Effects of Nanofiber Architecture and Antimony Doping on the

Apr 26, 2018 - To cure these issues, herein, the synthesis of high-performance antimony-doped LLO nanofibers by an electrospinning process is put forw...
5 downloads 0 Views 8MB Size
Research Article www.acsami.org

Cite This: ACS Appl. Mater. Interfaces 2018, 10, 16561−16571

Effects of Nanofiber Architecture and Antimony Doping on the Performance of Lithium-Rich Layered Oxides: Enhancing Lithium Diffusivity and Lattice Oxygen Stability Ruizhi Yu,†,‡,§ Zhijuan Zhang,∥ Sidra Jamil,†,‡,§ Jiancheng Chen,†,‡,§ Xiaohui Zhang,†,‡,§ Xianyou Wang,*,†,‡,§ Zhenhua Yang,∥ Hongbo Shu,†,‡,§ and Xiukang Yang*,†,‡,§ †

National Base for International Science & Technology Cooperation, School of Chemistry, ‡National Local Joint Engineering Laboratory for Key Materials of New Energy Storage Battery, School of Chemistry, §Hunan Province Key Laboratory of Electrochemical Energy Storage & Conversion, School of Chemistry, and ∥School of Materials Science and Engineering, Xiangtan University, Xiangtan 411105, Hunan, China S Supporting Information *

ABSTRACT: Li-rich layered oxides (LLOs) with high specific capacities are favorable cathode materials with high-energy density. Unfortunately, the drawbacks of LLOs such as oxygen release, low conductivity, and depressed kinetics for lithium ion transport during cycling can affect the safety and rate capability. Moreover, they suffer severe capacity and voltage fading, which are major challenges for the commercializing development. To cure these issues, herein, the synthesis of high-performance antimony-doped LLO nanofibers by an electrospinning process is put forward. On the basis of the combination of theoretical analyses and experimental approaches, it can be found that the one-dimensional porous micro-/nanomorphology is in favor of lithium-ion diffusion, and the antimony doping can expand the layered phase lattice and further improve the lithium ion diffusion coefficient. Moreover, the antimony doping can decrease the band gap and contribute extra electrons to O within the Li2MnO3 phase, thereby enhancing electronic conductivity and stabilizing lattice oxygen. Benefitting from the unique architecture, reformative electronic structure, and enhanced kinetics, the antimony-doped LLO nanofibers possess a high reversible capacity (272.8 mA h g−1) and initial coulombic efficiency (87.8%) at 0.1 C. Moreover, the antimony-doped LLO nanofibers show excellent cycling performance, rate capability, and suppressed voltage fading. The capacity retention can reach 86.9% after 200 cycles at 1 C, and even cycling at a high rate of 10 C, a capacity of 172.3 mA h g−1 can still be obtained. The favorable results can assist in developing the LLO material with outstanding electrochemical properties. KEYWORDS: lithium-rich layered oxide material, antimony doping, nanofiber, stabilized lattice oxygen, expanded layered phase lattice trigger the excessive oxidation of lattice O2− and then results in O2 gas evolution accompanied by the irreversible deintercalation of Li+ from TM layers with a continuous voltage plateau at above 4.4 V, which induces TM ion migration into the Li vacant sites, causing structure rearrangement and the subsequent failure of partial Li+ ion re-intercalation during discharging.12,13 The continuous capacity fading and discharge voltage decay can lead to a decreased energy density and low accuracy in terms of measuring the state of charge, which is currently the bottleneck of commercialization of the LLOs.14,15 These degenerations have been demonstrated to be associated with the phase transformation from the layered structure to the spinel structure.16 Numerous studies have determined that slight octahedral TM ions in TM layers, especially the Mn4+,

1. INTRODUCTION In the past decade, lithium-rich layered oxides (LLOs) with composite structures composed of rhombohedral LiTMO2 (space group: R3̅m, TM = Mn, Ni, Co, etc.) and monoclinic Li2MnO3 (space group: C2/m) nanodomains have received considerable attention as high-energy-density cathode materials because of the delivery of high capacity, often exceeding 250 mA h g−1, through applying a high charging voltage of 4.6 V.1−4 Recent research studies have demonstrated that the high capacity resulted from joint redox processes of TMa+/TM(a+1)+ and O2−/O22−.5−7 Despite the high capacity, these materials suffer from high initial irreversible capacity, severe discharge voltage decay and insufficient cycling performance, in addition to the inferior rate capability.8−10 The high initial irreversible capacity originates from the activation of the Li2MnO3 phase.11 During the initial delithiation, the large overlap of the TM 3d band and the O 2p band at highly charged states within the Li2MnO3 phase can © 2018 American Chemical Society

Received: March 2, 2018 Accepted: April 26, 2018 Published: April 26, 2018 16561

DOI: 10.1021/acsami.8b03608 ACS Appl. Mater. Interfaces 2018, 10, 16561−16571

Research Article

ACS Applied Materials & Interfaces

Figure 1. SEM images of (a,b) PAN-F and (c,d) S/PAN-F precursor fibers, and corresponding (e,f) C-LMNCO and (g,h) S-LMNCO. (i) Schematic diagram of the Li+ diffusion pathway of the LLO nanofibers. (j) XRD patterns of C-LMNCO and S-LMNCO. XPS spectra of (k) Ni 2p, (l) Co 2p, (m) Mn 2p, and (n) Sb 3d + O 1s of C-LMNCO and S-LMNCO.

would migrate to tetrahedral sites in Li layers during the charging process. Upon discharging, some of the TM ions may be trapped in the tetrahedral sites or migrate to octahedral sites in Li layers, which initiates the transformation from the layered structure to the spinel structure.17−19 Furthermore, excessive anionic redox and cationic migration during cycling can lead to large lattice distortions and rearrangements, which trigger particle cracking accompanied by the movement of the grain boundary, resulting in further structural degradation.20,21 Meng’ group presented that the visualization of the Litet−V(TM)Li− Litet dumbbell [Litet is the Li+ ions in tetrahedral sites, and V(TM)Li represents Li vacant sites in the TM layers] and O vacancy would facilitate the migration of TM ions.22 Cho et al. also proposed that the O2 gas loss related to activation of the Li2MnO3 phase can promote the phase transformation.23 As we know, the redox potential ( 0 when x = 0.5; this can further certify that Sb doping can suppress the O2 gas loss and mitigate the degradation of the layered structure during the charging−discharging process. Accordingly, the DFT results commendably account for the improvement of electrochemical performance and structural stability for the S-LMNCO sample.

4. METHODS Details on materials and methods are available in the Supporting Information. 16569

DOI: 10.1021/acsami.8b03608 ACS Appl. Mater. Interfaces 2018, 10, 16561−16571

Research Article

ACS Applied Materials & Interfaces



(11) Sathiya, M.; Ramesha, K.; Rousse, G.; Foix, D.; Gonbeau, D.; Prakash, A. S.; Doublet, M. L.; Hemalatha, K.; Tarascon, J.-M. High Performance Li2Ru1‑yMnyO3 (0.2 ≤ y ≤ 0.8) Cathode Materials for Rechargeable Lithium-Ion Batteries: Their Understanding. Chem. Mater. 2013, 25, 1121−1131. (12) Xiao, P.; Deng, Z. Q.; Manthiram, A.; Henkelman, G. Calculations of Oxygen Stability in Lithium-Rich Layered Cathodes. J. Phys. Chem. C 2012, 116, 23201−23204. (13) Han, S.; Xia, Y.; Wei, Z.; Qiu, B.; Pan, L.; Gu, Q.; Liu, Z.; Guo, Z. A comparative study on the oxidation state of lattice oxygen among Li1.14Ni0.136Co0.136Mn0.544O2, Li2MnO3, LiNi0.5Co0.2Mn0.3O2 and LiCoO2 for the initial charge-discharge. J. Mater. Chem. A 2015, 3, 11930−11939. (14) Croy, J. R.; Balasubramanian, M.; Gallagher, K. G.; Burrell, A. K. Review of the U.S. Department of Energy’s “Deep Dive” Effort to Understand Voltage Fade in Li- and Mn-Rich Cathodes. Acc. Chem. Res. 2015, 48, 2813−2821. (15) Sathiya, M.; Abakumov, A. M.; Foix, D.; Rousse, G.; Ramesha, K.; Saubanère, M.; Doublet, M. L.; Vezin, H.; Laisa, C. P.; Prakash, A. S.; Gonbeau, D.; VanTendeloo, G.; Tarascon, J.-M. Origin of voltage decay in high-capacity layered oxide electrodes. Nat. Mater. 2015, 14, 230−238. (16) Gu, M.; Belharouak, I.; Zheng, J.; Wu, H.; Xiao, J.; Genc, A.; Amine, K.; Thevuthasan, S.; Baer, D. R.; Zhang, J.-G.; Browning, N. D.; Liu, J.; Wang, C. Formation of the Spinel Phase in the Layered Composite Cathode Used in Li-Ion Batteries. ACS Nano 2013, 7, 760−767. (17) Zheng, J.; Gu, M.; Xiao, J.; Zuo, P.; Wang, C.; Zhang, J.-G. Corrosion/Fragmentation of Layered Composite Cathode and Related Capacity/Voltage Fading during Cycling Process. Nano Lett. 2013, 13, 3824−3830. (18) Xiang, X.; Knight, J. C.; Li, W.; Manthiram, A. Understanding the Effect of Co3+ Substitution on the Electrochemical Properties of Lithium-Rich Layered Oxide Cathodes for Lithium-Ion Batteries. J. Phys. Chem. C 2014, 118, 21826−21833. (19) Li, Q.; Li, G.; Fu, C.; Luo, D.; Fan, J.; Li, L. K+-Doped Li1.2Mn0.54Co0.13Ni0.13O2: A Novel Cathode Material with an Enhanced Cycling Stability for Lithium-Ion Batteries. ACS Appl. Mater. Interfaces 2014, 6, 10330−10341. (20) Assat, G.; Foix, D.; Delacourt, C.; Iadecola, A.; Dedryvère, R.; Tarascon, J.-M. Fundamental interplay between anionic/cationic redox governing the kinetics and thermodynamics of lithium-rich cathodes. Nat. Commun. 2017, 8, 2219. (21) Sathiya, M.; Rousse, G.; Ramesha, K.; Laisa, C. P.; Vezin, H.; Sougrati, M. T.; Doublet, M.-L.; Foix, D.; Gonbeau, D.; Walker, W.; Prakash, A. S.; Ben Hassine, M.; Dupont, L.; Tarascon, J.-M. Reversible anionic redox chemistry in high-capacity layered-oxide electrodes. Nat. Mater. 2013, 12, 827−835. (22) Xu, B.; Fell, C. R.; Chi, M.; Meng, Y. S. Identifying surface structural changes in layered Li-excess nickel manganese oxides in high voltage lithium ion batteries: A joint experimental and theoretical study. Energy Environ. Sci. 2011, 4, 2223−2233. (23) Cho, E.; Kim, K.; Jung, C.; Seo, S.-W.; Min, K.; Lee, H. S.; Park, G.-S.; Shin, J. Overview of the Oxygen Behavior in the Degradation of Li2MnO3 Cathode Material. J. Phys. Chem. C 2017, 121, 21118− 21127. (24) Xu, M.; Fei, L.; Lu, W.; Chen, Z.; Li, T.; Liu, Y.; Gao, G.; Lai, Y.; Zhang, Z.; Wang, P.; Huang, H. Engineering hetero-epitaxial nanostructures with aligned Li-ion channels in Li-rich layered oxides for high-performance cathode application. Nano Energy 2017, 35, 271−280. (25) Ding, F.; Li, J.; Deng, F.; Xu, G.; Liu, Y.; Yang, K.; Kang, F. Surface Heterostructure Induced by PrPO 4 Modification in Li1.2[Mn0.54Ni0.13Co0.13]O2 Cathode Material for High-Performance Lithium-Ion Batteries with Mitigating Voltage Decay. ACS Appl. Mater. Interfaces 2017, 9, 27936−27945. (26) Xu, H.; Deng, S.; Chen, G. Improved electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 by Mg doping for lithium ion battery cathode material. J. Mater. Chem. A 2014, 2, 15015−15021.

ASSOCIATED CONTENT

S Supporting Information *

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acsami.8b03608. Experimental details: material preparation, materials characterizations, theoretical calculations, and electrochemical measurements (PDF)



AUTHOR INFORMATION

Corresponding Authors

*E-mail: [email protected] (X.W.). *E-mail: [email protected] (X.Y.). ORCID

Xianyou Wang: 0000-0001-8888-6405 Zhenhua Yang: 0000-0002-3967-6249 Notes

The authors declare no competing financial interest.



ACKNOWLEDGMENTS We acknowledge support from the Hunan Provincial Innovation Foundation for Postgraduate (no. CX2016B229), Natural Science Foundation of Hunan Province (nos. 2015JJ6103 and 2015JJ2137), and Key Project of Strategic New Industry of Hunan Province (nos. 2016GK4005 and 2016GK4030).



REFERENCES

(1) Dunn, B.; Kamath, H.; Tarascon, J.-M. Electrical Energy Storage for the Grid: A Battery of Choices. Science 2011, 334, 928−935. (2) Chu, S.; Cui, Y.; Liu, N. The path towards sustainable energy. Nat. Mater. 2017, 16, 16−22. (3) Li, W.; Song, B.; Manthiram, A. High-voltage positive electrode materials for lithium-ion batteries. Chem. Soc. Rev. 2017, 46, 3006− 3059. (4) Kim, S.; Aykol, M.; Hegde, V. I.; Lu, Z.; Kirklin, S.; Croy, J. R.; Thackeray, M. M.; Wolverton, C. Material design of high-capacity Lirich layered-oxide electrodes: Li2MnO3 and beyond. Energy Environ. Sci. 2017, 10, 2201−2211. (5) Seymour, I. D.; Middlemiss, D. S.; Halat, D. M.; Trease, N. M.; Pell, A. J.; Grey, C. P. Characterizing Oxygen Local Environments in Paramagnetic Battery Materials via 17O NMR and DFT Calculations. J. Am. Chem. Soc. 2016, 138, 9405−9408. (6) Gent, W. E.; Lim, K.; Liang, Y.; Li, Q.; Barnes, T.; Ahn, S.-J.; Stone, K. H.; McIntire, M.; Hong, J.; Song, J. H.; Li, Y.; Mehta, A.; Ermon, S.; Tyliszczak, T.; Kilcoyne, D.; Vine, D.; Park, J.-H.; Doo, S.K.; Toney, M. F.; Yang, W.; Prendergast, D.; Chueh, W. C. Coupling between oxygen redox and cation migration explains unusual electrochemistry in lithium-rich layered oxides. Nat. Commun. 2017, 8, 2091. (7) Assat, G.; Iadecola, A.; Delacourt, C.; Dedryvère, R.; Tarascon, J.M. Decoupling Cationic-Anionic Redox Processes in a Model Li-Rich Cathode via Operando X-ray Absorption Spectroscopy. Chem. Mater. 2017, 29, 9714−9724. (8) Lim, J.-M.; Hwang, T.; Park, M.-S.; Cho, M.; Cho, K. Design of a p-type electrode for enhancing electronic conduction in high-Mn, Lirich oxides. Chem. Mater. 2016, 28, 8201−8209. (9) Zheng, F.; Ou, X.; Pan, Q.; Xiong, X.; Yang, C.; Fu, Z.; Liu, M. Nanoscale gadolinium doped ceria (GDC) surface modification of Lirich layered oxide as a high performance cathode material for lithium ion batteries. Chem. Eng. J. 2018, 334, 497−507. (10) Kuppan, S.; Shukla, A. K.; Membreno, D.; Nordlund, D.; Chen, G. Revealing Anisotropic Spinel Formation on Pristine Li- and MnRich Layered Oxide Surface and Its Impact on Cathode Performance. Adv. Energy Mater. 2017, 7, 1602010. 16570

DOI: 10.1021/acsami.8b03608 ACS Appl. Mater. Interfaces 2018, 10, 16561−16571

Research Article

ACS Applied Materials & Interfaces

fusiform porous micro-nano structure. J. Mater. Chem. A 2016, 4, 15929−15939. (46) Wang, G.; Yi, L.; Yu, R.; Wang, X.; Wang, Y.; Liu, Z.; Wu, B.; Liu, M.; Zhang, X.; Yang, X.; Xiong, X.; Liu, M. Li1.2Ni0.13Co0.13Mn0.54O2 with Controllable Morphology and Size for High Performance Lithium-Ion Batteries. ACS Appl. Mater. Interfaces 2017, 9, 25358−25368. (47) Zheng, J. M.; Wu, X. B.; Yang, Y. A comparison of preparation method on the electrochemical performance of cathode material Li[Li0.2Mn0.54Ni0.13Co0.13]O2 for lithium ion battery. Electrochim. Acta 2011, 56, 3071−3078. (48) Singh, G.; Thomas, R.; Kumar, A.; Katiyar, R. S.; Manivannan, A. Electrochemical and Structural Investigations on ZnO Treated 0.5Li2MnO3-0.5LiMn0.5Ni0.5O2 Layered Composite Cathode Material for Lithium Ion Battery. J. Electrochem. Soc. 2012, 159, A470−A478. (49) Pei, Y.; Xu, C.-Y.; Xiao, Y.-C.; Chen, Q.; Huang, B.; Li, B.; Li, S.; Zhen, L.; Cao, G. Phase transition induced synthesis of layered/spinel heterostructure with enhanced electrochemical properties. Adv. Funct. Mater. 2017, 27, 1604349. (50) Yu, R.; Wang, G.; Liu, M.; Zhang, X.; Wang, X.; Shu, H.; Yang, X.; Huang, W. Mitigating voltage and capacity fading of lithium-rich layered cathodes by lanthanum doping. J. Power Sources 2016, 335, 65−75. (51) Deepthi, K. R.; Ramesh, G. V.; Kodiyath, R.; Kumar, P. S. M.; Dakshanamoorthy, A.; Abe, H. Mixed-valence NaSb3O7 support toward improved electrocatalytic performance in the oxygen-reduction reaction. J. Mater. Chem. A 2017, 5, 1667−1671. (52) Knight, J. C.; Manthiram, A. Effect of nickel oxidation state on the structural and electrochemical characteristics of lithium-rich layered oxide cathodes. J. Mater. Chem. A 2015, 3, 22199−22207. (53) Fu, F.; Tang, J.; Yao, Y.; Shao, M. Hollow Porous HierarchicalStructured 0.5Li2MnO3·0.5LiMn0.4Co0.3Ni0.3O2 as a High-Performance Cathode Material for Lithium-Ion Batteries. ACS Appl. Mater. Interfaces 2016, 8, 25654−25659. (54) Nayak, P. K.; Grinblat, J.; Levi, M.; Levi, E.; Kim, S.; Choi, J. W.; Aurbach, D. Al Doping for Mitigating the Capacity Fading and Voltage Decay of Layered Li and Mn-Rich Cathodes for Li-Ion Batteries. Adv. Energy Mater. 2016, 6, 1502398. (55) Bian, X.; Fu, Q.; Qiu, H.; Du, F.; Gao, Y.; Zhang, L.; Zou, B.; Chen, G.; Wei, Y. High-Performance Li(Li0.18Ni0.15Co0.15Mn0.52)O2@ Li4M5O12 Heterostructured Cathode Material Coated with a Lithium Borate Oxide Glass Layer. Chem. Mater. 2015, 27, 5745−5754. (56) Shannon, R. D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr., Sect. A: Cryst. Phys., Diffr., Theor. Gen. Crystallogr. 1976, 32, 751−767. (57) Van der Ven, A.; Bhattacharya, J.; Belak, A. A. Understanding Li Diffusion in Li-Intercalation Compounds. Acc. Chem. Res. 2013, 46, 1216−1225. (58) Pang, W. K.; Lin, H.-F.; Peterson, V. K.; Lu, C.-Z.; Liu, C.-E.; Liao, S.-C.; Chen, J.-M. Effects of Fluorine and Chromium Doping on the Performance of Lithium-Rich Li1+xMO2 (M = Ni, Mn, Co) Positive Electrodes. Chem. Mater. 2017, 29, 10299−10311.

(27) Liu, W.; Oh, P.; Liu, X.; Myeong, S.; Cho, W.; Cho, J. Countering Voltage Decay and Capacity Fading of Lithium-Rich Cathode Material at 60 °C by Hybrid Surface Protection Layers. Adv. Energy Mater. 2015, 5, 1500274. (28) Tang, T.; Zhang, H.-L. Synthesis and electrochemical performance of lithium-rich cathode material Li[Li0.2Ni0.15Mn0.55Co0.1‑xAlx]O2. Electrochim. Acta 2016, 191, 263−269. (29) Gao, Y.; Ma, J.; Wang, X.; Lu, X.; Bai, Y.; Wang, Z.; Chen, L. Improved electron/Li-ion transport and oxygen stability of Mo-doped Li2MnO3. J. Mater. Chem. A 2014, 2, 4811−4818. (30) Gao, Y.; Wang, X.; Ma, J.; Wang, Z.; Chen, L. Selecting Substituent Elements for Li-Rich Mn-Based Cathode Materials by Density Functional Theory (DFT) Calculations. Chem. Mater. 2015, 27, 3456−3461. (31) Ma, J.; Yan, H.; Li, B.; Xia, Z.; Huang, W.; An, L.; Xia, D. Tuning the Electronic Structure of the Metal-Oxygen Group by Silicon Substitution in Lithium-Rich Manganese-Based Oxides for Superior Performance. J. Phys. Chem. C 2016, 120, 13421−13426. (32) Yu, R.; Wang, X.; Fu, Y.; Wang, L.; Cai, S.; Liu, M.; Lu, B.; Wang, G.; Wang, D.; Ren, Q.; Yang, X. Effect of magnesium doping on properties of lithium-rich layered oxide cathodes based on a one-step co-precipitation strategy. J. Mater. Chem. A 2016, 4, 4941−4951. (33) Sallard, S.; Sheptyakov, D.; Villevieille, C. Improved electrochemical performances of Li-rich nickel cobalt manganese oxide by partial substitution of Li+ by Mg2+. J. Power Sources 2017, 359, 27−36. (34) Qiu, B.; Zhang, M.; Wu, L.; Wang, J.; Xia, Y.; Qian, D.; Liu, H.; Hy, S.; Chen, Y.; An, K.; Zhu, Y.; Liu, Z.; Meng, Y. S. Gas-solid interfacial modification of oxygen activity in layered oxide cathodes for lithium-ion batteries. Nat. Commun. 2016, 7, 12108. (35) Zheng, F.; Yang, C.; Xiong, X.; Xiong, J.; Hu, R.; Chen, Y.; Liu, M. Nanoscale Surface Modification of Lithium-Rich Layered-Oxide Composite Cathodes for Suppressing Voltage Fade. Angew. Chem., Int. Ed. 2015, 54, 13058−13062. (36) Li, L.; Wang, L.; Zhang, X.; Xue, Q.; Wei, L.; Wu, F.; Chen, R. 3D Reticular Li1.2Ni0.2Mn0.6O2 Cathode Material for Lithium-Ion Batteries. ACS Appl. Mater. Interfaces 2017, 9, 1516−1523. (37) Yang, F.; Zhang, Q.; Hu, X.; Peng, T.; Liu, J. Preparation of Lirich layered-layered type xLi2MnO3·(1-x)LiMnO2 nanorods and its electrochemical performance as cathode material for Li-ion battery. J. Power Sources 2017, 353, 323−332. (38) Yu, R.; Zhang, X.; Liu, T.; Yang, L.; Liu, L.; Wang, Y.; Wang, X.; Shu, H.; Yang, X. Spinel/Layered Heterostructured Lithium-Rich Oxide Nanowires as Cathode Material for High-Energy Lithium-Ion Batteries. ACS Appl. Mater. Interfaces 2017, 9, 41210−41223. (39) Chen, Z.; Yang, T.; Shi, H.; Wang, T.; Zhang, M.; Cao, G. Single Nozzle Electrospinning Synthesized MoO2@C Core Shell Nanofibers with High Capacity and Long-Term Stability for Lithium-Ion Storage. Adv. Mater. Interfaces 2017, 4, 1600816. (40) Xu, R.; Zhang, X.; Chamoun, R.; Shui, J.; Li, J. C. M.; Lu, J.; Amine, K.; Belharouak, I. Enhanced rate performance of LiNi0.5Mn1.5O4 fibers synthesized by electrospinning. Nano Energy 2015, 15, 616−624. (41) Li, W.; Li, M.; Wang, M.; Zeng, L.; Yu, Y. Electrospinning with partially carbonization in air: Highly porous carbon nanofibers optimized for high-performance flexible lithium-ion batteries. Nano Energy 2015, 13, 693−701. (42) Min, J. W.; Yim, C. J.; Im, W. B. Facile Synthesis of Electrospun Li1.2Ni0.17Co0.17Mn0.5O2 Nanofiber and Its Enhanced High-Rate Performance for Lithium-Ion Battery Applications. ACS Appl. Mater. Interfaces 2013, 5, 7765−7769. (43) Xu, G.; Li, J.; Li, X.; Zhou, H.; Ding, X.; Wang, X.; Kang, F. Understanding the electrochemical superiority of 0.6Li[Li1/3Mn2/3]O20.4Li[Ni1/3Co1/3Mn1/3]O2 nanofibers as cathode material for lithium ion batteries. Electrochim. Acta 2015, 173, 672−679. (44) Tian, M.; Gao, Y.; Xiao, R.; Wang, Z.; Chen, L. Structural stability and stabilization of Li2MoO3. Phys. Chem. Chem. Phys. 2017, 19, 17538−17543. (45) Wang, G.; Wang, X.; Yi, L.; Yu, R.; Liu, M.; Yang, X. Preparation and performance of 0.5Li2MnO3·0.5LiNi1/3Co1/3Mn1/3O2 with a 16571

DOI: 10.1021/acsami.8b03608 ACS Appl. Mater. Interfaces 2018, 10, 16561−16571