Elastomers. - Industrial & Engineering Chemistry (ACS Publications)

Ind. Eng. Chem. , 1959, 51 (9), pp 1167–1171. DOI: 10.1021/ie51397a022. Publication Date: September 1959. ACS Legacy Archive. Cite this:Ind. Eng. Ch...
10 downloads 0 Views 717KB Size
M A T E R I A L S OF C O N S T R U C T I O N

Elastomers

ACHIEVEMENTS in the production of natural rubber have in the past few years been overshadowed by those in the field of synthetic rubber. This has been due in part to the strategic importance of synthetic rubber and in part to the fact that many developments have been spectacular both to chemists and to the automotive public. Achievements in natural rubber have, however, been substantial. T h e possibility of a five-tosixfold increase in bield (as pounds per acre) has been dcmonstrated. Means of modifying natural rubber to improve various properties have been developed. Progress in synthetic rubber is itself based on studies of natural rubber which have played a major role in building u p the whole theory of macromolecules. A synthetic cis-polyisoprene which is competitive in price and quality with natural rubber is now on the market. O n the theoretical side “heavy” cispolyisoprene has been made by replacing all the hydropen atoms by deuterium atoms. I n SBR the trend to light colored and oil-extended rubbers continues. Black master batches have been greatly improved by the use of mechanical dispersions of black. T h e annual specialty rubber for this year combines, a t a price, the advantages of silicone rubbers with those of nitrile rubbers. Of general interest is the suit filed by Du Pont against Phillips Petroleum for infringement of its patent on linear polyethylene.

Natural Rubber Great advances in the production of natural rubber have been overshadoived by reports of spectacular developments in synthetic rubber. Both the yield per tree and latter‘s disease resistance have been increased by grafting. Fertilization, cover crop;, agricultural machinery, and organization have improved plantation operation. Tree stimulation promises further increase in yields. Altogether the outlook for natural rubber seems brighrer than ever (7A). By laboratory biosynthesis, CI4 was introduced into the rubber of a Hevea latex s>-stem (7.4). Graft polymers can

be made from Hevea rubber and styrene ( 8 A ) or methyl methacrylate ( 2 A ; 5 A ) . Styrene protects the rubber by absorbing radiation. Improved low temperature properties have been obtained by the addition of thiol acids to Hevea rubber (3A4, 4 4 ) . -4 carboxy rubber has been made by addition of maleic anhydride to natural rubber (6-4).

latex ,4ddition of active silica to latex improves the quality of latex thread (7B). The size of particles in synthetic latex has been related to its viscosity by means of a “packing” constant (ZB, 3B). Diene Rubbers

SBR. Black masterbatches made from mechanically dispersed and suspended carbon black are being made and advertised by a number of producers of synthetic rubber. They give better processing, better tread wear, a n d generally better quality to the final compounds (ZC, 3C). Magnesium soaps improve the aging of oil masterbatches without discoloration (ZdC). cis-Polyisoprene. A year ago the big question for “synthetic natural rubber” was the supply of isoprene (5C, 77C). Today there is on the market a its-polyisoprene competitive in price and quality with natural rubber (6C, 27C). Reports on the sterically controlled polymerization of isoprene continue to appear (7C, 72C. 79C, 23C. Z8C). “Heavy synthetic natural rubber” (Perdeuterio rubber) has been made (232. 26C). cis-Polybutadiene is a potential competitor for both natural rubber and czspolyisoprene (.IC, 7C, 73C). It is particularly useful in blends with natural rubber ( 3 C ) . Its rate of crystallization a t various temperatures has been studied (74C) Treatment of a 98:2, cis-trans polymer with y-radiation showed that the thermodynamically stable ratio of cis to trans configuration is 8:92 ( 7 3 2 ) . Diene Carboxylic Rubbers made by copolymerization of esters or acids into diene rubbers vulcanize with metallic oxides and give excellent physical properties. especially a t high temperatures

(8C, gC, 77C, 76C, 27C). They are, however, very scorchy. Mercaptan adduct rubbers (2OC), hydrogenated polybutadienes (78C) and substituted fumaric acid adducts (70C) have been described. ~

Butyl Rubber The cure of butyl rubber \vith phenolformaldehyde derivatives gives products which do not revert and which resist temperatures ‘ O o 0 F. higher than do (20). O p e n can be improved by using higher alkyl or aryl dithiocarbamates as accelerators ( 7 0 ) . The dynamic properties of butyl rubber indicate its utility for bumpers, shock absorbers. cushions. and tires (30).

Silicone Rubber The oil and solvent resistance of the nitrile rubbers has been combined with the wide temperature range of the silicone rubbers in the cyanosilicone elastomers (2E, 6 E ) . The good low temperature characteristics of the methylphenyl siloxane copolymers are due to the flexibility of the molecules and the low temperature coefficient of viscosity (5E). -4s vulcanizing agents, sulfur and each of the peroxides have their OM n ad-

B. s.

GARVEY, Jr., has spent 30 years in the rubber and rubber chemicals business, since getting his doctorate in organic chemistry a t Harvard. Twenty years of that time was with 8. F. Goodrich in research and process and product control. For the last decade he has been manager of the Rubber Sales Service Laboratory for Sharples Chemicals Inc., now a part of Pennsalt Chemicals Corp. Dr. Garvey has been active on many committees in the government rubber program and for the ASTM, and has been an officer in several ACS local sections and the Division of Rubber Chemistry.

VOL. 51, NO. 9, P A R T II

e

SEPTEMBER 1959

1 1 67

vantages and disadvantages (4E). Special compounds with low shrinkage permit the precision molding of O-rings and other molded items (3E). For the best behavior in sealed systems a t high temperatures, a methyl, vinyl gum should be loaded with fumed silica and given a high temperature postcure (7E). Tires for high temperature service can be made with silicone rubber and glass cords ( 7 E ) .

Fluoro Polymers A new fluoro polymer has shown an excellent combination of resistance to heat and oil (9F). Improved curing systems and processing techniques make it easier to utilize the high temperature and solvent resistance of Viton (7F-3F, 7 F ) . Perfluoralkyl ketones have been polymerized with dienes ( 5 F ) and new fluorinated diene hydrocarbons have been prepared ( 4 F ) . Fluoro elastomers are among the best for resistance to the combinations of heat, solvents, and chemical attack met in some types of military service (GF, 8F).

Polyurethanes T o the usual dibasic acid polyesters for making polyurethanes have been added polyethers (2G: 72G) and the esters of “dimer acids” made from oleic and linoleic acids. Good products can be made from all three types (8G). A “virtually cross-linked” polyurethane does not require vulcanization (4G, 73G). A liquid polymer with isocyanate terminal groups serves as the basis for a liquid system which combines fluid processing with excellent physical properties (7G). Processing properties can be improved by conducting the final processing with peroxides rather than with isocyanates (70G). Blends of polytetrahydrofurane and polypropylene glycol gave best low temperature properties (7G). Studies of foaming conditions were made using a nonpolymerizing model (E). Conditions of compounding and processing were developed for making molded items from polyurethane foam ( 7 7G). Fluorocarbons used as blowing agents improve foam structure, moisture resistance, and insulating quality a t lower cost (3G). There has been considerable growth in the use of polyurethanes as foams for furniture, automotive a n d packing cushions, rug underlay, insulation, and coatings (5G). I n spite of this growth, the polyurethane business is still not very profitable (6G).

Miscellaneous Polymers T h e linear copolymer of ethylene and propylene may be another competitor

for natural rubber ( 7 H ) . Acetaldehyde has been polymerized to a n elastomer with exceptional heat resistance (ZH). Poly(viny1 methyl ether) has been vulcanized to a good elastomer by high energy radiation ( 3 H ) . Polyacrylates vulcanized with formaldehyde are excellent for prosthetics use (&).

Polymerization Sterically controlled polymerization and its nomenclature are subjects of continuing interest and expanding scope (7J-GJ). Its commercial importance is indicated by the patent infringement suit brought by D u Pont against the Phillips Petroleum Co. on linear polyethylene.

Vulcanization and Radiation The mechanism and theorv of vulcanization continue to receive extensive investigation by Scheele and others (76K, 23K-3UK) and Dogadkin and others (7K, 4K,GK, 8K,S K ) . The latter group leans strongly to the view that vulcanization is a cross linking due to free radicals. Dolgoplosk and his group emphasize the importance of redox systems to radical formation (7UK, 32K, 3 3 K ) . They have shown that by using reducing agents other than hydrogen sulfide with sulfur dioxide in a modified Peachey process, they can get vulcanization without the formation of “nascent sulfur.‘’ 1 hey attribute the differences between vulcanization and degradation to differences in reactivity between oxygen and SSand their reaction products with rubbers. Zhavoronok and others have undertaken a n extensive study of nonsulfur vulcanization (37K, 38K). Very high pressure seems to cause vulcanization through C-C bonds by a free radical mechanism (ZUK, 27K). Diphenylmethane has been chosen as a model for rubber because of the active methylenic hydrogen ( 3 4 K ) . I n both soft rubber and ebonite, there is evidence that cross links are broken and reformed under the influence of heat (73K, 74K, 36K). This agrees with the concept of a “dynamic equilibrium” in vulcanizates. Structure studies based on reaction with methyl iodide indicate that the bonds in thiuram cures are sulfur bridges and not C-C bridges ( 7 8 K ) . Ultraviolet absorption indicates that the sulfur bridges in thiuram vulcanizates contain a smaller number of sulfur atoms than those formed in sulfur vulcanization (22K). Infrared studies indicate double bond shifts in sulfur vulcanizates but not in thiuram or peroxide vulcanizates

(75K).

Several studies have shown that vulcanization by radiation has advantages in quality due to the low temperatures used and the uniformity of cure in thick sections ( 3 K , 77K, 7SK, 35K). The major difficulty of the process is its high cost (7K, 72K, 37K). SBR has inherently good resistance to y-radiation and to radiation plus heat ( 2 K ) . T h e mercaptan adducts of polybutadiene have exceptional resistance to high temperatures, ozone, and y-radiation (77K).

Oxidation and Ozonization A study of the oxidation products 01 natural rubber indicates that the polymer chain and not the cross links is broken (3L). Stress relaxation studies indicate that the action is autocatalytic (7L) and that it is the sulfur bridges that are broken by oxidation (QL). T h e isotope effect when deuterium was substituted for the active hydrogen in phenyl-P-naphthylamine suggests that a controlling reaction is the donation of hydrogen to a peroxy group ( 7 7L). The mobile hydrogen is considered to be a chain terminator for a free radical reaction (ZL). -4mine-type antioxidants are superior to phenols in preventing surface embrittlement (7L). Both dithiocarbamates (6L, 7UL) and dithiophosphates (5L) are good antioxidants. Ozone cracking is primarily a surface phenomenon (4L) and may be caused by the formation of a very low elongation film which is impermeable to ozone (72L). The usual ozone attack is probably a mixture of ozonolysis and oxidation (ZL).

Pigments and Reinforcement Carbon black surfaces contain quinone and aromatic hydroxyl groups which play a significant role in reinforcement, possibly by chemical reaction with sulfur and rubber ( 3 M , 771M). There are small pores in carbon black particles which do not help reinforcement but may trap rubber chemicals (27M). O d d electrons (73.V) and free radicals (22,M) are suggested as factors in reinforcement. An extensive study covers the effect of various blacks on oxidation, hysteresis, and tread wear ( 7 M ) . Surface areas have been reported for many inorganic fillers ( 7 2 M ) . Hydrated alumina will prevent carbon tracking when rubber is exposed to an electric arc (77-bf). The heat resistance of nitrile and fluoro rubbers is improved by the use of calcium or aluminum fluorides as pigments ( Q M ) . The vapor phase production of colloidal silica has been described (23M). Silica pigments contain both active a n d inactive SiO?. T h e former builds chain structures in rubber, while the latter

cis-Polyisoprene, synthetic natural rubber, goes “heavy” and commercial does not (7.M). Silicon monoxide shows promise as a new pigment ( 7 8 M , 79M, 2OM). Other new pigment types are boron nitride (2.21), zirconium carbide (75,M). a n d finely divided cross-linked vinyl polymers (J1z-i). T h e reinforcing action of pigments may be improved by surface coating with high amines ( 7 4 M ) ester-forming groups (5M,6 M ) siloxanes 7O.W). and isocyanates (76.M).

Processing and Compounding Mixing conditions have considerable influence on the scorch time and vulcanizate properties of compounds accelerated with sulfenamides (5.V). A novel method for obtaining delayed action in vulcanization is the incorporation of accelerators or accelerator activators into artificial zeolites or molecular sieves 9-Vj 72.V). By compounding for special properties a t high temperatures, natural rubber compounds can be developed which give good service at 100’ to 125’ C. (3.Y). Of a number of elastomers tested, the fluorocarbon and silicone rubbers showed the best retention of properties when tested a t 5 i 0 3 F . (73&\-). l-arious special compounding studies 4.1-! 6.\-! have been reported (I.V, 7h, 70.1.. 7 7.1*: 7LV, 7a.\3.

Products The general dei,elopment. function. operation, and problems in tires have been discussed (6P. 8P, 7OP. 77P, 73Pj. I n spite of remarkable technical progress, tire mileage has decreased in recent years because of the demands of high horse porver, improi ed brakes, heavier cars, smaller Lvheel sizes, and overloading (2OP) T h e industrial battle between rayon and q l o n for the bulk tire cord market continues (JP. 7QP) Temperatures in the outer layers of treads indicate that most road abrasion is mechanical rather than thermal (77P). An inflation needle in the side wall can replace rim valves for airplane tires (7ZP). L-rethane foam, rather than sponge rubber, is being investigated to replace air in tires (5P). Air springs continue to be of interest (7P). However, they are not going well on passenger cars (7SP). A pneumatic shelter has proved useful as a protection for tank farms in severe winter weather ( 3 P ) . A rubber-fabric tube has demonstrated its utility as a n oil barge ( 7 5 P ) . Interesting discussions have been published on golf ball manufacture (76P). V-belts ( 7 P ) , the use of polymers in solid rocket fuels (2P. 74P), and elastomers as soil conditioners (QP).

Theoretical Studies Absolute molecular weights of elastomers can be determined by measuring viscosities a t various shear rates (5Q, SQ). Racked rubber vulcanizes more easily than amorphous rubber when exposed to y-radiation (7EQ). When melted it undergoes a shrinkage similar to the contraction of fibrous proteins (75Q). L’arious mathematical treatments of rubber elasticity have been discussed ( 7 Q ! 34, 9Q: 77Q> 734). O n the other hand, Schoon questions the current concept of cross-linked, straight-chain molecules and postulates that rubber consists of close packed and deformed spherical molecules (77Q). The tensile properties of rubbers depend on the temperature and the rate of stretch (79Q). Fillers improve the strength of SBR vulcanizates by distributing the applied force over more molecular chains ($Q). A single mathcmatical equation covers the stress-strain relations of a pure gum rubber compound from 50% compression to 250% elongation ( 2 7 4 ) . Several authors discuss the mechanics of tear and tear propagation

P Q , S Q , 72Q, ZOQ). Heats of mixing indicate that polymer blends are microheterogeneous systems with a high degree of dispersion (784). Removal of static electricity from rubber being flexed increases its fatigue resistance (74). TVith rubber, contrary to most materials, the friction increases as the slip increases, a t least u p to a maximum value (70Q). Sound propagation in elastomers has been studied 174Q).

Bibliography Natural R u b b e r (1.4) Bankurski, R . S.. Teas, H. J., Plant Phy.no1. 32, 643 (1957). (2.4) Cooper. W..Vaughn. G.; othrrs. J . Polymer Sci. 34, 651 11959). (3.4) Cunneen, J. I.: Fletcher, T Y . P., others T r a n s . Inst. Rubber Znd. 34, 260 (1958). (4.4) Frick, G. S., J . Polymer Sci. 31, 239 11958). (5.4) Kobryner. TV., Banderet, A , , Zbid., 34, 381 119591. (6.4) Le Bras, J., Pinazzi, C., Milbert, G., Compt. refid. 246, 1214 (1958). (7.4) McGavack. J., Rubber A g e ( X . Y . ) 84, 789 (1959). (8.4) Turner. D. T., J . Polymer Sci. 35, 17 (1959).

Latex (1Bi Xndresen. A . Kautschuk u. Gumm 11, LVT244 (1958). (2B) Johnson, P. H.! Kelsey, R . H.! Rubber f$‘or/d 138, 877 (1958). (3B) Kelsey. R. H., Johnson, P. H.! Zbid.. 139, 227 (1958). Diene Rubbers

(1C) Adams, H. E., Stearns, R. S., others, ISD. ENG.CHEM.50, 1507 (1958).

( 2 C ) Braendle, H. A,, Trans. Innrt. RubbeiZnd. 34, 58 (1958). (3C) Braendle, H. A , , Heller, G. L., White, J. W., Rubber A g e , ( N . Y.)84, 431 (1958). (4C) Chem. Eng. 65, 71 (Aug. 11, 1958). (5C) Chem. Eng. ,\-eercs 36, 16 (July 28: 1958). (6C) Zbid., 37, (March 16, 1959). (7C) Zbid.? p. 23 (May 4, 1959). ( 8 C ) Cooper, W,: ,J. Polymer Sci. 28, 195 (1958). (9C) Cooper, W., Bird, T. B., 1x0. ENG. CHEM.50, 771 (1958). (1OC) Dazzi, J. (to Monsanto Chemical C o . ) , U. S. Patent 2,844,567 (July 22, 1958)

(11C) Dolgoplosk, B. A., others, Kauchuk 1 Rezzna 16, No. 2: 11; No. 6. 1 (1957); Rubber Chem. and Technol. 32, 321, 328 (1958 I. (12C) Ferington, T. E., Tobolsky, A. V., J . Polymer Sci. 31, 25 (1958). (13C) Franke, W.:Kautschuk u. Gumnii 11, W. T. 254 (1958). (14C) Frick: G. S.: J . Polymer Sci.,31, 529 i1958). \ - . - -

(1512) Golub, ht. .X.> J . Am. Chrrn. Soc. 81, 54 (1959). (16C) Hayes, R . A,, Division of Rubber Chemistry: 134th Meeting, ACS, Chicago, Ill., September 1958. (17CI ISD. E X G . CHEM. 50, 30.X (Lfav. 1958). (18C) Jones, R. V., Moberly, C. W. (to Phillips Petroleum C o . ) , U. S. Patent 2,864,809 (Dec. 16, 1958). (19C) Kellev, D. J . , Tobolsky, A. V.? J . A m . Chkm. Soc. 81, 1597 (1959). (20C) Pierson, R. M., others, Rubber Chem. and Technol. 31, 213 (1958). (21C) Poddubnyi, I. Y.: Evenburg, E. G.. Starovoitova, E. I . , Doklady Akad. I\huX S.S.S.R. 120, 535 (1958); C..4. 52, 17375 (1958). (22C) Railsback, H . E., Cooper, TV. T., Stumpe, N. A , , Rubber G? Plastics A g r 39. 867 119581. (2361 Rakova. C. V.,Korotkov, A. X.. noklady A k a d . ,Vauk S.S.S.R. 119, 982 -. . (1958) ; C.,4. 55, 4807 (1959). (24‘2) Re ynolds, R . J., IND. EXG. CHEM. 50, 785 (1958). ( 2 ~ Ser ) non, W7. L . , others, Sczmce 128, 359 (.4ug. 15, 1958). 126‘2) Semon. W.L., Craig, D., Kautschuk u. Gummz 11.TYT209 119581. (27C) Shell ’Chemical Co., ‘Torrance, Calif., Shell Tech. Bull. SC 59-32. (28C) Stearns, R. S., Forman. L. E.. Chem. Eng. A V e ~ l36, s 52 (Sept. 22. 19581. Butyl R u b b e r

( l D ) Fischer, W. F., S e u , R . F., Zapp, R. L., IND.ENG.CHEM.51, 205 (1959). (2D) Tawney, P. O., Little, J . R., Viohl, P.. Chem. Ene. AVezcs 36, 36 (June 9. 1958). (3D) Zapp. R. L.. p70C. Inst. Rubber Irid. 5 , 172 (1958). Silicone R u b b e r

(1E) Bobear. 1%’.J., Rubber .4pp (.V. J7.’ 84, 448 11958). 12E) Chem. Ene. ,Yews 36, 26 (Aua. 18, 1958). (3E) Deasv, J., LYhite, B. B., Rubber .4gr (A‘. I,.) 80, 1001 (19573. (4E) Harper. J. R., Chipman, A. L., Konkle, G. M.. Rubber W o r l d 137, 711, 758 (1958). (5E) Polmanteer, K. E.. Hunter, M. J.,

VOL. 51, NO. 9, P A R T II

I

0

SEPTEMBER 1959

1 1 69

MATERIALS OF CONSTRUCTION Division of Rubber Chemistry, ACS, Cincinnati, May 1958. (6E) Williams, T. C., Pike, R. A , , Fekete, F.: Chem. Eng. ;l’ews 36, 73 (Sept. 22, 1958) (?E) Youngs, D. C. (to Dow Corning Corp.), U. S. Patent 2,827,099 (May 18, 1958). Fluoro Rubbers

(1F) Freed, W. V., Division of Rubber Chemistry, XCS, Cincinnati, Ohio, May 1958. (2F) Gabris, T.. Kautschuk u. G u m m i 11, WT 242 (1958). 13F) Gallagher, G. A., Eubank: T. D., Moran, A. L., Division of Rubber Chemistrv. 134th Meetine. ACS. Chicago, Ill.,‘ September 1958:’ (4F) Haupschein. M., Chem. EEn?. n g . >Vews 36, 48 (Sept. 22, 1958). (5F) Jones, F. B., Coleman, L. E., Stickney. P. B., J . Polymer Sei.33, 405 (1958). (6F) Montermoso. J. C.. Griffis, C. B., others, Prod. Inst. Rubber Ind. 5 . 97 (1958). (7F) Moran, A. L., Kane, K.‘P., Smith, J. F.. Division of Rubber Chemistry, 134th Meeting, ACS, Chicago, Ill., September 1958. (8F) Postelnek, W., IND. ENG. CHEM. 50, 1602 (1958). 19F) Wilson, A , Griffis, C. B.. hiontermoso, J. C., Rubber -4ge Y.)83, 647 (1958). Polyurethanes

i l G ) Athey, R. J., Rubber Age (.V. Y.) 85, 77 (1959). (2G) Carter. A. S. (to E. I. du Pont de Nemours & Co.), U. S. Patent 2,830,037 (April 8, 1958). (3G) Chrm. E n g . 65, 51 (Dec. 1. 1958). (4G) Ibid.. 66. 94 (Ami1 6. 1959). (5G) Chrm. E n g . .l-eLs 36, 38 (May 26, 1958). (6G) Zbid., p. 40 (Sept. 29. 1958). 17G) Dickinson, L. A , , Rubber A g e (A‘. Y . ) 112. il95Ai . --7 96 .(8G) Ferrari, R. J., Sinner, J. W., others, ISD. ENG.CHEM.50, 1047 (1958). (9G) Frensdorf, H . K., Rubbrr A p e (S. Y.) 83, 812 (1958). (lOG) Gruber, E. E., Keplinger, 0.C., IND.ENG.CHEM.51. 151 11959). (11G) Knox. R . E., ’ Rubber W o r l d 139, 685 11959). (12G) Price, C. C. (to University of h’otre Dame), U. S. Patent 2,866,774 (Dec. 30, 1959). (13G) Schollenberger, S., Scott, H., 14oore, G. R., Rubber W o r l d 137, 549 (1958). \ - . - -

Miscellaneous Polymers

[ l H ) Chem. Eng. 65, 54 (Dec. 1, 1958’1. (2H) ZEid., 66, 72 (April 6, 1959). 13Hl Duffey, D.. IND. ENG. CHEM. 50, 1267 11958). (4H) Leonard, F.. Nelson, J., Brandes, G., Ibid., 50, 1053 (1958). Polymerization clJi Natta. G., Damisso, F., J . Polymer Sci. 34, 3 (1959). (25) Overberger, C. G.. Katchman, .4., Chem. Eng. :Vezus 36, 80 (Nov. 10: 1958). (35) Podublnvi, I. Y.,Ehrenberg, E. G., J . Polymfr Sci. 29, 605 (1958). (45) Tobolsky, A. V., Kellcy, D. J.. others, Division of Polymer Chemistry, 134th Meeting, ACS, Chicago; Ill., September 1958. (55) Uelzmann, H.? J . Polymer Sci. 32, 457 (1958).

1 170

16J) Werber, F. X., Hoeg, D. F., Chem. E n g . .Vews 37, 58 (March 23, 1959).

nol. 31, 762, 769, 773, 779, 788, 800 (1958). j 35K) Turner, D. T., J . Poiymer Sci. 27,

Vulcanization a n d Radiation (1K) Beniska, J., Dogadkin, B.. Chem. toesti12,304(1958):C.A.52,15945 (1958). (2K) Born, J. W., Mooney, E. E., Sernegan, S. T., Rubber W o r l d 139, 379 (1958). (3K) Charlesby, A., Burrows? J.? Bain: T., Rheol. Elastomers, Proc. Conf. M7elulyn Garden C i t y , 1957, pp. 122, (pub. 1958). (4K) Dogadkin, B. A , , J . Polymer Sei. 30, 351 (1958). (5K) Dogadkin, B. A , . Beniska, J., Chem. zoestz 12, 376 (1958); C.A. 52, 17776 (1958). (6K1 Dogadkin, B. .A,, others, Kolloid. Z h u r . 19, 421 (1957): Rubber Chem. and Technol. 32, 184 (1959). (7K) Dogadkin: B. .k, others. Kolloid Z h u r . 20, 260 (1958); C.A. 52, 21203 (1958). (8K) Dogadkin, B. A , , Tutorski?. I. .A,, Rubber Chem. and Technol. 31, 279 (1958). (9K) Dogadkin, B. A,, Tutorskii. I. -4. Pevzner, D. M.,Doklady A k a d . S a u k S.S.S.R. 112, 449 11957): Rubbrr Chem. and Technol. 31, 751 (1958). (10K) Dolgoplosk, B. A , , Tinyakora: E. J.. J . Polymer Sci. 30, 315 (1958). (11K) Epstein, L. Xi., Marans. N. S., Rubber Age (A\r. Y . ) 82, 825 (1958). (12K) Harman, D. J.. Chem. En?. ‘Vezcs 36, 6 2 (Sept. 22, 1958). (13K) Kuzminskil, .A. S.. Borkova. L. V., Kauchuk i Rezina 16, 14 (1957): Rubber Chem. and Technol. 32, 195 (1959). (14K) Kuzmenski:, A. S., Borkova. L. V., Zhur. Priklad. K h i m . 31, 648 (1958); C . A . 52, 15113 (1958). (15K) Linnig. F. J., Stewart. J . E.. J . Research A’atl. Bur. Standards 60, 9 (1958). il6K) Lorcnz, 0.. Echte, E., Verhandiungsber. Kolloid-Ges. 18, 142 (1958). (17K) Mever, G. E., hTaples, F. J.: Rice, H . M., Division of Rubber Chemistry, 134th Meeting, ACS, Chicago, Ill., September 1959. 118K) Moore, C. G., J . Polymer Sci. 32, 503 (19581. (19K) Nikitina, T. S..others. .4kad. .l-auk S.S.S.R. Otdr!. K h i m . iVauk 1957, 292; C.A. 53, 7647 (1959). (20K) Okhrimenko, I. S.. Kauchuk i Rezina 1 7 , s (1 958) : C.A. 53,7647 (1959). (21K) Okhrimenko. I. S.. Trudy Leninprad. Tekhnol. Znst. i m . Lensoaeta 42, 144 11957); C.A. 52, 21203 (l958!. 122K) Postovskaya, A . F.. Salimov. hi. A , , Kuzminskii, A. S., Dokladv A k a d . .Vauk S.S.S.R. 114, 586 11957): Rubber Chem. and Terknol. 31, 747 11958). (23K) Scheele. W.. Birghan. K.. and Schlicter, G., Kolloid 2. 160, 17’3 (1958). 124K) Scheele, \V,, Cherubim. hl.. Verhandlunrsbrr. Kolloid-Ges. 18, 11 5 (1 958). i25K) Scheele, LV.. others, Kautschuk u. G u m m i 10, LVT 51 (1957). 126K) Ibid., 11, LVT 23 11958). 127K1 Zbid., p. LVT 51. (28R) Ibid., p. \\-T 267. (29K) Zbid., p. LVT 325. (30K) Scheele. LV,. Triefel, LV., Zbid.. 11, L V T 127 11958). i31Ki Tarasova, Z. N.. others. Kouchuk E RP:ina17,14(1958): C.A. 53,666’(1959). (32K) Tinvakova. E. I., Dolg-oplosk. B. A , , Reikh. V. S . . Izirst. A k a d . .Tau/. S.S.S.R. Otdr!. K h i m . .Vnuk 1957, 1111 ; Rubber Chem. nnd Technol. 32, 231 (1959). 133Ki Tinvakova. E. I. others. J . Grn. Chem. 1 :S.SIR. iEng. Transl.‘~ 26, 2767 (1056) : Rubbrr Chrm. and Trchnol. 32, 220 (1959). ! 34K I Tsurugi. J . , other. B u l l . Cniz. Osaka Prefect. Ser. A . 5 , 161, 169, 173; T’ol. 6, 135, 145; Rubber Chem. and Tech-

503 (1958). (36K) Voorn, M. J., Hermanns. J. J., Zbzd.. 35, 113 (1959). /37K) Zhavoronok, S. G.. Zzrest. I’jsshzkh. Lrcheb. Zaredenzi Khzm. E K h i m . Tekhnol. 1958,160; C.A. 52, 21203 11958). (38K) Zhavoronok, S. G., T r u d y Leningrad. Tekhnol. Znst. im. Lensoueta 42, 63 (1957).

INDUSTRIAL AND ENGINEERING CHEMISTRY .-

Oxidation and Ozonization (1Ll Abbev, W.F.. Zimmerman, R. T.. Cornell, W.H., Rubber W h r l d 138, 256 (1 95Ri

(2L) .Anger[, L. G., Kuziminskii. A . S., J . Polymer Sci. 32, 1 (1958). (3L‘l Bevilacqua, E. hi., J . .Im. Chrm. Soc. 80, 5364 (1958). (4L’i Buckley, D. J., Robinson. S. B., J . Polymer Sci. 19, 145 119561. (5L) Dunn, J. R.: Scanlan. J.. Zbid., 35, 267 (1959). (6L) Dunn, J. R., Scanlan, J., Trans. Znst. Rubber Znd. 34, 228 (1958). (7L), Dunn, J. R., Scanlan, J., Watson, U.F., Trans. Faraday Soc. 54,730 (1958). i8L) Grossman, R . F., Bluestein. .A. C., Rubber A g e (IT. Y.1 84, 440 (1958). 19L) Hillmer, K . H., Scheele, LV., Kautschuk u . G u m m i 11, 210 (19581. 1lOL) Ossefort, 2. T.. Rubber Ilhrid 140, 69 (1959). !:llLl Shelton. J. R., SlcDonel. E. T., J . Polymer Sei. 32, 75 (1958~. (12L) Tucker. H., ASTXl. Spec. Tech. Publ. No. 229 (1958). Pigments and Reinforcement ( l M ) Amerongen, G. J. van. .\lededel. Rubber-Sticht. Delft No. 278, i 19543. (2M) Anderson, H . R . (to Phillips Petroleum Co.), U. S. Patent 2,871,216 (Jan. 2 7 , 1959). ( 3 M ) Blokh. G. A , . Yaroshevich. A . G., Doklady A k a d . .Vauk S . S . S . R . 116, 105 (1957); C..4. 52, 13301 (1058’. (4h.i) Burke. 0. LV.. Brit. Patent 799,043 (July 30, 1958). (5MI ‘Connecticut Hard Rubher Co.. Ibid., 790,370 iFeb. 5 . 1958). (6?rI) Deutsche Gold u . Silher Scheidanstalt. Ger. Patent 953,010 iNov. 22, 1956). i7’hl) Dogadkin, B. A , . Pechkovskaya, K., Goldman, E., Kauchuk 1 Rezinu 16, 1 11957); C.A. 53, 1065 (19591. (8Xi‘! Esso Research & Engineering Co., Brit. Patent 805,512 iDec. 10. 1958). ( O M ) Galil-Ogly, F. A , , others. Russian Patent 111,178 (May 27. 19581. ilOM) General Electric Co.. Brit. Patent 788,879 (Jan. 8. 1 9 5 8 1 . ( l l h i i Hallum. J.. Drushell. H. V.,J . Phys. Chem. 62, 110 (19581. (12M) Hofmann. G.. Plastr u . Kautschuk 4, 471- (1957’’ ,_,l ,.

(13hi) Kraus, G.. Collins. R . I>.. Rubber TYorld 139, 219 ( 1 9 5 8 ~ . (14M) Liggett. L. M . \ t o Lt-yandotte Chemicals Carp.).C.S.Patent 2,841,504

i J d v 1. 1958). !15hii hiole hTorton S.p.a.. Ital. Patent 541,G43 (April 12. 1956!. I 16M) Monsanto Chemical Co., Brit. Patent 795,051 (May 14. 19581. I ~ ’ M ) Norman, R. S..Kessel. A. A , , Katl. .-\cad. Sci.-Natl. Research C’ouncil Publ. 570, 39 (19581. (18hi) Sears. D. S. ( t o B. F. Goodrich C o . ) . U. S. Patent 2,805,881 (Dec. 23, . . 1958). i 1 0 M ) Sears, D. S..New.ton, E. B. (to B. F. Goodrich C o . ) , Zbid., 2,859,198 (Nov. 4. 1958).

ELASTOMERS (20M) Strassburg, R . W. (to B. F. Goodrich Co.), Ibzd., 2,865,778 (Dec 23, 1958). (21M) Voet, A , , Rubber M’orld 139, 233 (1958). (22M) Watson, J. W., Jervis, R., Kautschuk u. G u m m i 12, W T 11 (1959). (23M) White. L. J.. Duff\;. ’ G., IND. ENG. ‘ CHEW51, 232 (1959).

Theoretical Studies

ilQ1 Allen, G., Gee, G.. Lanceley, H . A,, Mangaraj, D., J. Poljmer Scz. 34, 349 (1959). (2Q) Andrews, E. H., \Yalsh, A , , Ihzd., 33, 39 11958).

Processing and Compounding

(1N) Alekseenko, Y. L., Bagoslavskaya, L. A,, Mishustin, I. V., Kauchuk i Retina 16, 10 11957); C.A. 52, 10, 626 (1958). (2N) Barlow, F. W., Cretney, R . W., Rubber Age (N.Y.) 85, 82 (1959). ( 3 s ) Fletcher, W. P., Fogg, S. G., Ibid., 84, 632 (1959). (4N) Forbes. W. G., McLeod, L. A.: Trans. Inst. Ruhter Ind. 34, 154 (1958). (5N) Fromandi, G., Reissinger, S., Kautschuk u. G u m m i 11, W T 3 (1958). ( 6 s ) Harrington, R., Ruhher Age (:\-. Y.) 84, 798 (1959). (7N1 Novy, L. E., Clark, R . A , , Ihid., 81, 265 (1957). 18s) O‘Connor, F. L,!.,, Thomas, R . L., 134th Meeting: Division of Rubber Chemistry, ACS, Chicago, Ill., September 1958. (9N)O‘Connor, F. M., Thomas. T. L., Dunham, hi. L., Division of Rubber Chemistry, .4CS, Cincinnati, Ohio. Ma)1958. (10N) Peters, H., Lockwood, \V. H., Rubber M70rld 138, 418 (19581. ( 1 1 s ) Prendergast, J . L., Rubbe, .4ge (-V. I-.) 84, 619 (1959). (12N) Rubber World Y.) 138,424 (1958). (13N) Smith, F. M.,Ruhher T170r/d 139, 533 (1959). (14N) Thompson, D. C., Hagman, J. F., Mueller, S.H., Rubher .4ge (iV. Y.1 83, 819 1,1958). ( 1 5 s ) Voyutskii, S. S.. Shapovalova, A . I., Pisarenko: A. P., Coiloid J . (C‘3.S.R. I 19, 279 (1957) (Eng. transl.) ; Ruhber Chem. and Technol. 31, 712 (1958). (16N) W’olf, R. F., Rubber .4ge (S. Y.) 80, 1007 (1957). (A\’.

Products

(1P) Bussman, K. H., Losche, H I Kautschuk u. G u m m i 11, 238 (1958). (2Pi Chem. E n g . 65, 126 (April 21, 1958). (3P) Chem. E n g . .VeezLs 32, 42 (June 9. 1958). (4P) Ibzd., 36, 38 (Oct. 6, 1958). (5P) Ihzd., 37, 50 (Ma\ 4, 1959). (6P) Cooper, D. H., Kautschuk u . Gummz 11, M T 273 11958) (7P) Deist, H . H., Rubher It’orld 138, 563 f1958). (8Pl Dinsmore. R. P., Ihid., 138, 249 (1 ~ -9581 _-II.

(9Pl Eck, J . C. [to Allied Chemical Corp.), U. S. Patent 2,847,392 (Xug. 12 1958). (10P) Fromandi, G., Clamroth, R . , Oettner, K.. Kautschuk u. G u m m i 11, LVT 8 3 (1958). (11P) Gaus. F.: Ibid., 11, W T 30 (1958). (12P) Ind. Labs. 9, 101 (May 1958). (13P) McDermott, J. M., Ruhhel- A g e 83, 807 (19583. (14P) Sci. .VekzL.s Letter, p. 325 (Nov. 22, 1958). (15P) Szulik, S. J., Ruhher dge (.V. Y.) 83, 1000 (1958). (16P) Tamburn, L. J., Trans. Znst. Ruhher Ind. 34. 118 11958). (17P) V;ehmann, W.,Kautschuk u. Gummi 10, WT 302 (1957). (18P) M h l l S t r e e t J . , p . 1 (Mav26,19581. (19P) Ihzd., p. 1 (Oct. 23, 1958). (20P) Ihzd.. p. 1 (April 3, 1959).

93 (1958~. ( 6 Q ) Chiesa, A , , Kautschuk u. Gummi 11, h‘T 161 (1958). f7Q) Dogadkin, B. A , , Gul, V. E., Morazova, S. .A,, Kolloid. Z h u r . 20, 397 (1958); C . A . 52,21, 200 (1958). (SQ) Edelmann: K., Horn, E., Plaste t i . Kautschuk 4, 84 (1957). ( 9 Q ) Flory, P. J.? Hoere: C. A , Ciferri, .I., J . PolymerSci. 34, 337 (1959). ( l O Q ) Gough, E., Kautschuk u . G u m m i , 11, W T 303 (1958). 1 l l Q ) Hoere. C. A. J., Flory, P. J., Division of Polymer Chemistry, 134th Meeting, ACS. Chicago, 111.: September 1958. (12Q) Mason, P., J . A,@/. Phi$. 28, 1146 11958). i l 3 Q ) Mooney, M., J. Polymer Sci. 34, 599 (1959). 114Q) Naak?. H. J.. Tamm, K., .4coustica 8, 65 (1958); Ruhber Chem. and Technol. 32, 21 (1959). zl5Q) 0 t h : J. F. hi., Flory, P. J., J . . h i . Chem. Soc. 80, 1297 (1958). 116Q) Roberts, D. E., Mandelkern, L., Ihid., 80, 1289 (19581. 117Q) Schoon, T. G. F.. Verhandlungsher. Kolloid-Ges. 18. 122 (1958). f18Q) Slominskh, G. L., J. Polymer Sci. 30, 625 i1958i. I l i a ) ‘Smiih, T. L., Ihid., 32, 99 (1958). (20Q) Thomas, A. G.: Ihid.. 31,467 (1958). 1219) Wood. L. A , , J . Research S a t / . Bur. Slarzdards 60, 193 (1958) Reviews

(1Ri Garvey. B. S., Jr., ISD. EXG.CHEM. 50, 1438 (1958 I. (2R) Juve, A . E., Ihzd., 50, 54.4 (September 1958). (3R) Sail. Rubber ’Vews, p. 3 (April 1959). (4Rt Patrick. J. C.. Charles Goodvear Liedal Le’cture, Division of Rubber Chemistry, 134th Meeting, ACS, Chicago, 111.; September 1958. f5R‘i Rogers, T. H., Hecker, K. C., Ruhher Tl‘orld 139, 387 (1958). (6R) Ruhher Chem. and Technol. 31, No. 5 (December 1958). i7R) Tatlow, J. C.: Ruhher 3 Plastics A g e 39, 33 (1958). t8Ri Treloar, L. R . G., others, Rheol. Elastomers, Proc. Conf. Welwyn Garden City, 1957 ipubl. 1958). (,9R) Yoran. C. S., Stockman, R . J., Ruhher M70rld 139, 542 (1959). ~

Books

(1s) Am. Soc. Testing Materials, Philadelphia, Pa., hSIhl, Spec. Publ. 229, ”Effect of Ozone on Rubber,” 1958. ( 2 s ) Annual Report on Progr. of Rubber Technology, T . J. Drakeley, ed., vol. 21. M’.Heffer Br Son, Cambridge, Gt. Brit., 1957. ( 3 s ) Battista. 0.A , , “Fundamentals of High Polymers,” Reinhold, New York, PIT. Y . , 1958. 1,4S) Bovey, F. A , , “Effects of Ionizing Radiation on Satural and Synthetic High Polymers,” Polymer Revs., vol. 1, Interscience, S e w York, 1958. (5s) Dombrow, B. A , , “Polyurethanes,” Reinhold? New York, 1958.

(6s i Encyclopedie Technologique de 1’Industrie Caoutchouc, vol. 1, G. Genin, D. Morrison, ed., Dunod, Paris, France, 1958. (7s)Huggins, M. L., ”Physical Chemistry of High Polymers,” FViley, New York, 1958. ( 8 s ) Intern.

Synthetic Rubber Sym,posium, March 1957, Rubber 3 Plastic .4ge. London. 19s) Mason, P., Wookey, N., “Rheology of Elastomers,” Pergamon Press, New York, 1958. (10s) Norman, R. H., “Conductive Rubber. Its Production, Application, and Test Xfethods,” Maclaren, London, 1357. j 11S i Rubber Handbook, Specifications for Rubber Products. Rubber Mfrs. .\ssoc., New York, 1958. 1!12S) Seaman, R . G., “Machinery and Equipment for Rubber and Plastics,” vol. 2, Ruhher lt’orld, New York, 1958. 1,13S) Spath, W.,“Rubber and Plastics,” Gertner Verlag, Stuttgart, W.Germany, 1958. 1.14s) Treloar, L. R. G., “Physics of Rubber Elasticity,‘: 2nd ed., Osford Cniv. Press, New York, 1958. (15s) Van Rossem, A,: “Rubber” Service, The Hague, Holland, 1958. (16s) LVake, W.C., “Analysis of Rubber and Rubber-like Polymers.” Maclaren, London, 1958. !lis) \Vilson, B. J., “British Compounding Ingredients for Rubber,” Heffer. Cambrrdge, 1958. I 18s) TYoodruff, W., .’Rise of the British Rubber Industry during the Nineteenth Century,” Liverpool Univ. Press, Liverpool, 1958. Symposia and Panel Discussions

Ir.) 83, 825 (1958). Molded mechanical rubber goods, techniques and equipment, compounding variables, and problems. i,2T) Ihid., 84, 293 (1958). Fifth ArmySavy Air Force Conference on Elastomer Research and Development. (3T) Ibid.,p. 992. New elastomers, halogenation of butyl rubber, practical applications of halogen-containing butyl rubbers, polyurethanes, fluorocarbon elastomers, cis-polyisoprene and cispolvbutadiene process, catalysis and re&lis, properties and uses. (4T1 Ihzd.: 84, 652 (1959) LYire and Cable SvmDosium. U. S. Army Signal Resdarih and Development Laboratory. (ST) Ihid., p. 959, developments in elastomers: polyurethanes, fluoroelastomers, silicone rubber, special-purpose silicone rubbers. l6T) Ruhher TVorld 138, 890 (1958). Vrethane foam, chemistry and present position of flexible urethane foams, chemistry of rigid urethane foams, mechanical foaming apparatus. (7T) Ihid., p. 892. Reclaimed rubber, in molded goods, premises and their use. (8Tl Ihid., 139, 412 (1959). Tire testing, laboratory and indoor, high speed photography, winter tire testing, tire noise evaluation, test reliability. !9T) Ihid., p. 417. Fluorinated elastomers in aircraft industry; Viton, fluorosilicone elastomers. (101‘) Ihid., p. 702. Coating Conference, Quartermaster Research and Engineering Center. ( I l T ! Ibid., p. 710. Physical testing. i‘12T) Ihid., p. 886. SBR, hot and cold rubbers. oil-estended rubbers, black masterbatches.

(,lT) Ruhher Age (‘V.

VOL. 51, NO. 9, P A R T II

SEPTEMBER 1959

1 171