Effect of Solid-State Polarization on Charge ... - ACS Publications

Jun 30, 2017 - S.; Gulbinas, V.; Moser, J.-E. Dissociation of Charge Transfer States and Carrier .... (48) Baer, R.; Neuhauser, D. Density Functional ...
0 downloads 0 Views 2MB Size
Subscriber access provided by Olson Library | Northern Michigan University

Letter

Effect of Solid-State Polarization on Charge-Transfer Excitations and Transport Levels at Organic Interfaces from a Screened Range-Separated Hybrid Functional Zilong Zheng, David A. Egger, Jean-Luc Bredas, Leeor Kronik, and Veaceslav Coropceanu J. Phys. Chem. Lett., Just Accepted Manuscript • DOI: 10.1021/acs.jpclett.7b01276 • Publication Date (Web): 30 Jun 2017 Downloaded from http://pubs.acs.org on July 2, 2017

Just Accepted “Just Accepted” manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides “Just Accepted” as a free service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. “Just Accepted” manuscripts appear in full in PDF format accompanied by an HTML abstract. “Just Accepted” manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are accessible to all readers and citable by the Digital Object Identifier (DOI®). “Just Accepted” is an optional service offered to authors. Therefore, the “Just Accepted” Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the “Just Accepted” Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these “Just Accepted” manuscripts.

The Journal of Physical Chemistry Letters is published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036 Published by American Chemical Society. Copyright © American Chemical Society. However, no copyright claim is made to original U.S. Government works, or works produced by employees of any Commonwealth realm Crown government in the course of their duties.

Page 1 of 26

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

The Journal of Physical Chemistry Letters

Effect of Solid-State Polarization on Charge-Transfer Excitations and Transport Levels at Organic Interfaces from a Screened Range-Separated Hybrid Functional

Zilong Zheng,1 David A. Egger2, Jean-Luc Brédas,1* Leeor Kronik,2* and Veaceslav Coropceanu1*

1

School of Chemistry and Biochemistry and Center for Organic Photonics and Electronics, Georgia Institute of Technology, Atlanta, Georgia 30332-0400 2 Department of Materials and Interfaces, Weizmann Institute of Science, Rehovoth 76100, Israel *Emails: [email protected]; [email protected]; [email protected]

Abstract In this work, we develop a robust approach for the description of the energetics of charge-transfer (CT) excitations and transport levels at organic interfaces, based on a range-separated hybrid (SRSH) functional. We find that SRSH functionals correctly capture the effect of solid-state electronic polarization on transport gap renormalization and on screening of the electrostatic electron-hole interaction. With respect to calculations based on 1

ACS Paragon Plus Environment

The Journal of Physical Chemistry Letters

non-screened optimally tuned RSH (long-range corrected) functionals, the SRSH-based calculations can be performed for both isolated molecular complexes and systems embedded a dielectric medium with the same range-separation parameter, which allows a clear physical interpretation of the results in terms of solid-state polarization without any perturbation of the molecular electronic structure. By considering weakly interacting donor/acceptor complexes pentacene with C60 and poly-3-hexylthiophene (P3HT) with PCBM, we show that this new approach provides CT-state energies that compare very well with experimental data.

Table of Contents (TOC) Graphic

Pentacene/C60 (Donor) 4

Energy/eV

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

(Acceptor)

OT-SRSH

OT-RSH/PCM

∆E=EL(A)-EH(D)

3

ECT 2 1 0

∆E-ECT

|ECoulomb|

0.4 0.8

0.4 0.8 1/ε

1/ε

2

ACS Paragon Plus Environment

Page 2 of 26

Page 3 of 26

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

The Journal of Physical Chemistry Letters

In organic solar cells (OSCs), the charge-transfer (CT) electronic states that appear at the interface between the electron-donor (D) and electron-acceptor (A) components play a major role in both exciton-dissociation and charge-recombination processes,1-4 which explains why they are the focus of extensive experimental5-12 and theoretical studies.12-30 Organic materials used currently for photovoltaics applications are characterized by low dielectric constants (in the range of 3-5), which is believed to be a major factor limiting OSC efficiency.31-34 Low dielectric constants result, for example, in substantial hole-electron binding energies at D/A interfaces and thus reduced dissociation rates of the CT states into free charge carriers. However, an in-depth understanding of how electronic processes in OSCs are impacted by the materials dielectric features is still lacking. Therefore, the development of computational approaches that can account for the effects stemming from both the chemical structures of the D and A materials and the electronic polarization (dielectric screening) is highly desirable. Here, we focus on the role played by electronic polarization on the CT excitations and transport levels. Density functional theory (DFT) is currently the method of choice for the quantum-mechanical description of the interfacial CT states. Since standard semi-local and global hybrid exchange-correlation functionals do not provide the correct asymptotic, 1/r, dependence of the long-range potential of a gas-phase system,35-38 most recent DFT studies CT states are based on range-separated hybrid (RSH) functionals.20, 24-26, 36, 39 In a simple

3

ACS Paragon Plus Environment

The Journal of Physical Chemistry Letters

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Page 4 of 26

functional (also referred to as a long-range corrected functional), the Coulomb interaction is partitioned using the error function, in the form:

1 erf (ωr ) 1 − erf (ωr ) = + , r r r

(1)

where the first and second terms on the right-hand side of the equation correspond to long-range and short-range repulsion, respectively, and ω is the range-separation (RS) parameter. Hartree-Fock (HF) exchange is employed to treat long-range exchange, whereas a local or semi-local DFT functional is used to treat short-range exchange. It has been shown that RSH functionals provide the best predictions for gas-phase charge-transfer excitations when the range-separation (RS) parameter is optimally tuned (OT), for a given system, using a physically motivated “tuning condition”,40-41 an issue elaborated further on below. Initial studies by Minami et al. and independently by some of the present authors on pentacene/C60 complexes24-26 used an OT-RSH approach with a tuning procedure based on results derived for an isolated system (in vacuum; referred to below as DFT/ωvac). While these calculations yielded a significantly lower CT energy than calculations based on the default ω values (by up to 1 eV), the CT energy was still too high with respect to experimental data obtained at the solid-state interface. Specifically, it was found to be higher than the lowest local pentacene and C60 valence excitation energies,24 in contrast to experimental observations.9 Gas-phase CT energies of such D/A complexes are indeed expected to overestimate the solid-state experimental values since DFT calculations performed on isolated systems do not account for electronic polarization. The impact of the solid-state environment on the isolated complex can be mimicked by combining an OT-RSH functional based on Eq. (1) with the 4

ACS Paragon Plus Environment

Page 5 of 26

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

The Journal of Physical Chemistry Letters

polarizable continuum model (PCM).42 Indeed, PCM-based total energy corrections of gas-phase OT-RSH calculations were found to be useful for estimating the fundamental gaps of organic solids.43 However, if the gas-phase optimal ω value is used, the PCM treatment was found to have a minimal effect (typically 3 the ECT derived by means of the unscreened OT-RSH calculations show only a marginal dependence on the dielectric constant. For example, the change in ECT when εD increases from 3 to 8 is only 6 meV, in comparison to the 431 meV value obtained by means of screened RSH calculations.

16

ACS Paragon Plus Environment

Page 16 of 26

Page 17 of 26

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

The Journal of Physical Chemistry Letters

Figure 4. Dependence of the gap energy (Egap), CT energy (ECT), and electrostatic energy (Eel=ECT-Egap), computed using DFT and TDDFT at the SRSH-PBEh/6-31G(d, p) level with ω=ωvac, as well as electrostatic energy (

) computed from Mulliken charges using

ε=1/(α+β) as the dielectric constant, for (a) the pentacene/C60 complex and (b) the P3HT/PCBM complex, as a function of 1/ε .

In conclusion, we have investigated the performance of screened range-separated hybrid (SRSH) functionals in describing the energetics of charge-transfer states in weakly interacting pentacene/C60 and P3HT/PCBM donor/acceptor complexes. We found that SRSH functionals are capable of capturing correctly the effect of solid-state electronic polarization on the gap renormalization and on the screening of the electrostatic electron-hole interaction, thereby providing CT energies that compare very well with experimental data. With respect to calculations based on non-screened RSH (LRC) functionals, the calculations based on the 17

ACS Paragon Plus Environment

The Journal of Physical Chemistry Letters

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

SRSH functionals can be performed for both isolated molecules or molecular complexes and systems embedded in a dielectric medium with the same range-separated parameter. This makes the results of such calculations much more amenable to a clear physical interpretation in terms of solid-state polarization without perturbation of the molecular electronic structure. In particular, they allow a well-defined partitioning of the charge transfer energy into contributions from the HOMOD –LUMOA (transport) gap and the electron-hole attraction. Finally, we stress that, in designing organic materials with large dielectric constants, the ionization potential of the donor component and the electron affinity of the acceptor component must be carefully managed, so that the benefit obtained from enhancing dielectric screening and charge separation does not come at the expense of lowering the open-circuit voltage.

Ackowledgments: L.K. acknowledges support from the European Research Council and the historic generosity of the Perlman Family. D.A.E. was additionally supported by the Austrian Science Fund (FWF): J3608-N20. The work at the Georgia Institute of Technology was supported by the Department of the Navy, Office of Naval Research, under the MURI “Center for Advanced Organic Photovoltaics” (Awards Nos. N00014-14-1-0580 and N00014-16-1-2520) and by the Army Research Office (Award No. W911NF-13-1-0387).

Supporting Information Available: Dependence of the IP, EA, HOMO and LUMO energies of the pentacene/C60 and P3HT/PCBM molecules and complexes as a function of 1/ε; dependence of the lowest charge transfer state and lowest local excited state energies of pentacene/C60 and P3HT/PCBM complexes as a function of 1/ε ; HOMO(D)-LUMO(A) gap energy and energy of the CT state obtained from TDDFT and an electrostatic model using 18

ACS Paragon Plus Environment

Page 18 of 26

Page 19 of 26

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

The Journal of Physical Chemistry Letters

Mulliken charges for Pentacene/C60 and P3HT/PCBM complexes as a function of 1/ε; dependence of the gap energy, CT state energy, and electrostatic energy computed from TDDFT and using the Mulliken charges of the pentacene/C60 complex, as a function of the RS parameter; optimized ωvac and ωPCM values for the pentacene/C60 and P3HT/PCBM complexes.

19

ACS Paragon Plus Environment

The Journal of Physical Chemistry Letters

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

References

1. Brédas, J. L.; Norton, J. E.; Cornil, J.; Coropceanu, V. Molecular Understanding of Organic Solar Cells: The Challenges. Acc. Chem. Res. 2009, 42, 1691-1699. 2. Vandewal, K.; Albrecht, S.; Hoke, E. T.; Graham, K. R.; Widmer, J.; Douglas, J. D.; Schubert, M.; Mateker, W. R.; Bloking, J. T.; Burkhard, G. F.; Sellinger, A.; Frechet, J. M. J.; Amassian, A.; Riede, M. K.; McGehee, M. D.; Neher, D.; Salleo, A. Efficient Charge Generation by Relaxed Charge-Transfer States at Organic Interfaces. Nat. Mater. 2014, 13, 63-68. 3. Gelinas, S.; Rao, A.; Kumar, A.; Smith, S. L.; Chin, A. W.; Clark, J.; van der Poll, T. S.; Bazan, G. C.; Friend, R. H. Ultrafast Long-Range Charge Separation in Organic Semiconductor Photovoltaic Diodes. Science 2014, 343, 512-516. 4. Beljonne, D.; Cornil, J.; Muccioli, L.; Zannoni, C.; Brédas, J. L.; Castet, F. Electronic Processes at Organic-Organic Interfaces: Insight from Modeling and Implications for Opto-electronic Devices. Chem. Mater. 2011, 23, 591-609. 5. Deotare, P. B.; Chang, W.; Hontz, E.; Congreve, D. N.; Shi, L.; Reusswig, P. D.; Modtland, B.; Bahlke, M. E.; Lee, C. K.; Willard, A. P.; Bulovic, V.; Van Voorhis, T.; Baldo, M. A. Nanoscale Transport of Charge-Transfer States in Organic Donor-Acceptor Blends. Nat. Mater. 2015, 14, 1130-1134. 6. Devižis, A.; De Jonghe-Risse, J.; Hany, R.; Nüesch, F.; Jenatsch, S.; Gulbinas, V.; Moser, J.-E. Dissociation of Charge Transfer States and Carrier Separation in Bilayer Organic Solar Cells: A Time-Resolved Electroabsorption Spectroscopy Study. J. Am. Chem. Soc. 2015, 137, 8192-8198. 7. Vandewal, K. Interfacial Charge Transfer States in Condensed Phase Systems. Annu. Rev. Phys. Chem. 2016, 67, 113-133. 8. Guan, Z.; Li, H. W.; Zhang, J.; Cheng, Y.; Yang, Q.; Lo, M. F.; Ng, T. W.; Tsang, S. W.; Lee, C. S. Evidence of Delocalization in Charge-Transfer State Manifold for Donor:Acceptor Organic Photovoltaics. ACS Appl. Mater. Inter. 2016, 8, 21798-21805. 9. Brigeman, A. N.; Fusella, M. A.; Yan, Y.; Purdum, G. E.; Loo, Y.-L.; Rand, B. P.; Giebink, N. C. Revealing the Full Charge Transfer State Absorption Spectrum of Organic Solar Cells. Adv. Energy Mater. 2016, 1601001. 10. Bakulin, A. A.; Rao, A.; Pavelyev, V. G.; van Loosdrecht, P. H. M.; Pshenichnikov, M. S.; Niedzialek, D.; Cornil, J.; Beljonne, D.; Friend, R. H. The Role of Driving Energy and 20

ACS Paragon Plus Environment

Page 20 of 26

Page 21 of 26

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

The Journal of Physical Chemistry Letters

Delocalized States for Charge Separation in Organic Semiconductors. Science 2012, 335, 1340-1344. 11. Jailaubekov, A. E.; Willard, A. P.; Tritsch, J. R.; Chan, W.-L.; Sai, N.; Gearba, R.; Kaake, L. G.; Williams, K. J.; Leung, K.; Rossky, P. J.; Zhu, X. Y. Hot Charge-Transfer Excitons Set the Time Limit for Charge Separation at Donor/Acceptor Interfaces in Organic Photovoltaics. Nat. Mater. 2013, 12, 66-73. 12. Reinhard, S.; Regina, L.; Gotthard, S.; Till, J.-H.; Christian, K.; Karl, L.; Mathias, R. Quantifying Charge Transfer Energies at Donor–Acceptor Interfaces in Small-Molecule Solar Cells with Constrained DFTB and Spectroscopic Methods. J. Phys.: Condens. Matter 2013, 25, 473201. 13. Shen, X.; Han, G.; Yi, Y. The Nature of Excited States in Dipolar Donor/Fullerene Complexes for Organic Solar Cells: Evolution with the Donor Stack Size. Phys. Chem. Chem. Phys. 2016, 18, 15955-15963. 14. Yi, Y. P.; Coropceanu, V.; Brédas, J. L. Exciton-Dissociation and Charge-Recombination Processes in Pentacene/C-60 Solar Cells: Theoretical Insight into the Impact of Interface Geometry. J. Am. Chem. Soc. 2009, 131, 15777-15783. 15. Chen, X.-K.; Ravva, M. K.; Li, H.; Ryno, S. M.; Brédas, J.-L. Effect of Molecular Packing and Charge Delocalization on the Nonradiative Recombination of Charge-Transfer States in Organic Solar Cells. Adv. Energy Mater. 2016, 1601325. 16. Few, S.; Frost, J. M.; Nelson, J. Models of Charge Pair Generation in Organic Solar Cells. Phys. Chem. Chem. Phys. 2015, 17, 2311-2325. 17. Lee, M. H.; Dunietz, B. D.; Geva, E. Donor-to-Donor vs Donor-to-Acceptor Interfacial Charge Transfer States in the Phthalocyanine-Fullerene Organic Photovoltaic System. J. Phys. Chem. Lett. 2014, 5, 3810-3816. 18. Lin, B.-C.; Koo, B. T.; Clancy, P.; Hsu, C.-P. Theoretical Investigation of Charge-Transfer Processes at Pentacene–C60Interface: The Importance of Triplet Charge Separation and Marcus Electron Transfer Theory. J Phys Chem C 2014, 118, 23605-23613. 19. Ma, H.; Troisi, A. Direct Optical Generation of Long-Range Charge-Transfer States in Organic Photovoltaics. Adv. Mater. 2014, 26, 6163-6167. 20. Manna, A. K.; Balamurugan, D.; Cheung, M. S.; Dunietz, B. D. Unraveling the Mechanism of Photoinduced Charge Transfer in Carotenoid-Porphyrin-C60 Molecular Triad. J. Phys. Chem. Lett. 2015, 6, 1231-1237.

21

ACS Paragon Plus Environment

The Journal of Physical Chemistry Letters

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

21. Tamura, H.; Burghardt, I. Ultrafast Charge Separation in Organic Photovoltaics Enhanced by Charge Delocalization and Vibronically Hot Exciton Dissociation. J. Am. Chem. Soc. 2013, 135, 16364-16367. 22. Zhao, Y.; Liang, W. Charge Transfer in Organic Molecules for Solar Cells: Theoretical Perspective. Chem. Soc. Rev. 2012, 41, 1075-1087. 23. Zheng, Z.; Brédas, J. L.; Coropceanu, V. Description of the Charge Transfer States at the Pentacene/C60 Interface: Combining Range-Separated Hybrid Functionals with the Polarizable Continuum Model. J. Phys. Chem. Lett. 2016, 7, 2616−2621. 24. Zhang, C.-R.; Sears, J. S.; Yang, B.; Aziz, S. G.; Coropceanu, V.; Brédas, J.-L. Theoretical Study of the Local and Charge-Transfer Excitations in Model Complexes of Pentacene-C-60 Using Tuned Range-Separated Hybrid Functionals. J Chem Theory Comput 2014, 10, 2379-2388. 25. Minami, T.; Ito, S.; Nakano, M. Functional Dependence of Excitation Energy for Pentacene/C60 Model Complex in the Nonempirically Tuned Long-Range Corrected Density Functional Theory. Int. J. Quantum Chem. 2013, 113, 252-256. 26. Minami, T.; Nakano, M.; Castet, F. Nonempirically Tuned Long-Range Corrected Density Functional Theory Study on Local and Charge-Transfer Excitation Energies in a Pentacene/C-60 Model Complex. J. Phys. Chem. Lett. 2011, 2, 1725-1730. 27. Sampat, S.; Mohite, A. D.; Crone, B.; Tretiak, S.; Malko, A. V.; Taylor, A. J.; Yarotski, D. A. Tunable Charge Transfer Dynamics at Tetracene/LiF/C60 Interfaces. J Phys Chem C 2015, 119, 1286-1290. 28. Niedzialek, D.; Duchemin, I.; de Queiroz, T. B.; Osella, S.; Rao, A.; Friend, R.; Blase, X.; Kümmel, S.; Beljonne, D. First Principles Calculations of Charge Transfer Excitations in Polymer–Fullerene Complexes: Influence of Excess Energy. Adv Funct Mater 2015, 25, 1972-1984. 29. D’Avino, G.; Muccioli, L.; Olivier, Y.; Beljonne, D. Charge Separation and Recombination at Polymer–Fullerene Heterojunctions: Delocalization and Hybridization Effects. J. Phys. Chem. Lett. 2016, 7, 536-540. 30. Akimov, A. V.; Prezhdo, O. V. Nonadiabatic Dynamics of Charge Transfer and Singlet Fission at the Pentacene/C-60 Interface. J. Am. Chem. Soc. 2014, 136, 1599-1608. 31. Koster, L. J. A.; Shaheen, S. E.; Hummelen, J. C. Pathways to a New Efficiency Regime for Organic Solar Cells. Adv. Energy Mater. 2012, 2, 1246-1253.

22

ACS Paragon Plus Environment

Page 22 of 26

Page 23 of 26

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

The Journal of Physical Chemistry Letters

32. Leblebici, S.; Lee, J.; Weber-Bargioni, A.; Ma, B. W. Dielectric Screening To Reduce Charge Transfer State Binding Energy in Organic Bulk Heterojunction Photovoltaics. J Phys Chem C 2017, 121, 3279-3285. 33. Zhang, G. R.; Clarke, T. M.; Mozer, A. J. Bimolecular Recombination in a Low Bandgap Polymer:PCBM Blend Solar Cell with a High Dielectric Constant. J Phys Chem C 2016, 120, 7033-7043. 34. Armin, A.; Stoltzfus, D. M.; Donaghey, J. E.; Clulow, A. J.; Nagiri, R. C. R.; Burn, P. L.; Gentle, I. R.; Meredith, P. Engineering Dielectric Constants in Organic Semiconductors. J. Mater. Chem. C 2017, 5, 3736-3747. 35. Cohen, A. J.; Mori-Sánchez, P.; Yang, W. Challenges for Density Functional Theory. Chem. Rev. 2011, 112, 289-320. 36. Kummel, S.; Kronik, L. Orbital-Dependent Density Functionals: Theory and Applications. Rev. Mod. Phys. 2008, 80, 3-60. 37. Dreuw, A.; Head-Gordon, M. Failure of Tme-Dependent Density Functional Theory for Long-Range Charge-Transfer Excited States: The Zincbacteriochlorin-Bacterlochlorin and Bacteriochlorophyll-Spheroidene Complexes. J. Am. Chem. Soc. 2004, 126, 4007-4016. 38. Tozer, D. J. Relationship Between Long-Range Charge-Transfer Excitation Energy Error and Integer Discontinuity in Kohn–Sham Theory. J. Chem. Phys. 2003, 119, 12697-12699. 39. Manna, A. K.; Lee, M. H.; McMahon, K. L.; Dunietz, B. D. Calculating High Energy Charge Transfer States Using Optimally Tuned Range-Separated Hybrid Functionals. J Chem Theory Comput 2015, 11, 1110-1117. 40. Stein, T.; Kronik, L.; Baer, R. Reliable Prediction of Charge Transfer Excitations in Molecular Complexes Using Time-Dependent Density Functional Theory. J. Am. Chem. Soc. 2009, 131, 2818-2820. 41. Stein, T.; Kronik, L.; Baer, R. Prediction of Charge-Transfer Excitations in Coumarin-Based Dyes Using a Range-Separated Functional Tuned From First Principles. J. Chem. Phys. 2009, 131, 244119. 42. Tomasi, J.; Mennucci, B.; Cammi, R. Quantum Mechanical Continuum Solvation Models. Chem. Rev. 2005, 105, 2999-3093. 43. Phillips, H.; Zheng, Z. L.; Geva, E.; Dunietz, B. D. Orbital Gap Predictions For Rational Design of Organic Photovoltaic Materials. Org. Electron. 2014, 15, 1509-1520.

23

ACS Paragon Plus Environment

The Journal of Physical Chemistry Letters

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

44. de Queiroz, T. B.; Kummel, S. Charge-Transfer Excitations in Low-Gap Systems Under the Influence of Solvation and Conformational Disorder: Exploring Range-Separation Tuning. J. Chem. Phys. 2014, 141, 084303. 45. Sun, H. T.; Ryno, S.; Zhong, C.; Ravva, M. K.; Sun, Z. R.; Korzdorfer, T.; Brédas, J. L. Ionization Energies, Electron Affinities, and Polarization Energies of Organic Molecular Crystals: Quantitative Estimations from a Polarizable Continuum Model (PCM)-Tuned Range-Separated Density Functional Approach. J Chem Theory Comput 2016, 12, 2906-2916. 46. de Queiroz, T. B.; Kummel, S. Tuned Range Separated Hybrid Functionals for Solvated Low Bandgap Oligomers. J. Chem. Phys. 2015, 143, 034101. 47. Bokareva, O. S.; Grell, G.; Bokarev, S. I.; Kuhn, O. Tuning Range-Separated Density Functional Theory for Photocatalytic Water Splitting Systems. J Chem Theory Comput 2015, 11, 1700-1709. 48. Baer, R.; Neuhauser, D. Density Functional Theory with Correct Long-Range Asymptotic Behavior. Phys. Rev. Lett. 2005, 94, 043002. 49. Refaely-Abramson, S.; Sharifzadeh, S.; Jain, M.; Baer, R.; Neaton, J. B.; Kronik, L. Gap Renormalization of Molecular Crystals from Density-Functional Theory. Phys. Rev. B 2013, 88, 081204. 50. Yanai, T.; Tew, D. P.; Handy, N. C. A New Hybrid Exchange-Correlation Functional Using the Coulomb-Attenuating Method (CAM-B3LYP). Chem. Phys. Lett. 2004, 393, 51-57. 51. Lüftner, D.; Refaely-Abramson, S.; Pachler, M.; Resel, R.; Ramsey, M. G.; Kronik, L.; Puschnig, P. Experimental and Theoretical Electronic Structure of Quinacridone. Phys. Rev. B 2014, 90, 075204. 52. Refaely-Abramson, S.; Jain, M.; Sharifzadeh, S.; Neaton, J. B.; Kronik, L. Solid-State Optical Absorption from Optimally Tuned Time-Dependent Range-Separated Hybrid Density Functional Theory. Phys. Rev. B 2015, 92, 081204(R). 53. Liu, Z.-F.; Egger, D. A.; Refaely-Abramson, S.; Kronik, L.; Neaton, J. B. Energy Level Alignment at Molecule-Metal Interfaces from an Optimally Tuned Range-Separated Hybrid Functional. J. Chem. Phys. 2017, 146, 092326. 54. Shao, Y.; Molnar, L. F.; Jung, Y.; Kussmann, J.; Ochsenfeld, C.; Brown, S. T.; Gilbert, A. T. B.; Slipchenko, L. V.; Levchenko, S. V.; O'Neill, D. P.; DiStasio Jr, R. A.; Lochan, R. C.; Wang, T.; Beran, G. J. O.; Besley, N. A.; Herbert, J. M.; Yeh Lin, C.; Van Voorhis, T.; Hung Chien, S.; Sodt, A.; Steele, R. P.; Rassolov, V. A.; Maslen, P. E.; Korambath, P. P.; Adamson, R. D.; Austin, B.; Baker, J.; Byrd, E. F. C.; Dachsel, H.; Doerksen, R. J.; Dreuw, 24

ACS Paragon Plus Environment

Page 24 of 26

Page 25 of 26

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

The Journal of Physical Chemistry Letters

A.; Dunietz, B. D.; Dutoi, A. D.; Furlani, T. R.; Gwaltney, S. R.; Heyden, A.; Hirata, S.; Hsu, C.-P.; Kedziora, G.; Khalliulin, R. Z.; Klunzinger, P.; Lee, A. M.; Lee, M. S.; Liang, W.; Lotan, I.; Nair, N.; Peters, B.; Proynov, E. I.; Pieniazek, P. A.; Min Rhee, Y.; Ritchie, J.; Rosta, E.; David Sherrill, C.; Simmonett, A. C.; Subotnik, J. E.; Lee Woodcock Iii, H.; Zhang, W.; Bell, A. T.; Chakraborty, A. K.; Chipman, D. M.; Keil, F. J.; Warshel, A.; Hehre, W. J.; Schaefer Iii, H. F.; Kong, J.; Krylov, A. I.; Gill, P. M. W.; Head-Gordon, M. Advances in Methods and Algorithms in a Modern Quantum Chemistry Program Package. Phys. Chem. Chem. Phys. 2006, 8, 3172-3191. 55. Hirata, S.; Head-Gordon, M. Time-Dependent Density Functional Theory for Radicals An Improved Description of Excited States with Substantial Double Excitation Character. Chem. Phys. Lett. 1999, 302, 375-382. 56. Srebro, M.; Autschbach, J. Does a Molecule-Specific Density Functional Give an Accurate Electron Density? The Challenging Case of the CuCl Electric Field Gradient. J. Phys. Chem. Lett. 2012, 3, 576-581. 57. Rohrdanz, M. A.; Martins, K. M.; Herbert, J. M. A Long-Range-Corrected Density Functional that Performs Well for Both Ground-State Properties and Time-Dependent Density Functional Theory Excitation Energies, Including Charge-Transfer Excited States. J. Chem. Phys. 2009, 130, 054112. 58. Refaely-Abramson, S.; Sharifzadeh, S.; Govind, N.; Autschbach, J.; Neaton, J. B.; Baer, R.; Kronik, L. Quasiparticle Spectra from a Nonempirical Optimally Tuned Range-Separated Hybrid Density Functional. Phys. Rev. Lett. 2012, 109, 226405. 59. Kronik, L.; Stein, T.; Refaely-Abramson, S.; Baer, R. Excitation Gaps of Finite-Sized Systems from Optimally Tuned Range-Separated Hybrid Functionals. J Chem Theory Comput 2012, 8, 1515-1531. 60. Vandewal, K.; Tvingstedt, K.; Gadisa, A.; Inganas, O.; Manca, J. V. Relating the Open-Circuit Voltage to Interface Molecular Properties of Donor:Acceptor Bulk Heterojunction Solar Cells. Phys. Rev. B 2010, 81, 125204. 61. Veldman, D.; Ipek, O.; Meskers, S. C. J.; Sweelssen, J.; Koetse, M. M.; Veenstra, S. C.; Kroon, J. M.; van Bavel, S. S.; Loos, J.; Janssen, R. A. J. Compositional and Electric Field Dependence of the Dissociation of Charge Transfer Excitons in Alternating Polyfluorene Copolymer/Fullerene Blends. J. Am. Chem. Soc. 2008, 130, 7721-7735. 62. Bernardo, B.; Cheyns, D.; Verreet, B.; Schaller, R. D.; Rand, B. P.; Giebink, N. C. Delocalization and Dielectric Screening of Charge Transfer States in Organic Photovoltaic Cells. Nature Commun. 2014, 5, 3245.

25

ACS Paragon Plus Environment

The Journal of Physical Chemistry Letters

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

63. Loi, M. A.; Toffanin, S.; Muccini, M.; Forster, M.; Scherf, U.; Scharber, M. Charge Transfer Excitons in Bulk Heterojunctions of a Polyfluorene Copolymer and a Fullerene Derivative. Adv Funct Mater 2007, 17, 2111-2116. 64. Chen, S.; Tsang, S. W.; Lai, T. H.; Reynolds, J. R.; So, F. Dielectric Effect on the Photovoltage Loss in Organic Photovoltaic Cells. Adv. Mater. 2014, 26, 6125-6131. 65. Hwang, J.; Wan, A.; Kahn, A. Energetics of Metal-Organic Interfaces: New Experiments and Assessment of the Field. Mater. Sci. Eng. R-Rep. 2009, 64, 1-31. 66. Schwedhelm, R.; Kipp, L.; Dallmeyer, A.; Skibowski, M. Experimental Band Gap and Core-Hole Electron Interaction in Epitaxial C-60 Films. Phys. Rev. B 1998, 58, 13176-13180.

26

ACS Paragon Plus Environment

Page 26 of 26