Chapter 17 Effect of Polysaccharide on Flocculation and Creaming in Oil-in-Water Emulsions Margaret M . Robins
Downloaded by CORNELL UNIV on October 26, 2016 | http://pubs.acs.org Publication Date: December 26, 1991 | doi: 10.1021/bk-1991-0448.ch017
AFRC Institute of Food Research, Colney Lane, Norwich NR4 7UA, United Kingdom
Creaming of the droplets in 20% alkane-in-water emulsions in the presence and absence of non-adsorbing polymer is reported in the form of oil concentration-height profiles collected at intervals of time. Without polymer, the polydisperse droplets (stabilised by non-ionic surfactant) cream individually at a rate determined by their diameter. Measurement of creaming rates enables the distribution of hydrodynamic diameters to be inferred, and it agrees well with the size distribution from a light diffraction method. In the presence of hydroxyethylcellulose in the continuous phase at a concentration exceeding 0.03%w/w, the droplets flocculate, and the creaming rates are used to estimate the size of the pores in the flocculated droplet network. At 0.03% polymer, flocculated and individual particle phases are in coexistence. Direct evidence for a depletion mechanism of flocculation is presented. Many foods are emulsions during or after manufacture (1). In oil-in-water emulsions, the dispersed oil droplets generally possess a lower density than the continuous aqueous phase. Unless the droplets are very small or very concentrated the density difference leads to the accumulation of the droplets at the top of the container ("creaming") with consequent loss of perceived quality. This paper presents results on the creaming of oil-in-water emulsions in the absence and presence of the polysaccharide hydroxyethylcellulose (Natrosol 250HR). Methods Emulsion preparation and characterisation. Emulsions were prepared containing droplets of mixed alkanes (heptane and hexadecane in the volume ratio 90:10), stabilised to coalescence by the non-ionic surfactant Brij 35 at a concentration of 0.35%w/w in the final continuous phase. The emulsions were initially prepared in a Waring 0097-6156/91/0448-0230$06.00/0 © 1991 American Chemical Society
El-Nokaly and Cornell; Microemulsions and Emulsions in Foods ACS Symposium Series; American Chemical Society: Washington, DC, 1991.
17. ROBINS
Effect of Polysaccharide on Flocculation and Creaming
231
Downloaded by CORNELL UNIV on October 26, 2016 | http://pubs.acs.org Publication Date: December 26, 1991 | doi: 10.1021/bk-1991-0448.ch017
B l e n d o r a t 60% o i l volume f r a c t i o n 4>, and d i l u t e d t o o b t a i n 4> = 20%. The d i l u e n t was an aqueous s o l u t i o n o f p r e s e r v a t i v e a l o n e (sodium m e t a b i s u l p h i t e a t 0.2%w/w i n t h e f i n a l c o n t i n u o u s p h a s e ) , o r p r e s e r v a t i v e and polymer ( N a t r o s o l 250HR). The d r o p l e t s i z e d i s t r i b u t i o n was measured u s i n g a M a l v e r n M a s t e r s i z e r l i g h t d i f f r a c t i o n instrument. S i n c e t h e same c o n c e n t r a t e d e m u l s i o n was used t h e d r o p l e t s i z e d i s t r i b u t i o n was i d e n t i c a l i n a l l t h e samples. C h a r a c t e r i s a t i o n o f d i s p e r s e and c o n t i n u o u s p h a s e s . The d e n s i t y o f t h e l i q u i d s was measured a t 20°C u s i n g an A n t o n Paar DMA602 v i b r a t i n g t u b e d e n s i t y meter. V i s c o s i t i e s were measured a t low s h e a r - r a t e a t 20°C u s i n g a double-gap m e a s u r i n g system f i t t e d t o a B o h l i n R e o l o g i C o n t r o l l e d S t r e s s rheometer. The c o n c e n t r a t i o n o f polymer i n t h e "sub-cream" l a y e r o f c o n t i n u o u s phase formed a f t e r each e m u l s i o n had creamed was d e t e r mined u s i n g a s p e c t r o p h o t o m e t r y method ( 2 ) . The sub-cream l a y e r s were d i l u t e d t o a nominal c o n c e n t r a t i o n o f 0.006% v / v and 0.5ml p i p e t t e d i n t o a s t o p p e r e d t e s t - t u b e , t o w h i c h was added 1.5ml 3% w/w p h e n o l s o l u t i o n and 5ml c o n c e n t r a t e d s u l p h u r i c a c i d . The m i x t u r e was shaken and l e f t t o s t a n d f o r 20 m i n u t e s , b e f o r e samples were t r a n s f e r r e d t o c u v e t t e s f o r measurement o f a b s o r b a n c e a t 488nm. S t a n d a r d s o l u t i o n s o f 0.005 and 0.007% w/w polymer were a l s o measured, f o r c a l i b r a t i o n p u r p o s e s . The e r r o r on polymer c o n c e n t r a t i o n was l e s s t h a n 10%. Measurement o f creaming i n e m u l s i o n s . Most t e c h n i q u e s t o m o n i t o r creaming (or sedimentation) a r e i n t r u s i v e , such as sampling ( 3 ) , o r a p p l i c a b l e o n l y t o d i l u t e systems ( 4 ) . R e c e n t l y s e v e r a l noni n t r u s i v e methods have been d e v e l o p e d ( 5 ) , i n c l u d i n g t h e u s e o f ultrasonics. We have d e v e l o p e d a t e c h n i q u e based on t h e v e l o c i t y o f u l t r a s o u n d t h r o u g h t h e d i s p e r s i o n , w h i c h may be d i r e c t l y r e l a t e d t o i t s c o m p o s i t i o n ( 6 ) . The t e c h n i q u e i s s u i t a b l e f o r n o n - a e r a t e d d i s p e r s i o n s w i t h a wide range o f c o n c e n t r a t i o n s ( > l % v / v ) , i t i s nond e s t r u c t i v e and n o n - i n t r u s i v e . The a p p a r a t u s , shown s c h e m a t i c a l l y i n F i g u r e 1, d e t e r m i n e s t h e v e l o c i t y o f u l t r a s o u n d from measurements o f t h e t i m e - o f - f l i g h t o f a p u l s e o f u l t r a s o u n d g e n e r a t e d from a c o n t i n u o u s wave o f f r e q u e n c y 6.4MHz. The t i m e i s d e t e r m i n e d t o a p r e c i s i o n o f 5ns i n a t y p i c a l p r o p a g a t i o n t i m e o f 25/is. The t r a n s d u c e r s a r e h e l d a t f i x e d s e p a r a t i o n and moved v e r t i c a l l y s o t h a t measurements a r e made a t a s e r i e s o f h e i g h t s w i t h a s p a t i a l r e s o l u t i o n o f l e s s t h a n 2mm. The samples a r e c o n t a i n e d i n p a r a l l e l s i d e d c e l l s ( d i m e n s i o n s t y p i c a l l y 16mm wide x 32mm deep x 160mm h i g h ) o f p o l y m e t h y l m e t h a c r y l a t e . The c e l l s and t r a n s d u c e r s a r e immersed i n a water b a t h h e l d a t 20°C t o m a i n t a i n a c o n s t a n t t e m p e r a t u r e and t o p r o v i d e a good u l t r a s o n i c c o n t a c t between t h e t r a n s d u c e r s and t h e c e l l . In g e n e r a l t h e v e l o c i t y o f u l t r a s o u n d through a d i s p e r s i o n a t a g i v e n f r e q u e n c y i s a complex f u n c t i o n o f t h e c o m p o s i t i o n , p a r t i c l e s i z e d i s t r i b u t i o n and t h e p h y s i c a l p r o p e r t i e s o f t h e d i s p e r s e d and c o n t i n u o u s phases (2)• However, i n many s i m p l e d i s p e r s i o n s t h e p a r t i c l e s i z e and s t a t e o f a g g r e g a t i o n o f t h e p a r t i c l e s have a n e g l i g i b l e e f f e c t on t h e u l t r a s o n i c v e l o c i t y , and t h e o v e r r i d i n g f a c t o r i s t h e p a r t i c l e concentration. Often a simple mixing e q u a t i o n (8) d e s c r i b e s t h e r e l a t i o n s h i p between t h e u l t r a s o n i c v e l o c i t y V and volume f r a c t i o n
El-Nokaly and Cornell; Microemulsions and Emulsions in Foods ACS Symposium Series; American Chemical Society: Washington, DC, 1991.
Downloaded by CORNELL UNIV on October 26, 2016 | http://pubs.acs.org Publication Date: December 26, 1991 | doi: 10.1021/bk-1991-0448.ch017
232
MICROEMULSIONS AND EMULSIONS IN FOODS
F i g u r e 1: S c h e m a t i c diagram o f u l t r a s o n i c creaming
monitor.
(1)
w
w
[ h3][ ^'4 where V i s t h e v e l o c i t y o f u l t r a s o u n d t h r o u g h t h e d i s p e r s i o n o f volume f r a c t i o n , and p , p , V , V a r e t h e d e n s i t i e s o f and u l t r a sound v e l o c i t i e s t h r o u g h t h e c o n t i n u o u s and d i s p e r s e p h a s e s . Figure 2 shows t h e measured and p r e d i c t e d v e l o c i t y t h r o u g h a l k a n e - i n - w a t e r e m u l s i o n s w i t h a range o f o i l c o n c e n t r a t i o n . The s i m p l e m i x i n g e q u a t i o n (1) i s c l e a r l y a good model f o r t h i s system. c
T h e o r y o f Creaming
d
c
d
or Sedimentation
The t e r m i n a l v e l o c i t y v o f a s i n g l e s p h e r i c a l p a r t i c l e moving g r a v i t y i n a v i s c o u s l i q u i d i s g i v e n by S t o k e s ' Law s
v
s
=
2
Ap.d .g 18
r,
c
El-Nokaly and Cornell; Microemulsions and Emulsions in Foods ACS Symposium Series; American Chemical Society: Washington, DC, 1991.
under
(2)
Effect of Polysaccharide on Flocculation and Creaming
17. ROBINS
233
Velocity (v/ms ) H
1500
Downloaded by CORNELL UNIV on October 26, 2016 | http://pubs.acs.org Publication Date: December 26, 1991 | doi: 10.1021/bk-1991-0448.ch017
1485.70m/sec LOOIOOg/cm' 1174.00m/sec 0.694009/001"
1200-
30
40
50
60
Concentration (0/%) Figure 2: U l t r a s o n i c v e l o c i t y and o i l c o n c e n t r a t i o n . (1).
Line
from
equation
where Ap=p -p , t h e d e n s i t y d i f f e r e n c e between t h e c o n t i n u o u s and d i s p e r s e phases, d i s t h e d r o p l e t d i a m e t e r , g, t h e a c c e l e r a t i o n due t o g r a v i t y and r) , t h e v i s c o s i t y o f t h e c o n t i n u o u s p h a s e . When a p p l y i n g t h e s i m p l e a n a l y s i s t o n o n - d i l u t e e m u l s i o n s we have t o make a l l o w a n c e f o r t h e e f f e c t o f t h e o t h e r d r o p l e t s on t h e c r e a m i n g r a t e s of i n d i v i d u a l d r o p l e t s . T h i s i n f l u e n c e may be i n c o r p o r a t e d i n t h e t h e o r y i n two ways. I t i s w e l l known t h a t t h e p r e s e n c e o f p a r t i c l e s i n a d i s p e r s i o n increases i t sv i s c o s i t y . One a p p r o a c h i s t o q u a n t i f y t h e i n c r e a s e i n r) and a p p l y e q u a t i o n (2) t o o b t a i n t h e d e c r e a s e i n v . A meanf i e l d model o f d i s p e r s i o n v i s c o s i t y (9) p r o p o s e s a r e l a t i o n s h i p between t h e v i s c o s i t y r\ o f a d i s p e r s i o n o f volume f r a c t i o n ^ and t h e c o n t i n u o u s phase v i s c o s i t y TJQ c
d
c
c
s
1
-
no
( W M n )
-2.5 m = 70%, e q u a t i o n s (2) and (3) p r e d i c t v = 0.55v . There a r e a l s o e m p i r i c a l c o r r e l a t i o n s f o r t h e e f f e c t o f concent r a t i o n on t h e v e l o c i t y o f a monodisperse s u s p e n s i o n , where t h e p a r t i c l e s move a s a body. That o f R i c h a r d s o n and Z a k i (10) p r e d i c t s v = 0.35v . I t i s debatable which e x p r e s s i o n i s v a l i d f o r p o l y d i s p e r s e d r o p l e t s moving a t d i f f e r e n t speeds t h r o u g h an e m u l s i o n ; we u s e e q u a t i o n (3) i n p r e f e r e n c e t o an e m p i r i c a l correlation. m
s
s
El-Nokaly and Cornell; Microemulsions and Emulsions in Foods ACS Symposium Series; American Chemical Society: Washington, DC, 1991.
234
MICROEMULSIONS AND EMULSIONS IN FOODS
Downloaded by CORNELL UNIV on October 26, 2016 | http://pubs.acs.org Publication Date: December 26, 1991 | doi: 10.1021/bk-1991-0448.ch017
Creaming o f E m u l s i o n s W i t h o u t Polvmer I n F i g u r e 1 a t y p i c a l o i l c o n c e n t r a t i o n p r o f i l e i s shown s c h e m a t i c a l l y a l o n g s i d e t h e creaming emulsion. The m a j o r i t y o f t h e o i l i s a t t h e t o p o f t h e c e l l i n a c o n c e n t r a t e d cream l a y e r , w i t h t h e slower-moving d r o p l e t s b e g i n n i n g t o c l e a r from t h e b a s e . This i s t y p i c a l b e h a v i o u r f o r a p o l y d i s p e r s e e m u l s i o n c o n t a i n i n g no polymer. F i g u r e 3 shows ( i n a h o r i z o n t a l f o r m a t ) c o n c e n t r a t i o n p r o f i l e s a t v a r i o u s stages d u r i n g t h e creaming o f a polymer-free emulsion. Creaming i s d e t e c t e d w i t h i n 2 h o u r s , a l t h o u g h t h e e m u l s i o n a p p e a r s u n i f o r m v i s u a l l y f o r o v e r 10 d a y s . I n i t i a l l y the o i l i s u n i f o r m l y d i s p e r s e d i n t h e c o n t a i n e r , a t a c o n c e n t r a t i o n Q = 20% v / v . A f t e r a few days t h e d r o p l e t s have s t a r t e d t o r i s e up t h e c e l l , s o t h e c o n c e n t r a t i o n a t t h e base has f a l l e n , and t h e r e i s a c o n c e n t r a t e d cream l a y e r a t t h e t o p . With time, a l l t h e d r o p l e t s a r r i v e at the top. I f t h e y were m o n o d i s p e r s e , t h e lower meniscus would be s h a r p , as t h e y would a l l cream a t t h e same speed. It i s p o s s i b l e t o u s e t h e o b s e r v a t i o n t h a t t h e y move a t d i f f e r e n t speeds ( r e s u l t i n g i n t h e hazy, d i f f u s e "meniscus" r i s i n g up t h e c e l l ) , t o o b t a i n t h e e f f e c t i v e hydrodynamic s i z e d i s t r i b u t i o n ( 1 1 ) .
Time (days)
Concentration (%v/v)
—
0.02 0.11
—
0.37
—
2.21
—
3.23
—
6.19
—
9.95
—
12.94
—
20.10
••• 48.25
Height (mm) Figure 3: Oil concentration polymer.
profiles
f o r 19%
alkane
emulsion
without
El-Nokaly and Cornell; Microemulsions and Emulsions in Foods ACS Symposium Series; American Chemical Society: Washington, DC, 1991.
17.
ROBINS
Effect of Polysaccharide on Flocculation and Creaming
Determination of droplet s i z e d i s t r i b u t i o n . We assume t h a t t h e d r o p l e t s t r a v e l i n d i v i d u a l l y t o t h e cream l a y e r a t a speed c o n s i s t e n t w i t h t h e i r d i a m e t e r and S t o k e s ' Law ( e q u a t i o n ( 2 ) , w i t h the mean-field correction f o r v i s c o s i t y , equation (3)). I t i s p o s s i b l e t o i d e n t i f y p a r t i c l e f r a c t i o n s o f d i f f e r e n t s i z e by t h e c h a n g i n g shape o f t h e lower, d i f f u s e meniscus. Consider the p o s i t i o n on t h e meniscus a t which t h e o i l c o n c e n t r a t i o n i s 10%, approximately h a l f t h e t o t a l o i l c o n c e n t r a t i o n . The r a t e a t w h i c h t h i s 10% c o n t o u r r i s e s up t h e c e l l i s r e l a t e d by S t o k e s Law t o a p a r t i c u l a r d r o p l e t diameter, d . S i n c e h a l f t h e o i l has a l r e a d y moved away from t h e meniscus, d r e p r e s e n t s t h e m i d - p o i n t d i a m e t e r , t h e median d i a m e t e r . S i m i l a r l y , the r a t e of r i s e of the contour at 5% o i l r e p r e s e n t s t h e lower q u a r t i l e d r o p l e t d i a m e t e r . The h e i g h t s o f t y p i c a l c o n t o u r s a r e shown as a f u n c t i o n o f t i m e i n F i g u r e 4. E a c h i s l i n e a r , showing a c o n s t a n t v e l o c i t y o f each f r a c t i o n o f d r o p l e t s o f d i a m e t e r d. The v e l o c i t y o f each c o n t o u r e n a b l e s a c u m u l a t i v e s i z e d i s t r i b u t i o n t o be i n f e r r e d , as shown i n F i g u r e 5. 1
m
m
Downloaded by CORNELL UNIV on October 26, 2016 | http://pubs.acs.org Publication Date: December 26, 1991 | doi: 10.1021/bk-1991-0448.ch017
235
El-Nokaly and Cornell; Microemulsions and Emulsions in Foods ACS Symposium Series; American Chemical Society: Washington, DC, 1991.
Downloaded by CORNELL UNIV on October 26, 2016 | http://pubs.acs.org Publication Date: December 26, 1991 | doi: 10.1021/bk-1991-0448.ch017
236
MICROEMULSIONS AND EMULSIONS IN FOODS
Contour velocity
0
2
4
Diameter (fim)
Qjm/s)
6
8
10
12
14
16
Contour concentration (%)
18
20
Figure 5 : V e l o c i t y o f c o n t o u r s and i n f e r r e d hydrodynamic d i a m e t e r s f o r each concentration contour.
El-Nokaly and Cornell; Microemulsions and Emulsions in Foods ACS Symposium Series; American Chemical Society: Washington, DC, 1991.
17.
ROBINS
Effect of Polysaccharide on Flocculation and Creaming
237
The r e s u l t i n g s i z e d i s t r i b u t i o n i s shown i n F i g u r e 6, and compared w i t h t h a t o b t a i n e d from a l a s e r d i f f r a c t i o n t e c h n i q u e , t h e M a l v e r n Mastersizer. The agreement i s v e r y good, c o n s i d e r i n g t h a t t h e c r e a m i n g method i s s u b j e c t t o s e v e r a l assumptions as t o t h e independence o f t h e m o t i o n o f t h e p a r t i c l e s , and t h e p r o b l e m o f allowing c o r r e c t l y f o r the l o c a l droplet concentrations.
Downloaded by CORNELL UNIV on October 26, 2016 | http://pubs.acs.org Publication Date: December 26, 1991 | doi: 10.1021/bk-1991-0448.ch017
Creaming
o f E m u l s i o n s C o n t a i n i n g Polymer
P o l y s a c c h a r i d e s t a b i l i s e r s are f r e q u e n t l y used t o reduce t h e r a t e o f c r e a m i n g , as w e l l as t o i m p a r t t h e r e q u i r e d m o u t h f e e l p r o p e r t i e s t o t h e p r o d u c t . We a r e i n t e r e s t e d i n t h e mechanisms by w h i c h t h e polymers i n f l u e n c e the s e p a r a t i o n p r o c e s s . In p a r t i c u l a r , p r e v i o u s work (12-13) has shown t h a t i f i n s u f f i c i e n t polymer i s added, t h e d r o p l e t s become f l o c c u l a t e d and cream f a s t e r t h a n i n t h e absence o f the s t a b i l i s e r . Here we p r e s e n t c r e a m i n g r e s u l t s on 20% a l k a n e - i n water e m u l s i o n s c o n t a i n i n g t h e p o l y s a c c h a r i d e h y d r o x y e t h y l c e l l u l o s e ( N a t r o s o l 250HR). The d r o p l e t s i z e d i s t r i b u t i o n i s t h e same as i n the polymer-free emulsion (Figure 6). A t c o n c e n t r a t i o n s up t o and i n c l u d i n g 0.02%w/w i n t h e c o n t i n u o u s phase t h e c r e a m i n g i s not v i s i b l e t o t h e eye u n t i l n e a r l y complete, and t h e creaming p r o f i l e s a r e v e r y s i m i l a r t o t h o s e w i t h o u t polymer ( F i g u r e 3 ) . However, a t a l e v e l o f 0.03%, t h e r e i s a change i n t h e creaming b e h a v i o u r . The p r o f i l e s a r e shown i n F i g u r e 7. V i s u a l l y t h e e m u l s i o n a p p e a r s opaque u n t i l a f t e r about 10 days, when t h e base s t a r t s t o c l e a r o f o i l . However t h e u l t r a s o n i c p r o f i l e s show t h a t t h e r e a r e two d i s t i n c t t y p e s o f c r e a m i n g . The m a j o r i t y o f t h e o i l d r o p l e t s move up t h e c e l l r a p i d l y , w i t h a s h a r p m e n i s c u s , b u t about 4% o i l remains t o cream s l o w l y w i t h a d i f f u s e meniscus, as i n t h e e m u l s i o n s w i t h z e r o o r low l e v e l s o f polymer. The c o n t o u r h e i g h t s f o r t h e e m u l s i o n c o n t a i n i n g 0.03% polymer a r e shown i n F i g u r e 8. A t c o n t o u r c o n c e n t r a t i o n s below 4%, t h e d r o p l e t s a r e moving i n f r a c t i o n s , as t h e y d i d when no polymer was present. The range o f c o n t o u r v e l o c i t i e s e x h i b i t e d i n d i c a t e s t h a t t h e d r o p l e t s moving i n d i v i d u a l l y r e p r e s e n t a s i m i l a r range o f d i a m e t e r s as t h e o r i g i n a l e m u l s i o n . However, t h e y r e m a i n as i n d i v i d u a l d r o p l e t s w h i l e t h e m a j o r i t y o f t h e o i l creams v e r y f a s t , w i t h l i t t l e v a r i a t i o n i n speed w i t h c o n t o u r c o n c e n t r a t i o n . This f r a c t i o n i s c l e a r l y a g g r e g a t e d , and t h e d r o p l e t s a r e c r e a m i n g as a s i n g l e e n t i t y , presumably i n a network w i t h s u f f i c i e n t l y l a r g e v o i d s f o r the unaggregated f r a c t i o n t o d r a i n through. We have t h u s o b s e r v e d c o e x i s t e n c e o f two e m u l s i o n p h a s e s ; a f l o c c u l a t e d f r a c t i o n c o n t a i n i n g 80% o f t h e o i l , and an u n f l o c c u l a t e d f r a c t i o n w h i c h can cream as i n d i v i d u a l d r o p l e t s . When t h e polymer c o n c e n t r a t i o n i s i n c r e a s e d f u r t h e r , s e v e r a l e f f e c t s a r e a p p a r e n t . A l l t h e o i l a p p e a r s t o become a g g r e g a t e d , creaming r a p i d l y w i t h a sharp meniscus. Although t h e v i s c o s i t y o f t h e c o n t i n u o u s phase i n c r e a s e s w i t h polymer c o n c e n t r a t i o n , t h e c r e a m i n g i s f a s t e r t h a n w i t h o u t polymer. F i g u r e 9 shows t h e c o n c e n t r a t i o n p r o f i l e s f o r an e m u l s i o n c o n t a i n i n g 1% polymer i n t h e c o n t i n u o u s phase. The v i s c o s i t y ( a t low s h e a r - r a t e ) o f t h e polymer s o l u t i o n i s 3.5Pas, but t h e creaming r a t e o f t h e meniscus i s 0.18/im.s" , f a s t e r t h a n t h e 10% c o n t o u r i n t h e p o l y m e r - f r e e system.
Porous network model. The s h a r p n e s s o f t h e meniscus and t h e shape o f t h e c o n c e n t r a t i o n p r o f i l e s above t h e meniscus a r e r e m i n i s c e n t o f t h e b e h a v i o u r o f a s o l i d m a t e r i a l under c o m p r e s s i o n . We t h u s model
El-Nokaly and Cornell; Microemulsions and Emulsions in Foods ACS Symposium Series; American Chemical Society: Washington, DC, 1991.
MICROEMULSIONS AND EMULSIONS IN FOODS
238
Downloaded by CORNELL UNIV on October 26, 2016 | http://pubs.acs.org Publication Date: December 26, 1991 | doi: 10.1021/bk-1991-0448.ch017
Weight in Band (%)
0
1
2
3
4
5
6
7
8
9
10
11
12
13
Size Band (microns) Figure 6a: Droplet s i z e d i s t r i b u t i o n i n f e r r e d contours.
from concentration
El-Nokaly and Cornell; Microemulsions and Emulsions in Foods ACS Symposium Series; American Chemical Society: Washington, DC, 1991.
17. ROBINS
Effect of Polysaccharide on Flocculation and Creaming
239
Downloaded by CORNELL UNIV on October 26, 2016 | http://pubs.acs.org Publication Date: December 26, 1991 | doi: 10.1021/bk-1991-0448.ch017
Weight in Band (%)
Size Band (microns) F i g u r e 6b: Droplet s i z e d i s t r i b u t i o n from l i g h t d i f f r a c t i o n s i z e r (Malvern M a s t e r s i z e r ) .
particle
El-Nokaly and Cornell; Microemulsions and Emulsions in Foods ACS Symposium Series; American Chemical Society: Washington, DC, 1991.
240
MICROEMULSIONS AND EMULSIONS IN FOODS
Downloaded by CORNELL UNIV on October 26, 2016 | http://pubs.acs.org Publication Date: December 26, 1991 | doi: 10.1021/bk-1991-0448.ch017
Concentration (%v/v)
Time (days)
80
0.02 0.07 0.17 1.13 2.01 3.00 6.06 10.28 21.19 o
Base
20
40
60
80
100
120
140
Height (mm)
Figure
160
38.15
Top
7:
O i l c o n c e n t r a t i o n p r o f i l e s f o r 20% a l k a n e 0.03%w/w polymer i n t h e c o n t i n u o u s phase.
emulsion
containing
El-Nokaly and Cornell; Microemulsions and Emulsions in Foods ACS Symposium Series; American Chemical Society: Washington, DC, 1991.
ROBINS
Effect of Polysaccharide on Flocculation and Creaming
Downloaded by CORNELL UNIV on October 26, 2016 | http://pubs.acs.org Publication Date: December 26, 1991 | doi: 10.1021/bk-1991-0448.ch017
Height (mm)
Time (Days) F i g u r e 8: H e i g h t o f o i l c o n c e n t r a t i o n c o n t o u r s and creaming t i m e f o r e m u l s i o n c o n t a i n i n g 0.03%w/w polymer i n t h e c o n t i n u o u s phase.
El-Nokaly and Cornell; Microemulsions and Emulsions in Foods ACS Symposium Series; American Chemical Society: Washington, DC, 1991.
241
Downloaded by CORNELL UNIV on October 26, 2016 | http://pubs.acs.org Publication Date: December 26, 1991 | doi: 10.1021/bk-1991-0448.ch017
242
MICROEMULSIONS AND EMULSIONS IN FOODS
Concentration (%v/v)
Time (days)
80 -i
0.19 3.15 4.20
i
7.20 8.02 9.04 11.19 14.14 20.92
0
Base
20
60
80
100
Height (mm)
120
140
160
Top
F i g u r e 9: O i l concentration p r o f i l e s for 20% alkane emulsion 1.0%w/w polymer i n the continuous phase.
containing
El-Nokaly and Cornell; Microemulsions and Emulsions in Foods ACS Symposium Series; American Chemical Society: Washington, DC, 1991.
Downloaded by CORNELL UNIV on October 26, 2016 | http://pubs.acs.org Publication Date: December 26, 1991 | doi: 10.1021/bk-1991-0448.ch017
17.
ROBINS
Effect of Polysaccharide on Flocculation and Creaming
243
t h e f l o c c u l a t e d e m u l s i o n as an open b u t c o n t i n u o u s network, which compresses under g r a v i t y . The c o m p r e s s i o n r e s u l t s i n t h e c o n t i n u o u s phase d r a i n i n g t h r o u g h c h a n n e l s i n t h e network. The c r e a m i n g / c o m p r e s s i o n r a t e i s l i m i t e d by t h e v i s c o u s r e s i s t a n c e o f t h e c o n t i n u o u s phase as i t f l o w s t h r o u g h t h e c h a n n e l s . The d r a i n a g e o f l i q u i d t h r o u g h a porous bed o f p a r t i c l e s has been s t u d i e d e x t e n s i v e l y , and t h e a p p l i c a b i l i t y o f t h e model t o f l o c c u l a t e d d i s p e r s i o n s has been demonstrated by M i c h a e l s and B o l g e r ( 1 4 ) , who i n v e s t i g a t e d the sedimentation behaviour of f l o c c u l a t e d k a o l i n suspensions. T h e i r system d i f f e r s i n two main r e s p e c t s from o u r s ; t h e i r p a r t i c l e s a r e r i g i d , and t h e y a r e v e r y s t r o n g l y f l o c c u l a t e d . E m u l s i o n d r o p l e t s a r e d e f o r m a b l e , and, i n o u r e x p e r i e n c e , t h e f l o e s formed a r e weak and e a s i l y d i s r u p t e d upon d i l u t i o n . However, we have found t h e g e n e r a l d e s c r i p t i o n s o f f l o c c u l a t e d systems t o be a u s e f u l s t a r t i n g p o i n t f o r a n a l y s i s o f our r e s u l t s . The system i s m o d e l l e d as a p o r o u s bed t h r o u g h which t h e background l i q u i d d r a i n s . The maximum s e d i m e n t a t i o n ( o r creaming) r a t e v g i v e s an e s t i m a t e o f t h e e f f e c t i v e hydrodynamic d i a m e t e r o f t h e d r a i n a g e c h a n n e l s ( p o r e s ) , assumed t o be smooth s t r a i g h t c y l i n d e r s
v =
2
^ .Ap.d .g 0
(1-^f)
p
32 rj
(4)
c
a
n
d
d
i
s
t
n
e
where 0f = volume f r a c t i o n o f f l o e s (1 - 0o/0 ) p e f f e c t i v e hydrodynamic p o r e d i a m e t e r . T h i s d i a m e t e r was o b s e r v e d by M i c h a e l s and B o l g e r (14) t o i n c r e a s e w i t h s t r e n g t h o f f l o c c u l a t i o n . A p p l y i n g t h e p o r e / c h a n n e l model, we can e s t i m a t e t h e d i a m e t e r o f t h e p o r e s d i n e q u a t i o n (4) from t h e c r e a m i n g r a t e , v, v i s c o s i t y rj and o i l c o n c e n t r a t i o n s Q, . We assumed t h a t t h e d r o p l e t s w i t h i n t h e f l o e s were " c l o s e - p a c k e d " , w i t h - 0.7. F i g u r e 10 shows t h e e s t i m a t e d p o r e d i a m e t e r as a f u n c t i o n o f polymer concentration. A t low c o n c e n t r a t i o n s , t h e e f f e c t i v e d i a m e t e r o f t h e p o r e s i s c o n s t a n t , a t about 37/xm. T h i s i s c o n s i s t e n t w i t h t h e o b s e r v a t i o n i n t h e c o e x i s t e n t e m u l s i o n (0.03% polymer) t h a t i n d i v i d u a l d r o p l e t s o f up t o 10/*m c o u l d p a s s t h r o u g h t h e f l o c c u l a t e d network. A t h i g h e r l e v e l s , t h e r e i s a l a r g e i n c r e a s e w i t h c o n c e n t r a t i o n up t o about 300/im i n 1% polymer. This i s consistent w i t h s t r o n g e r f l o c c u l a t i o n a t h i g h e r polymer c o n c e n t r a t i o n s ( 1 4 ) . The i n c r e a s e d s t r e n g t h o f t h e f l o e s w i t h h i g h e r l e v e l s o f polymer i s a l s o e v i d e n t i n t h e r e l u c t a n c e o f t h e cream l a y e r t o become c l o s e l y packed. The o i l c o n c e n t r a t i o n a t t h e t o p o f t h e samples i n t h e e a r l y s t a g e s o f c r e a m i n g i s i n d i c a t i v e o f t h e r e s i s t a n c e o f t h e f l o e s t o compaction under g r a v i t y . With l e s s than 0.03% polymer t h e cream i s a t 70% c o n c e n t r a t i o n from t h e s t a r t , b u t i n t h e f l o c c u l a t e d systems i t b u i l d s up a t much lower p a c k i n g density. A t t h e h i g h e s t polymer c o n c e n t r a t i o n , ( F i g u r e 9) t h e cream i s a l m o s t u n i f o r m a t -40% b e f o r e e x h i b i t i n g slow c o m p a c t i o n w i t h time, again uniformly. m
p
c
m
m
Depletion Flocculation. We have o b s e r v e d t h a t a t a c r i t i c a l c o n c e n t r a t i o n o f polymer, 0.03%w/w, a f l o c c u l a t e d phase and i n d i v i d u a l d r o p l e t s can c o e x i s t . This i s consistent with a depletion rather t h a n b r i d g i n g mechanism (15-16). U n l e s s a polymer i s a t t r a c t e d t o t h e s u r f a c e o f t h e d r o p l e t s , and t h u s becomes a d s o r b e d , g e o m e t r i c a l c o n s t r a i n t s n e a r t h e d r o p l e t r e q u i r e t h a t t h e d e n s i t y o f polymer segments n e a r t h e s u r f a c e i s lower t h a n i n t h e b u l k c o n t i n u o u s phase. The r e g i o n n e a r t h e d r o p l e t s i s t h u s d e p l e t e d o f polymer. I f one v i s u a l i s e s d e p l e t i o n f l o c c u l a t i o n as b e i n g d r i v e n by a need
El-Nokaly and Cornell; Microemulsions and Emulsions in Foods ACS Symposium Series; American Chemical Society: Washington, DC, 1991.
244
MICROEMULSIONS AND EMULSIONS IN FOODS
Downloaded by CORNELL UNIV on October 26, 2016 | http://pubs.acs.org Publication Date: December 26, 1991 | doi: 10.1021/bk-1991-0448.ch017
t o r e d u c e t h e volume o f c o n t i n u o u s phase from w h i c h t h e polymer i s excluded, the occurrence o f f l o c c u l a t i o n a t the c r i t i c a l c o n c e n t r a t i o n s h o u l d depend on t h e volume f r a c t i o n o f d r o p l e t s . T h i s image i s s u p p o r t e d by an e x p e r i m e n t u s i n g 0.03% polymer b u t w i t h o n l y 5% o i l volume f r a c t i o n . No f l o c c u l a t e d f r a c t i o n was o b s e r v e d , a l l t h e d r o p l e t s c r e a m i n g i n d i v i d u a l l y a s i n t h e systems w i t h l e s s polymer. The c r i t i c a l c o n c e n t r a t i o n , around 0.03%, i s c o n s i s t e n t w i t h t h e e x p e r i m e n t s and c a l c u l a t i o n s o f S p e r r y (15-16), f o r t h e same polymer and t h e same mean p a r t i c l e s i z e . A n o t h e r consequence o f d e p l e t i o n f l o c c u l a t i o n i s t h a t t h e f i n a l c o n t i n u o u s phase, c o n t a i n e d i n t h e sub-cream l a y e r , s h o u l d c o n t a i n s l i g h t l y more polymer t h a n t h e o v e r a l l c o n c e n t r a t i o n , b e c a u s e t h e c o n t i n u o u s phase i n t h e cream l a y e r with depleted. For t h i s reason we a n a l y s e d t h e sub-cream l a y e r s f o r polymer u s i n g d e n s i t y and spectrophotometry. F i g u r e 11 shows t h e e s t i m a t e d polymer c o n c e n t r a -
Pore diameter (pm) 300
250
200
150 -
100 -
50 -
1
1 0.2
1
1 0.4
1
-
1 0.6
0.8
1
1.2
Polymer concentration (% w/w) Figure
10:
E s t i m a t e d d i a m e t e r o f p o r e s i n f l o c c u l a t e d e m u l s i o n s and polymer concentrat ion.
El-Nokaly and Cornell; Microemulsions and Emulsions in Foods ACS Symposium Series; American Chemical Society: Washington, DC, 1991.
Effect of Polysaccharide on Flocculation and Creaming
17. ROBINS
245
Sub-cream concentration (% w/w)
Downloaded by CORNELL UNIV on October 26, 2016 | http://pubs.acs.org Publication Date: December 26, 1991 | doi: 10.1021/bk-1991-0448.ch017
1.4
-i
0 Figure
0.2
0.4
0.6
0.8
Initial concentration (% w/w)
1
1.2
11:
Concentration o f polymer i n sub-cream l a y e r s polymer c o n c e n t r a t i o n . L i n e r e p r e s e n t s y=x.
and
original
t i o n i n t h e sub-cream l a y e r s . (The d e n s i t y r e s u l t s , w h i c h depend on s u r f a c t a n t c o n c e n t r a t i o n i n a d d i t i o n t o polymer c o n c e n t r a t i o n , have been c o r r e c t e d t o a l l o w f o r t h e s u r f a c t a n t p r e s e n t on t h e d r o p l e t s ) . T h e r e i s c l e a r l y an e n r i c h m e n t o v e r t h e i n i t i a l , o v e r a l l c o n t i n u o u s phase c o n c e n t r a t i o n o f polymer, a l t h o u g h t h e p r e c i s e amount i s debatable. Taken as a whole, t h e e v i d e n c e i s s t r o n g l y i n f a v o u r o f depletion flocculation. The weakness o f t h e f l o e s , and t h e i m p r o b a b i l i t y t h a t t h e polymer c o u l d a d s o r b o n t o t h e s u r f a c t a n t c o a t e d d r o p l e t s , a r e c o n s i s t e n t w i t h t h e d e p l e t i o n model. Conclusions T h e r e i s a c o n s i d e r a b l e amount o f i n f o r m a t i o n t o be g a i n e d from measurement o f c o n c e n t r a t i o n p r o f i l e s d u r i n g t h e c r e a m i n g o f emulsions. The r a t e o f r i s e o f t h e meniscus i n f l o c c u l a t e d systems
El-Nokaly and Cornell; Microemulsions and Emulsions in Foods ACS Symposium Series; American Chemical Society: Washington, DC, 1991.
246
MICROEMULSIONS AND EMULSIONS IN FOODS
yields information on the strength of the flocculation, and we hr.ve fitted a simple network model to our data. The size of drainage pores in the network is inferred from the creaming/compression rates. The critical polymer concentration required to flocculate the droplets, the coexistent phases observed at that concentration and the absence of flocculation at lower oil concentration