to a n
aromatic
system, the c o m b i n a t i o n of t h e u s u a l v a l e n c e b o n d t r e a t m e n t of a r o m a t i c
orienta
tion for e l e c t r o p h i l i c reagents a n d the v a l e n c e b o n d p i c t u r e of the c o o r d i n a t e b o n d leads The
to
the
expectation
chief reason
that
for expecting
considerable
changes
i n reactivity
that coordination w i l l result
in a
should
occur.
change
in
the
o r i e n t a t i o n o f e l e c t r o p h i l i c a t t a c k u p o n a n i l i n e s o r p h e n o l s is t h e k i n d o f c a n o n i c a l structure
used
to
explain
why
the
directing, rather than meta directing. o r o x y g e n is a t t a c h e d deactivation
toward
amino
and
hydroxy
groups
If a n e l e c t r o n e g a t i v e
are
ortho-para
a t o m s u c h as n i t r o g e n
d i r e c t l y to a b e n z e n e r i n g , o n e m i g h t e x p e c t a p r o n o u n c e d typical
electrophilic
d i r e c t i n g influence for s u c h substituents.
reagents
and
possibly
even
T h u s the chloro a n d the
are d e a c t i v a t i n g , w h i l e the nitro a n d s u l f o n i c a c i d g r o u p s are m e t a
a
meta-
fluoro
groups
directing.
e x p l a i n t h e o b s e r v e d o r i e n t a t i o n p a t t e r n i n b o t h a n i l i n e a n d p h e n o l i t is
To
customary
to e m p h a s i z e t h e i m p o r t a n c e o f c e r t a i n c a n o n i c a l f o r m s w h i c h i n v o l v e t h e s h a r i n g of the l o n e p a i r o n the n i t r o g e n or o x y g e n w i t h the b e n z e n e r i n g . u s e d i n t h e f o r m u l a t i o n o f e i t h e r t h e g r o u n d s t a t e (54) T h e resultant
c a n o n i c a l f o r m s w h i c h are
These may
or the t r a n s i t i o n state
assigned importance
are
shown
be (48).
below:
Ground State Formulation. H - N - H
4H — N - H
+
+
H - N - H
Η—Ν—H
Transition State Formulation.
(three of these)
(three of these)
para attack b y Y +
ortho attack b y Y +
In either f o r m u l a t i o n the i n v o l v e m e n t of the lone p a i r i n a coordinate
Busch; Reactions of Coordinated Ligands Advances in Chemistry; American Chemical Society: Washington, DC, 1962.
bond
ADVANCES
118 w o u l d l e a d o n e to e x p e c t s o m e
obvious qualitative
IN CHEMISTRY SERIES
changes i n reactivity.
That
s u c h c h a n g e s a r e n o t o b s e r v e d l e a d s to t h e c o n c l u s i o n t h a t t h e v a l e n c e b o n d t h e o r y is s o m e w h a t
inconsistent here.
A t p r e s e n t it seems t h a t the v a l e n c e b o n d
o f t h e c o o r d i n a t e b o n d is p r o b a b l y t h e c u l p r i t . w o u l d not expect the
In the crystal
field
picture
treatment
l o n e p a i r t o b e so d e e p l y i n v o l v e d w i t h t h e
metal
one
that
it
w o u l d b e p r e v e n t e d f r o m p a r t i c i p a t i o n i n s u c h c a n o n i c a l f o r m s as a r e n e c e s s a r y to e x p l a i n the orientation.
T h e difference between
c o n s i d e r a b l e , as p r o t o n a t i o n d o e s l e a d to a c h a n g e
protonation
and coordination
of orientation of a n i l i n e
T h e c r u x o f t h i s d i f f i c u l t y is t h e c h a r g e d i s t r i b u t i o n p r e d i c t e d b y t h e T h e u s e o f a m o l e c u l a r o r b i t a l t r e a t m e n t is p r e s u m a b l y c a p a b l e accurate
picture
of
the
charge
T h i s w h o l e p r o b l e m is, h o w e v e r , ment
redistribution
which
results
theory.
of g i v i n g a
from
is
(24).
more
coordination.
still i n a state of v e r y r a p i d theoretical
develop
(55). A l l o f t h e e v i d e n c e at p r e s e n t a v a i l a b l e i n d i c a t e s t h a t t h e a r o m a t i c p o r t i o n o f
s u c h ligands retains the same pattern
of substitution w i t h e l e c t r o p h i l i c reagents i n
t h e c o m p l e x t h a t it e x h i b i t e d i n the f r e e state.
T h i s has b e e n demonstrated
v a r y i n g degrees of c o n c l u s i v e n e s s i n the e x a m p l e s 20,
26,
35-39, 41,
42,
46,
50,
tion of s u c h reactions has tropolone.
63,
73,
ever been
81).
(6,
12,
with
15,
16,
N o e x a m p l e of a c h a n g e i n orienta
confirmed, except for the
peculiar
case
of
T h i s c o m p o u n d undergoes an anomalous bromination w i t h substitution
occurring initially.
57,
cited in T a b l e I
i n the
3
position;
other
electrophilic
reagents
attack
the
5
position
T h e c o p p e r c o m p l e x , h o w e v e r , u n d e r g o e s b r o m i n a t i o n at t h e 5 p o s i t i o n ,
as w o u l d b e e x p e c t e d f o r a n o r m a l e l e c t r o p h i l i c s u b s t i t u t i o n . the anomalies of tropolone m a y b e f o u n d i n the literature
Table I.
Further
Metal Ion
Orientation or Remarks
Reaction
o,p o,P ρ to — O H o,p to N H m, c o o r d i n a t i o n pre vents side c h a i n halogenation p to — O H o,p to — O H
Aniline A n i l i n e , toluidines G h r o m o t r o p i c acid m-Toluidine Acetophenone
Cr(III) Pd(II) Ca(II) Cu(II) Al(III)
V a r i o u s phenols 8-Quinolinol
M g ( l l ) , Ca(II) Diazotization Cr(III), Fe(Ill), Bromination and Cu(II), Al(III) chlorination Co(III) o,p to — O H Bromination Fe(II) o,p t o — C H — N = C Various As(V) R e i m e r - T i e m a n n ο to — O H As(V) p to — O H , r a p i d Bromination Cu(II) 5 position Bromination C r ( I I l ) , etc. Reversible reaction Sulfonation w i t h complexes also ρ to — O H Nitrosation Al(III) Ga(III) p to — O H Diazotization
Salicylic acid Catechol
on
Electrophilic Substitution Reactions of Aromatic Ligands
Ligand
Salicylaldehyde Benzylisocyanide Catechol Catechol Tropolone Naphthalene derivatives
details
(6).
Bromination Bromination Diazotization Chlorination Bromination
2
2
T h e results of these studies
Lit. (73) (26) (37) (76) (57)
(72, 75) (42) (87) (20) (63) (47) (6) (46)
(38, 50) (35, 36, 39)
a l l o w the b e h a v i o r of t h e a r o m a t i c p o r t i o n of
a
l i g a n d to b e p r e d i c t e d w i t h s o m e d e g r e e o f c o n f i d e n c e , i f t h a t o f t h e f r e e l i g a n d is known
or c a n
be surmised.
Coordination appears
to
have
a
small but
effect o n the n a t u r e of the t r a n s i t i o n state f o r e l e c t r o p h i l i c s u b s t i t u t i o n
Busch; Reactions of Coordinated Ligands Advances in Chemistry; American Chemical Society: Washington, DC, 1962.
definite
( o r its e a s e
JONES
119
Reactivity of Aromatic Ligands
of a t t a i n m e n t )
when
the
donor
atom
is e x t e r n a l t o
the
aromatic
system.
t y p i c a l c h a n g e s p r o d u c e d b y c o o r d i n a t i o n w i l l b e c h a n g e s i n the rates of From the
such meager evidence
direction predicted
as is n o w
o n the
basis
available, these changes appear
of the
p o l a r i z a t i o n of the
The
reaction. to b e
ligand by
in
an
ad-
jacent positive charge. When
the
l i g a n d consists of b o t h a n a r o m a t i c s y s t e m
e x t e r n a l to t h e in the
aromatic system,
latter p o r t i o n of the
classes:
the
most
molecule.
interesting
These
a n d reactive
portions
changes i n reactivity
changes may
be
divided
occur
into
two
m a s k i n g of r e a c t i v e g r o u p s a n d activation w h i c h results f r o m the p o l a r i -
zation arising from coordination. The
masking
nitriles are —N=C
linkage
enormously 1888
(14,
elegant
19,
often
striking.
by
resistance
coordination,
Both
aliphatic
and
aromatic
by
Heldt
on
(20)
of as
aliphatic
was
first
isonitriles
clearly
to
shown
coordination
compounds
as is a c e t o p h e n o n e to s i d e c h a i n h a l o g e n a t i o n
by
Freund
p o u n d s are m o r e r e a d i l y r e d u c e d
(85).
benzyl
coordination
but some
com-
of m e t a l l i c
ions
Studies involving reducible metal
ions
T h i s holds for complexes
w h i c h are n o t r e a d i l y o x i d i z e d or r e d u c e d .
is in
recent
containing
(57),
the
hydrolysis
P h e n o l s are also r e n d e r e d m o r e resistant to o x i d a t i o n b y
37),
iso-
a n u m b e r o f a d d i t i o n r e a c t i o n s at
T h e r e s i s t a n c e to a d d i t i o n r e a c t i o n s is s h o w n i n t h e
45).
studies
15,
are The
(84).
increased
isocyanide. (12,
effects
easily h y d r o l y z e d a n d u n d e r g o
as c o o r d i n a t i o n c e n t e r s i n d i c a t e t h a t w h e n t h e l o w e r o x i d a t i o n s t a t e is s t a b i l i z e d by
c o o r d i n a t i o n , a p o w e r f u l catalysis of the
64,
oxidation process m a y
occur
(8,
M a s k i n g e f f e c t s o f a v e r y o b v i o u s s o r t s e e m n o t to b e a g e n e r a l
79).
o f c o o r d i n a t i o n a n d i t is v e r y d i f f i c u l t t o d e t e r m i n e
w h e n coordination will
i n a m a s k i n g effect, unless i n f o r m a t i o n o n strictly a n a l o g o u s It s e e m s s a f e t o s a y t h a t c o o r d i n a t i o n w i l l g e n e r a l l y
40, result result
r e a c t i o n s is a v a i l a b l e . decrease the
reactivity
o f d o n o r a t o m s i n t h e first r o w o f t h e p e r i o d i c t a b l e t h r o u g h s t e r i c e f f e c t s . s o m e r e a c t i o n s t h e e x t e n t o f this s t e r i c h i n d r a n c e m a y b e s m a l l . transformed into chloramines w h e n coordinated c o o r d i n a t e d to A 1 C 1 o r T i C l 3
and aromatic acid
(34),
With
A m m o n i a can
be
chlorides
m a y b e e s t e r i f i e d e v e n w h e n t h e f u n c t i o n a l g r o u p is
4
a h i n d e r e d o n e , as i n m e s i t y l e n e c a r b o n y l c h l o r i d e
(47).
proceed through a very reactive carbonium ion, whose
T h e s e last r e a c t i o n s
may
e x i s t e n c e is r e n d e r e d
pos-
s i b l e b y t h e p o l a r i z a t i o n o f t h e l i g a n d w h i c h i t s u f f e r s as a r e s u l t o f c o o r d i n a t i o n . The bases.
coordination process m a y
If n i c k e l (II)
salts a r e
either
stabilize or destabilize
a d d e d to a m m o n i a c a l
solutions
t h e p r e c i p i t a t e o b t a i n e d is t h e i n n e r c o m p l e x salt o f n i c k e l ( I I )
aromatic
of
and salicylaldimine
If b e r y l l i u m c h l o r i d e is a d d e d t o t h e S c h i f f b a s e d e r i v e d f r o m
(61).
naphthaldehyde and ethylamine, however, i n n e r c o m p l e x of b e r y l l i u m ( I I ) H e r e the strength
2-hydroxy-l-
t h e S c h i f f b a s e is d e c o m p o s e d
and 2-hydroxy-l-naphthaldehyde
of the c o o r d i n a t e
Schiff
salicylaldehyde,
and
is o b t a i n e d
b o n d s f o r m e d w i t h the m e t a l
seems to
the (59).
deter-
mine w h i c h complex will be formed. The
n u m b e r of cases w h e r e
a c t i v a t i o n r e s u l t s f r o m c o o r d i n a t i o n is l a r g e
m a n y examples have been collected b y Hesse
generally a v e r y strong p o l a r i z a t i o n , w h i c h results i n a p r o f o u n d w e a k e n i n g of other b o n d s of the d o n o r a t o m . (23),
This was
first
recognized explicitly b y
the
Meerwein
w h o s t u d i e d the increase i n a c i d i t y of g r o u p s c o n t a i n i n g i o n i z a b l e h y d r o g e n
w h e n the
atom
to w h i c h t h e h y d r o g e n is b o n d e d f o r m s a c o o r d i n a t e
bond.
l a t e d r e a c t i o n s i n c l u d e t h e c a t a l y t i c s p l i t t i n g o f e t h e r s v i a c o o r d i n a t i o n to Zn(II)
and
T h e b a s i s o f t h e p r o c e s s is
(23).
(2),orSnCl
(60):
4
MgL,2(C H ) 0 + 2
5
2
2G H GOGl 6
5
2C H,I + 2
2C H COOC H 6
5
2
5
+
MgCl
Busch; Reactions of Coordinated Ligands Advances in Chemistry; American Chemical Society: Washington, DC, 1962.
Re-
Mg(II),
2
120
ADVANCES IN CHEMISTRY SERIES 0
Ο SnCl OCH
0
0 CH
Another example
4
OUC, + GH G1 3
3
k
3
SnCl
3
w h i c h illustrates b o t h the p o l a r i z a t i o n a n d the f r e e d o m
r e a c t i o n w h i c h is o f t e n f o u n d at t h e c o o r d i n a t i o n site is (29)
0
ο
of
: ο
Η I n a r o m a t i c systems, the L e w i s acids w h i c h activate v i a c o o r d i n a t i o n are c a p a b l e of a c t i v a t i n g the a r o m a t i c system b y the f o r m a t i o n of σ a n d π T h e r e are
a sufficient n u m b e r of examples
also
complexes.
a v a i l a b l e to i n d i c a t e t h a t t h e
activa
t i o n v i a t h e l a t t e r p r o c e s s e s is t h e m o r e i m p o r t a n t o f t h e s e , w h e r e a l l a r e
present.
Olivier
(52)
consists
of t w o
portions.
than
the
s h o w e d i n 1913
amount
that the k i n e t i c b e h a v i o r of s u c h reactions
W h e n the
catalyst,
r e q u i r e d to
say
complex
a l u m i n u m c h l o r i d e , is p r e s e n t
all the
functional groups,
the
in
less
reaction
is
r e l a t i v e l y s l o w a n d t h e c a t a l y t i c a c t i v i t y is d u e to t h e s m a l l a m o u n t o f L e w i s a c i d resulting
f r o m the
dissociation of the
complex.
A s soon
as
all the
functional
g r o u p s a r e c o o r d i n a t e d , a n y a d d i t i o n a l L e w i s a c i d is f o u n d t o a c c e l e r a t e t h e enormously.
I n t h e s e e l e c t r o p h i l i c s u b s t i t u t i o n s it s e e m s h i g h l y p r o b a b l e t h a t
t h e a c t i v a t i o n i n v o l v e s the p i e l e c t r o n s y s t e m of the b e n z e n e r i n g .
rate the
Olivier studied
the reaction sequence :
C H B r S 0 C l + A1G1, 6
4
6
4
C H B r S 0 C l . A1G1
2
C H BrS0 Cl.AlCl 2
3
+
G H 6
6
4
2
3
-> C H B r S 0 C H . A1C1
6
6
4
2
6
5
3
+
HG1
T h i s t y p e o f d u a l i t y o f a c t i o n is p r e s u m a b l y p r e s e n t i n o t h e r s i t u a t i o n s , as t h e F r i e s r e a r r a n g e m e n t (65)
o r a c i d a n h y d r i d e s (21),
I n these reactions catalyst. (32,
33)
the F r i e d e l - C r a f t s reaction
(78),
it a p p e a r s
with acid
a n d the catalytic c h l o r i n a t i o n of n i t r o b e n z e n e t h a t t h e u n c o o r d i n a t e d L e w i s a c i d is t h e
T h e s a m e s i t u a t i o n is i l l u s t r a t e d b y r e c e n t w o r k o n a r o m a t i c and halogenation
acid-catalyzed
(57,
58,
71)
electrophilic reactions
such
chlorides (17).
effective amination
a n d s e e m s to b e g e n e r a l f e a t u r e o f L e w i s
of aromatic
compounds containing
suitable
donor groups. W h e n rearrangements be
thermodynamically
o c c u r i n these systems, the p r o d u c t s o b t a i n e d w i l l often
rather
than
kinetically determined
stances—e.g., the G a t t e r m a n n - K o c h reaction—the
(62).
is r e s p o n s i b l e f o r t h e f a c t t h a t t h e r e a c t i o n c a n b e c a r r i e d o u t at a l l
Heterocyclic
In
some
in
stability of the c o m p l e x p r o d u c e d (4,9).
Systems with Internal Donor Atoms
W h e n t h e d o n o r a t o m is a p a r t o f t h e a r o m a t i c s y s t e m , o n e w o u l d e x p e c t m o r e obvious differences i n reactivity.
A t present relatively little c o m p a r a t i v e
t i o n is a v a i l a b l e o n s u c h h e t e r o c y c l i c s y s t e m s . are t h e r e a n y r e a s o n a b l y extensive
data.
F o r p y r i d i n e a w i d e v a r i e t y of c o o r d i
n a t i o n p r o c e s s e s a r e a v a i l a b l e a n d p y r i d i n e - N - o x i d e as w e l l as m e t a l l i c and
complexes
tive purposes
w i t h nonmetallic L e w i s acids must be considered. the
great reluctance
informa
O n l y o n p y r i d i n e a n d its d e r i v a t i v e s
with w h i c h pyridine undergoes
For
complexes compara
electrophilic
Busch; Reactions of Coordinated Ligands Advances in Chemistry; American Chemical Society: Washington, DC, 1962.
JONES
Reactivity of Aromatic Ligands
121
reactions is a considerable disadvantage. Protonation of the nitrogen is often cited as the cause of the slowness w i t h w h i c h pyridine undergoes electrophilic substitu tions i n acidic media. W h e n this is prevented b y coordination to oxygen (86) or chromium (III) (73), or b y the use of a sterically hindered derivative and a nonaqueous solvent (3, 49), the reactions are still sluggish unless the pyridine nucleus contains activating substituents. T h e general pattern of reactivity seems to be unchanged, however, for reactions other than nitration. It has been sug gested b y D a u d e l that the electronic densities a n d hence the reactivities of pyridine and the pyridinium ion w i l l be very similar (7). T h e preferred position for electrophilic substitution i n the pyridine ring is the 3 position. Because of the sluggishness of the reactions of pyridine, these are often carried out at elevated temperatures, where a free radical mechanism m a y be operative. If these reactions are eliminated from consideration, substitution at the 3 position is found to be general for electrophilic reactions of coordinated pyridine, except for the nitration of pyridine-N-oxide (30, 51). T h e mercuration of pyridine w i t h mercuric acetate proceeds v i a the coordination complex and gives the anticipated product w i t h substitution i n the 3 position (72). T h e bromination of pyridine-N-oxide i n f u m i n g sulfuric acid goes v i a a complex w i t h sulfur trioxide a n d gives 3-bromopyridine-N-oxide as the chief product (80). I n this case the coordination presumably deactivates the pyridine nucleus i n the 2 a n d 4 positions. T h e bromination of this complex i n f u m i n g sulfuric acid proceeds more rapidly than the bromination of the pyridinium ion i n 9 0 % sulfuric acid. This behavior is reminiscent of those cases where the excess of L e w i s base activates the aromatic system. T h e use of metallic halides i n the catalytic halogenation of pyridine or pyridine derivatives leads to substitution i n the 3 position or the 3 and 5 positions. T h e halides used include those of antimony, mercury (5, 2 5 ) , a n d aluminum (56). T h e nucleophilic reactions of pyridine seem to be facilitated b y coordination to a certain extent. Thus 3-bromopyridine is transformed to the corresponding amine derivative b y treatment w i t h an amine i n the presence of cupric sulfate (43). The mercuration of thiophene, w h i c h presumably goes b y w a y of a coordina tion compound, gives an initial attack i n the 2 position as expected from the re actions of thiophene itself (67). T h e bromination (or chlorination) of indazole or its silver salt also leads to the same products (82). Redox Reactions Redox reactions involving aromatic ligands may take unusual courses because of the ease w i t h w h i c h electrons m a y be conducted through an aromatic system, though they need not do so. Thus the oxidation of free or coordinated l,10-ophenanthroline leads to S ^ ' - d i c a r b o x y ^ ^ ' - b i p y r i d i n e (69), a n d the oxidation of toluidine i n sodium pentacyanotoluidine-ferrate(III) leads to phenazines (22) w h i c h can also be obtained b y oxidation of the ligand itself (10). The work of F a l l a b and his collaborators has shown h o w the coordination act may b r i n g the reactants together i n autoxidation reactions. I n several instances coordination furnishes a catalytic path for these reactions. Specific examples i n clude the autoxidation of F e + i n the presence of sulfosalicylic acid (28), the autoxidation of 1-hydrazinophthalazine b y i r o n ( I I ) (27, 83), and the autoxida tion of a formazyl-zinc complex (11). It is probable that the importance of this k i n d of a mechanism w i l l be more w i d e l y realized as more a n d more detailed kinetic studies are made on metal-catalyzed autoxidation reactions. Some other 2
Busch; Reactions of Coordinated Ligands Advances in Chemistry; American Chemical Society: Washington, DC, 1962.
ADVANCES IN CHEMISTRY SERIES
122
reactions w h i c h f a l l i n this same c a t e g o r y are t h e c u p r o u s c h l o r i d e - c a t a l y z e d o x i d a tions
of aromatic
amines
a n d related
Terentiev a n d his coworkers
(75,
76,
compounds which a n d others
77)
have
(31,
been
studied b y
This
53).
field
is a
v e r y large one a n d was early studied f r o m the v i e w p o i n t of coordination c h e m istry
(68). O f the recent
w o r k i n v o l v i n g a r o m a t i c l i g a n d s , t h a t o f T a u b e a n d S e b e r a is
p e r h a p s t h e m o s t s t r i k i n g (13,
74).
tron c a n be transferred f r o m C r ( I I )
T h e y w e r e able to demonstrate to C o ( I I P
that a n elec
through a conjugated system i n
v o l v i n g the metals a n d terephthalic a c i d derivatives.
T h i s indicates possible syn
thetic applications of these reactions.
Theoretical
Studies
T h e n u m b e r of instances i n w h i c h theoretical values of the electron (or equivalent information) its c o m p l e x e s
are v e r y f e w .
densities
at v a r i o u s a t o m s are a v a i l a b l e f o r b o t h a l i g a n d a n d O f the molecular orbital calculations
w h i c h h a v e b e e n c a r r i e d out, t w o are of d i r e c t interest. a n d its c o m p l e x e s b y S c h l a f e r a n d K o n i g
(66)
on
complexes
T h e s t u d y of p y r i d i n e
s h o w e d t h a t t h e ττ-ττ* t r a n s i t i o n o f
the p y r i d i n e itself w a s o n l y s l i g h t l y affected b y c o o r d i n a t i o n . i n g t h e t r a n s f e r o f e l e c t r o n s f r o m t h e m e t a l t o t h e l i g a n d (t
2g
Transitions involv
—* τ τ , * o r t
ττ *) 2
2s
are r e n d e r e d possible b y the c o o r d i n a t i o n act, b u t the r e l e v a n c e of s u c h transitions t o t h e a r o m a t i c r e a c t i v i t y is n o t at a l l c l e a r . sities o f p o r p h i n Berthier phin
ring
a n d its i r o n c o m p l e x e s
T h e s e s h o w that the ττ-electron densities o n the atoms of t h e p o r
(70).
are o n l y v e r y slightly m o d i f i e d w h e n p o r p h i n
iron (II) - p o r p h i n complex. (18)
T h e calculated values of electron den
have been published b y Spanjaard and is c h a n g e d
to a n i o n i c
Related calculations have been carried out b y G o u d o t
b u t are m o r e c o n c e r n e d w i t h b o n d - b r e a k i n g processes t h a n w i t h t h e a r o m a t i c
p o r t i o n o f c a t a l y s t s s u c h as c a t a l a s e . The
above remarks
a p p l y to a r o m a t i c
p o r t i o n of a c o m p l e x u n d e r g o e s the base
(1)
ligands.
In general, the L e w i s
a m u c h greater change
upon
acid
coordination than
a n d coordination c a n change the orientation i n c o m p o u n d s such
phenylboronic acid
(44)
a n d p r e s u m a b l y other
similar organometallic
as
coordina
tion centers.
Literature Cited (1) Bauer, S. H., ADV. CHEM. SER., NO. 32, 89 (1961).
(2) (3) (4) (5)
Blaise, Ε. E., Compt. rend. 139, 1211 (1904); 140, 661 (1905). Brown, H.C.,Kanner, B.,J.Am. Chem. Soc. 75, 3865 (1953). Campbell, H., Eley, D. D., Nature 154, 85 (1944). Chemische Fabrik von Heyden, A. G., Swiss Patent 174,893; Chem. Zent. 1935, II,
2283.
(6) Cook, J. W., Gibb, A. R. M., Raphael, R. Α.,J.Chem. Soc. 1951, 2244. (7) Daudel, R., Lefebure, R., Moser, C., "Quantum Chemistry," p. 251, Interscience, New York, 1959. (8) Denisov, E. T., Emanuel, Ν. N., Russian Chem. Rev., No. 12, 645 (1960). (9) Dilke, M. H., Eley, D. D.,J.Chem. Soc. 1949, 2601. (10) Elderfield, R.C.,ed., "Heterocyclic Compounds," Vol. 6, p. 637, Wiley, New York, 1957.
(11) Fallab, S., Erlenmeyer, H., Helv. Chim. Acta 42, 1153 (1959). (12) Farbwerke vorm. Meister, Lucius, und Brüning, German Patents 174,905,175,827, 177,624, 178,304, 188,819 (1904).
(13) Fraser, R. T. M., Rev. Pure Appl. Chem. 11, 64 (1961). (14) Freund, M., Ber. 21B, 935 (1888).
(15) Friedländer, P. W., "Fortschritte der Teerfarbenfabriken und verwandte Industriezweige," Vol.III,pp. 612, 616, 619, 620, 1904. Busch; Reactions of Coordinated Ligands Advances in Chemistry; American Chemical Society: Washington, DC, 1962.
JONES
Reactivity of Aromatic Ligands
123
(16) Genschev, M., Pojarliev, I., Kolev, D., Compt. Rend. Acad. Bulgare Sci.12, 305 (1959). (17) Goldschmidt, H., Larsen, H., Z. phys. Chem. 48, 424 (1904). (18) Goudot, Α., Compt. rend. 252, 125 (1961); Zhur. Fiz. Khim. 34, 2137 (1960). (19) Hartley, E. G. J., J. Chem. Soc. 1910, 1066; 1912, 705; 1913, 1196;Proc.Chem. Soc. 26, 90 (1910); 28, 101 (1912); 29, 188 (1913). (20) Heldt, W. Z, J. Inorg. Nucl. Chem. 22, 305 (1961); "Advances in the Chemistry of the Coordination Compounds," S. Kirschner, ed., p. 321, Macmillan, New York, 1961. (21) Heller, G., Angew. Chem. 19, 669 (1906). (22) Herington, E. F. G., "International Conference on Coordination Chemistry," Lon don, April 6-11, 1959, Chemical Society, London, Spec. Pub. 13, p. 129, 1960. (23) Hesse, G., "Katalyse durch Komplexbildung," in "Handbuch der Katalyse," Band VII, G. M. Schwab, ed., 2 Hälfte, pp. 68-108, Springer Verlag, Vienna, 1943; "Katalyse über komplexe Kationen und Anionen," in Houben-Weyl, "Methoden der Organischen Chemie," Bd. IV, T. 2, pp. 65-136, G. Thieme Verlag, Stuttgart, 1955. (24) Holleman, A. F., Chem. Revs. 1, 187 (1925). (25) I. G. Farbenindustrie A. G., German Patent 595,461, Chem. Zent. 1934, II, 1029. (26) Jetton, R. L., Jones, M. M., Inorg. Chem., in press. (27) Kaden, T., Fallab, S., in "Advances in the Chemistry of the Coordination Compounds," S. Kirschner, ed., p. 654, Macmillan, New York, 1961. (28) Kaden, T., Walz, D., Fallab, S., Helv. Chim. Acta 43, 1639 (1960). (29) Karrer, P., Nageli,C.,Weidmann, H., Wilbuschewich, L., Ibid., 2, 242 (1919). (30) Katritzky, Α., Quart. Rev. 10, 395 (1956). (31) Kinoshita, K., Bull. Chem. Soc. Japan 32, 777, 780, 783 (1959). (32) Kovacic, P., Bennett, R. P.,J.Am. Chem. Soc. 83, 221 (1961). (33) Kovacic, P., Foote, J. L., Ibid., 83, 743 (1961). (34) Kukushkin, Y. N., Zhur. Neorg. Khim. 2, 2371 (1957); 4, 2460 (1959); 5, 1943 (1960). (35) Kuznetsov, V. I.,J.Gen. Chem. USSR 20, 807 (1950). (36) Kuznetsov, V. I., Nemodruk, Α. Α., Ibid., 25, 117 (1955). (37) Ibid., 26, 3657 (1956) (Consultants Bureau trans.). (38) Ibid., 29, 988 (1959) (Consultants Bureau trans.). (39) Kuznetsov, V. I., Nemodruk, Α. Α., Sb. Stateĭ ObshcheĭKhim. 2, 1373 (1953). (40) Langenbeck, W., Kasper, F., Ber. 89, 2460 (1956). (41) Larkins, T. H., Jr., Vanderbilt University, unpublished work, 1962. (42) Maguire, K. D., Jones, M. M., J. Am. Chem. Soc., in press. (43) Maier-Bode, H., German Patent 586,879; Chem. Zent. 1934, II, 129. (44) Mare, de la, P. B. D., Ridd, J. H., "Aromatic Substitution," p. 86, Butterworths, London, 1959. (45) Meisenheimer, J., Ber. 58, 13 (1925). (46) Moll, F., Lange, F., German Patent 651,429 (1938). (47) Mori, B., Gohring, J., Cassimatis, D., Susz, B. P., Helv. Chim. Acta 45, 77 (1962). (48) Morrison, R. T., Boyd, R. N., "Organic Chemistry," p. 296, Allyn and Bacon, Boston, 1959. (49) Muller, N., Wallace, W. J.,J.Org. Chem. 24, 1151 (1959). (50) Nemodruk, Α. Α., J. Gen. Chem. USSR 28, 1051 (1958) (Consultants Bureau translation). (51) Ochiai, E.,J.Org. Chem. 18, 534 (1953). (52) Olivier, S. C. J., Rec. trav. chim. 33, 92, 244 (1914); thesis, Delft, 1913. (53) Paris, M., Williams, R. J. P., Discussions Faraday Soc., No. 29, 153 (1960). (54) Pauling, L., "The Nature of the Chemical Bond," 3rd ed., p. 207, Cornell Uni versity Press, Ithaca, Ν. Y., 1960. (55) Pearson, R. G., Record Chem. Progr. 23, 53 (1962). (56) Pearson, D. E., Hargrove, W. W., Chow, J. K. T., Suthers, B. R., J. Org. Chem. 26, 789 (1961). (57) Pearson, D. E., Pope, H. W., Ibid., 21, 381 (1956). (58) Pearson, D. E., Pope, H. W., Hargrove, W. W., Stamper, W. E., Ibid., 23, 1412 (1958). (59) Pesis, A. S., Zhur. Neorg. Khim. 6, 1004 (1961). (60) Pfeiffer, P., Ann. 398, 141 (1913). (61) Pfeiffer, P., Buchholz, E., Bauer, O.,J.prakt. Chem. 129, 163 (1931). (62) Pitzer, K. S., Scott, D. W.,J.Am. Chem. Soc. 65, 812 (1943). (63) Reihlen, H., Illig, R., Wittig, R., Ber. 58, 12 (1925). (64) Resnick, R., Cohen, T., Gernando, Q.,J.Am. Chem. Soc. 83, 3344 (1961). (65) Ridell, W. Α., Noller, C. R., Ibid., 52, 4365 (1930). (66) Schlafer, H. L., Konig, Ε., Z. phys. Chem. 30, 143 (1961). (67) Shephard, A. F., Henne, A. L., Midgley, T., Jr.,J.Am. Chem. Soc. 56, 1355 (1934). Busch; Reactions of Coordinated Ligands Advances in Chemistry; American Chemical Society: Washington, DC, 1962.
124
ADVANCES IN CHEMISTRY SERIES
(68) Shibata, K., Shibata, Y., "Katalytische Wirkungen der Metallkomplexverbindungen," Iwata Institute of Plant Biochemistry, Tokyo, 1936. (69) Smith, G. F., Richter, F. P., "Phenanthroline and Substituted Phenanthroline Indicators," pp. 20-1, G. F. Smith Chemical Co., Columbus, Ohio, 1944. (70) Spanjaard,C.,Berthier, G., J. Chim. Phys. 58, 169 (1961). (71) Suthers, B. R., Riggins, P. H., Pearson, D. E.,J.Org. Chem. 27, 447 (1962). (72) Swaney, M. W., Skeeters, M. J., Shreve, R. N., Ind. Eng. Chem. 32, 360 (1940). (73) Taft, J.C.,Jones, M. M.,J.Am. Chem. Soc. 82, 4196 (1960). (74) Taube, H., Can. J. Chem. 37, 129 (1959). (75) Terentiev, A. P., Bull. Soc. Chim. France (4) 35, 1164 (1924). (76) Terentiev, A. P., Mogilianskiĭ, Y. D., Doklady Akad. Nauk S.S.S.R. 103, 91 (1955). (77) Terentiev, A. P., Mogilianskiĭ, Y. D., J. Gen. Chem. USSR 28, 2002 (1958); 31, 326 (1961) (English trans.). (78) Thomas, C. Α., "Anhydrous Aluminum Chloride in Organic Chemistry," pp. 696ff., Reinhold, New York, 1941. (79) Thuiller, G., Bull. Soc. Chim. France 1959, 1431. (80) van Ammers, M., den Hartog, H. J., Haase, B., Tetrahedron 18, 227 (1962). (81) Vickroy, D. D., Vanderbilt University, unpublished work, 1961. (82) van Auwers, K., Lange, H., Ber. 55, 1139 (1922). (83) Walz, D., Fallab, S., Helv. Chim. Acta 43, 549 (1960). (84) Whitmore, F.C.,"Organic Chemistry," pp. 505-6, Van Nostrand, New York, 1937. (85) Willard, H. H., Dean, J. Α., Anal. Chem. 22, 1264 (1950). RECEIVED August 13, 1962. Work supported by the Army Research Office (Durham).
Busch; Reactions of Coordinated Ligands Advances in Chemistry; American Chemical Society: Washington, DC, 1962.