Electrical Characteristics of the Ozonizer - Advances in Chemistry

Also, studies have been undertaken to explain the characteristics of silent electric discharge purely on the basis of electrotechniques (2, 3, 5, 6). ...
0 downloads 0 Views 729KB Size
Electrical Characteristics of the Ozonizer SACHIO FUJI and

NAOSHI

TAKEMURA

OZONE CHEMISTRY AND TECHNOLOGY Downloaded from pubs.acs.org by UNIV OF CALIFORNIA SAN DIEGO on 12/27/16. For personal use only.

Electrotechnical Laboratory, Ministry of International Trade and Industry, Tokyo, Japan

Extensive studies (1, 4) have been made on the chemi­ cal reaction involved in silent electric discharge. Also, studies have been undertaken to explain the characteristics of silent electric discharge purely on the basis of electrotechniques (2, 3, 5, 6). The a u ­ thors have studied the electrical characteristics of a n ozonizer to find relations between the gaseous reac­ tion occurring in the silent discharge a n d the electri­ cal conditions governing it.

T h e c h e m i c a l r e a c t i o n a n d t h e e l e c t r i c a l c h a r a c t e r i s t i c s of s i l e n t electric d i s c h a r g e h a v e b e e n c o r r e l a t e d b y s t u d i e s o n a n o z o n i z e r . U s u a l l y , t h e s p a c e i n s i l e n t d i s c h a r g e is t e r m i n a t e d b y d i e l e c t r i c s w h i c h a c t as t h e s t a b i l i z i n g resistance w i t h a l i t t l e loss a n d p r e v e n t c o n c e n t r a t i o n of t h e d i s c h a r g e . A n a l t e r n a t i n g c u r r e n t m u s t b e u s e d . Experimental

Equipment

and

Conditions

T h e s i l e n t d i s c h a r g e t u b e is a c y l i n d r i c a l t u b e of h a r d glass. T h e c o n s t r u c t i o n a n d d i m e n s i o n s a r e g i v e n i n F i g u r e 1. T h e a i r g a p a n d t h i c k n e s s of t h e glass t u b e a r e

I

42.21

,Cu ELECTRODE

Τ7Ά πττλ Vtrnf/n ÏÏ7T 260

ELECTROLYTICSOLUTION

Figure 1.

185mm.

Silent discharge 334

tube

335

FUJI A N D TAKEMURA—ELECTRICAL CHARACTERISTICS OF OZONIZER

1.6 a n d 1.4 m m . , r e s p e c t i v e l y . B o t h i n s i d e a n d o u t s i d e t h i s d o u b l e glass t u b e t h e r e is a n e l e c t r o l y t i c s o l u t i o n ( c o p p e r s u l f a t e s o l u t i o n ) w h i c h i s u s e d as t h e electrodes. T h e experiments were c a r r i e d out at atmospheric pressure. T h e a i r went t h r o u g h the d i s c h a r g e t u b e a t t h e r a t e of 0 t o 5.5 l i t e r s p e r m i n u t e , a n d a 10,000-volt a l t e r n a t ­ i n g c u r r e n t w a s a p p l i e d across t h e electrodes. A s t h e discharge was sometimes u n ­ s t a b l e a n d l o c a l l y c o n c e n t r a t e d i m m e d i a t e l y a f t e r a p p l i c a t i o n of t h e v o l t a g e , m e a s u r e ­ m e n t s w e r e b e g u n a f t e r t h e d i s c h a r g e s p r e a d u n i f o r m l y t h r o u g h o u t t h e a i r g a p of t h e discharge tube. T h e m e a s u r i n g c i r c u i t is s h o w n i n F i g u r e 2. A condenser, C , i s i n s e r t e d t o r e ­ m o v e influences r e s u l t i n g f r o m t h e i m p e d a n c e of t h e e l e c t r i c p o w e r source. R i s a s h u n t resistance u s e d t o m e a s u r e t h e c u r r e n t w a v e f o r m . T h e v o l t a g e w a v e f o r m w a s measured b y a cathode-ray potential divider.

OZONE CHEMISTRY AND TECHNOLOGY Downloaded from pubs.acs.org by UNIV OF CALIFORNIA SAN DIEGO on 12/27/16. For personal use only.

P

rr-JOSO

T777T

Figure 2 .

Measuring circuit

T o o b s e r v e t h e w h o l e w a v e f o r m , a n o r d i n a r y c a t h o d e - r a y oscilloscope, o p e r a t e d w i t h t h e s a w - t o o t h t i m e base, w a s u s e d . A single sweep c a t h o d e - r a y oscilloscope, w h i c h c o u l d s t a r t s w e e p i n g a t a n y d e s i r e d p h a s e of t h e a p p l i e d v o l t a g e , w a s u s e d t o m e a s u r e t h e d e t a i l s of a d e s i r e d p a r t of t h e c u r r e n t w a v e f o r m . C h a r a c t e r o f the

Discharge

T h e d i s c h a r g e a p p e a r s t o o c c u r as t h o u g h i n n u m e r a b l e fine t h r e a d s were s t r e t c h e d i n t h e d i s c h a r g e s p a c e of t h e t u b e . T h e c u r r e n t w a v e f o r m w a s o b s e r v e d w i t h t h e o r d i n a r y c a t h o d e - r a y oscilloscope. T h e f u n d a m e n t a l w a v e leads t h e v o l t a g e w a v e b y a b o u t 9 0 ° as s h o w n i n F i g u r e 3, a n d h i g h f r e q u e n c y p u l s a t i n g c u r r e n t s s u p e r p o s e

Current wave form

Applied voltage wave form

Figure 3.

Fundamental a n d voltage wave of discharge A. R = 172 Κ Ω

B. R = 50 Κ Ω

o n t h e f u n d a m e n t a l one n e a r t h e k n o b ( a t m a x i m u m of c u r r e n t w a v e f o r m as s h o w n i n F i g u r e 3, A). T h u s , t h e d i s c h a r g e consists of i n n u m e r a b l e l o c a l ones. T o o b s e r v e these h i g h f r e q u e n c y l o c a l discharges i n d e t a i l , t h e single sweep c a t h o d e - r a y oscilloscope i s u s e d . F i g u r e 4 shows a n e x a m p l e of t h e o s c i l l o g r a m s o b t a i n e d : A n i n d i v i d u a l p u l s a t i n g c u r r e n t is a n i m p u l s i v e w a v e t h a t recedes e x p o n e n t i a l l y , a n d t h e t a i l l e n g t h of t h e w a v e depends o n t h e resistance, R, i n s e r t e d i n t h e c i r c u i t t o m e a s u r e t h e c u r r e n t . I n c r e a s e i n the v a l u e of R r e s u l t s i n a n increase i n t a i l l e n g t h . I n s e r t i n g a n i n d u c t a n c e c o i l i n s t e a d of t h e resistance, t h e a u t h o r s m e a s u r e d t h e t e r m i n a l v o l t a g e of t h e c o i l a n d o b t a i n e d r e p e a t i n g h i g h f r e q u e n c y d a m p e d o s c i l l a t i o n s as s h o w n i n F i g u r e 5.

336

A D V A N C E S IN CHEMISTRY SERIES

CURRENT WAVE FORM OF THE SILENT DISCHARGE

OZONE CHEMISTRY AND TECHNOLOGY Downloaded from pubs.acs.org by UNIV OF CALIFORNIA SAN DIEGO on 12/27/16. For personal use only.

Figure 4.

Oscillogram by single sweep oscilloscope

Figure 5. Terminal volt­ a g e of the inductance coil instead of the resistance M e a s u r e m e n t s of t h e f r e q u e n c y of t h e o s c i l l a t i o n i n d i c a t e d t h a t t h e decrease i n i n d u c t a n c e r e s u l t e d i n t h e increase i n f r e q u e n c y . A s these p h e n o m e n a a r e s i m i l a r t o t h e d i s c h a r g e of a condenser c h a r g e t h r o u g h t h e resistance o r t h e i n d u c t a n c e , t h e c a p a c i t y of t h e condenser w a s e v a l u a t e d f r o m t h e v a l u e s of t h e resistance, t h e t a i l l e n g t h , a n d t h e i n d u c t a n c e t o b e a b o u t 200 μμΐ., i r r e s p e c t i v e of t h e v a l u e s of t h e resistance a n d t h e i n d u c t a n c e . F i g u r e 6 shows t h e o s c i l l o g r a m w h i c h w a s p h o t o g r a p h e d b y t h e r a p i d t i m e sweep to s t u d y t h e d e t a i l s of t h e w a v e f r o n t of t h e w a v e f o r m s h o w n i n F i g u r e 4. S e v e r a l

Figure 6. Current wave form of discharge; tim­ ing, 500 kc. steps a r e o b s e r v e d a t t h e w a v e f r o n t ; these i n d i c a t e t h a t t h e discharges of v e r y steep f r o n t w a v e s o c c u r successively a t s u c h s h o r t t i m e i n t e r v a l s as a b o u t 0.2 t o 0.3 /^second. T h i s w a v e h a s a n a p p e a r a n c e of a single p u l s a t i o n w h e n o b s e r v e d u s i n g t h e s l o w t i m e sweep. F r o m F i g u r e 6, i t seems t h a t one d i s c h a r g e i n i t i a t e s successive d i s c h a r g e s i n t h e n e i g h b o r i n g space. H e n c e , one p u l s a t i o n does n o t c o r r e s p o n d t o a single d i s c h a r g e , b u t t o a series of d i s c h a r g e s . F r o m these c o n s i d e r a t i o n s o n t h e l o c a l discharges, t h e e q u i v a l e n t c i r c u i t f o r a single d i s c h a r g e is p r o p o s e d i n F i g u r e 7, w h e r e C a n d C c o r r e s p o n d t o t h e c a p a c i t i e s of t h e a i r g a p a n d glass of t h e d i s c h a r g e t u b e p e r u n i t a r e a , C i s t h e s t r a y c a p a c i t y of t h e vessel t o t h e e a r t h , a n d C is t h e c a p a c i t y of p o r t i o n s w h e r e t h e a i r g a p b e ­ c o m e s so w i d e t h a t t h e d i s c h a r g e does n o t o c c u r . A s s u m i n g t h a t t h e t o t a l d i s c h a r g e a r e a of t h e t u b e is S, t h e c a p a c i t y , C , b e t w e e n t h e electrodes of t h e d i s c h a r g e t u b e is a

g

s

0

C = CaCgS/(Ca + C ) + ( 0

(1)

T a b l e I s h o w s v a l u e s of these c a p a c i t i e s m e a s u r e d w i t h t h e c a p a c i t y m e t e r . A s s u m i n g i n this equivalent circuit t h a t the discharge occurs w h e n the a p p l i e d voltage

FUJI A N D

337

TAKEMURA—ELECTRICAL CHARACTERISTICS OF OZONIZER

DISCHARGE PART

C (S-*S ) 3

0

C (S-AS )

OZONE CHEMISTRY AND TECHNOLOGY Downloaded from pubs.acs.org by UNIV OF CALIFORNIA SAN DIEGO on 12/27/16. For personal use only.

A

0

NON DISCHARGE PART

Figure 7.

Proposed

equivalent circuit for a charge T.

Table I.

single

dis­

Transformer

Capacities Measured between Electrodes of Discharge Tube Measured Capacity, μμΐ. 0.77 3.1 15.0 115.0 90.0 1000.0 30000.0

Ca C Co C C. C d a

P

across t h e a i r g a p i n t h e d i s c h a r g e space reaches t h e b r e a k d o w n v o l t a g e , V , t h a t t h e d i s c h a r g e ceases w h e n t h e v o l t a g e recedes t o V , a n d t h a t t h e change i n a p ­ p l i e d v o l t a g e d u r i n g t h e t i m e of a single d i s c h a r g e is n e g l i g i b l y s m a l l because t h e t i m e i n t e r v a l of t h e single d i s c h a r g e is v e r y s m a l l i n c o m p a r i s o n w i t h t h e i m p r e s s e d a l t e r n a t i n g c u r r e n t p e r i o d , t h e n t h e e q u i v a l e n t c i r c u i t f o r a single d i s c h a r g e i s as s h o w n i n F i g u r e 8. T h e resistance of t h e d i s c h a r g e p a t h a n d t h a t of t h e e l e c t r o l y t i c s o l u t i o n a r e o m i t t e d ; t h e y a r e n e g l i g i b l y s m a l l because t h e f r o n t of t h e i m p u l s i v e w a v e is v e r y steep. 8

d

(Vs-V )1 a

(^(S-AS,,)

osc'

C AS A

0

-r-C (S-aSo) a

"C AS 5

Figure 8.

Revised

e

equivalent circuit for a discharge

single

T h e authors evaluated the current at the instant the discharge occurred i n the c i r c u i t . I f Δ $ is t h e a r e a of a d i s c h a r g e space, t h e n 0

AS CaC /(C + C ) 0

g

a

is n e g l i g i b l y s m a l l i n c o m p a r i s o n w i t h C, as Δ S expressed b y t h e f o l l o w i n g e q u a t i o n :

g

0

(Ca.+

QR

w h e r e t is t h e t i m e d u r a t i o n of t h e i m p u l s e .

is v e r y s m a l l .

T h e current, I , d

is

(2)

A D V A N C E S IN CHEMISTRY SERIES

338

A s s h o w n i n T a b l e I , C a n d C a r e 115 a n d 90 μμΐ., r e s p e c t i v e l y ; hence, C + C — 205 μμΐ. T h i s v a l u e agrees w i t h t h e m e a s u r e d v a l u e , 2 0 0 μμί., w i t h i n e x p e r i m e n t a l error. T h e w a v e f o r m s p r o d u c e d w h e n t h e i n d u c t a n c e c o i l is i n s e r t e d are e x p l a i n e d b y t h i s e q u i v a l e n t c i r c u i t . T h e c u r r e n t f o r m of t h e d i s c h a r g e t u b e is e x p l a i n e d b y c o n s i d e r a ­ t i o n s o n t h e l o c a l d i s c h a r g e s . A s s h o w n i n F i g u r e 3, A, n o p u l s a t i o n of c u r r e n t is o b s e r v e d i n a c e r t a i n r e g i o n of t h e h a l f c y c l e a f t e r t h e m a x i m u m v a l u e . I t i s c o n ­ s i d e r e d t h a t t h e d i s c h a r g e does n o t o c c u r i n t h i s r e g i o n . I n a d e t a i l e d e x a m i n a t i o n i n t o a p a r t of t h e discharges, i t is a s s u m e d t h a t t h e d i s c h a r g e i n t h e a i r g a p o c c u r s w h e n t h e v o l t a g e across t h e a i r g a p reaches t h e s p a r k i n g p o t e n t i a l V a t t h e t i m e d e n o t e d b y p o i n t 1 i n F i g u r e 9 a n d t h a t t h e d i s c h a r g e ceases i n a v e r y s h o r t t i m e .

OZONE CHEMISTRY AND TECHNOLOGY Downloaded from pubs.acs.org by UNIV OF CALIFORNIA SAN DIEGO on 12/27/16. For personal use only.

s

8

s

DISCHARGE PART

PART Figure 9. Details of discharge to deter­ mine rate of occurrence

T h e n t h e a p p l i e d v o l t a g e increases b y E — (1 + C /C ) (V — V ) a n d reaches p o i n t 2 i n F i g u r e 9. T h e v o l t a g e across t h e a i r g a p becomes V a g a i n , a n d t h e d i s ­ c h a r g e o c c u r s . T h u s , w h e n t h e a p p l i e d v o l t a g e is h i g h e n o u g h , t h e discharges o c c u r one a f t e r a n o t h e r e v e r y t i m e t h e v o l t a g e increases b y E . I f t h e v o l t a g e across t h e a i r g a p does n o t rise h i g h e n o u g h f o r d i s c h a r g e e v e n a t t h e p e a k v a l u e of t h e a p p l i e d v o l t a g e , t h e n e x t d i s c h a r g e o c c u r s w h e n t h e v o l t a g e decreases a f t e r p a s s i n g i t s m a x i ­ m u m v a l u e . D u r i n g t h e f o l l o w i n g h a l f c y c l e , t h e v o l t a g e becomes l o w e r t h a n t h e l a s t d i s c h a r g e v o l t a g e , g i v e n b y p o i n t 2, b y E = (1 + C /C ) (V 4- V ). A s i m i l a r d i s c h a r g e t a k e s p l a c e i n t h e f o l l o w i n g h a l f c y c l e . H e n c e , t h e first d i s c h a r g e a f t e r t h e m a x i m u m of t h e v o l t a g e w a v e occurs w h e n t h e v o l t a g e decreases b y E f r o m t h e m a x i m u m v a l u e , a n d n o d i s c h a r g e occurs i n regions d e n o t e d b y f a t lines i n F i g u r e 9. T h i s e x p l a i n s w h y t h e o b s e r v e d w a v e f o r m h a s n o p u l s a t i o n i n these regions. T h e r e f o r e , E does n o t d e p e n d u p o n t h e a p p l i e d v o l t a g e u n d e r c e r t a i n o p e r a t i n g c o n d i t i o n s of t h e d i s c h a r g e t u b e . E x p e r i m e n t a l r e s u l t s also s h o w t h a t E does n o t c h a n g e w i t h t h e a p p l i e d v o l t a g e . I n t h e t u b e test, E = 12 k v . C o n s e q u e n t l y , Vs + V = 9.6 k v . i s o b t a i n e d . a

a

g

s

d

8

a

h

a

g

s

d

b

b

b

b

d

T h e r a t e of o c c u r r e n c e of t h e d i s c h a r g e w a s c o n s i d e r e d , t o o b t a i n t h e c u r r e n t i n t h e d i s c h a r g e p e r i o d . F r o m c o n s i d e r a t i o n s s i m i l a r t o those a b o v e , t h e d i s c h a r g e t a k e s p l a c e i n t h e a r e a Δ θ d u r i n g a change ΔΕ i n t h e a p p l i e d v o l t a g e w h e n t h e a p p l i e d v o l t a g e i s h i g h e r t h a n t h e p r e c e d i n g d i s c h a r g e b y E o r l o w e r b y E ; hence AS/ΔΕ is c o n s t a n t a t p o r t i o n s s h o w n as 1, 2, a n d 3 i n F i g u r e 10. A l t h o u g h Δβ/ΔΕ c a n n o t b e c o n s i d e r e d c o n s t a n t a t e v e r y p a r t of t h e a p p l i e d v o l t a g e , i t i s a c c e p t e d t h a t Δ&/ΔΕ is almost constant t h r o u g h o u t the whole discharge region. A c t u a l l y t h e d i s c h a r g e o c c u r s i n t e r m i t t e n t l y , a n d t h e a r e a of t h e d i s c h a r g e space increases b

a

OZONE CHEMISTRY AND TECHNOLOGY Downloaded from pubs.acs.org by UNIV OF CALIFORNIA SAN DIEGO on 12/27/16. For personal use only.

FUJI A N D TAKEMURA—ELECTRICAL

CHARACTERISTICS OF OZONIZER

339

Figure 10. Details of discharge to determine current stepwise as s h o w n b y t h e s o l i d l i n e i n F i g u r e 11. B u t t h e a b o v e a s s u m p t i o n m e a n s t h a t t h e a r e a of d i s c h a r g e , S, increases l i n e a r l y w i t h Ε as s h o w n b y t h e b r o k e n l i n e , a n d t h a t dS/dE is c o n s t a n t . T h i s w a s v e r i f i e d b y e l e c t r i c a l p o w e r d i a g r a m s o b t a i n e d with the cathode-ray wattmeter. A s s u m i n g t h a t AS/ΔΕ is almost constant i n t h e whole discharge region, t h e a v e r a g e t e r m i n a l v o l t a g e o f t h e c o n d e n s e r is p r o p o r t i o n a l t o t h e a p p l i e d v o l t a g e ; i n f a c t , t h e t e r m i n a l v o l t a g e of t h e c o n d e n s e r increases s t e p w i s e . T h e p o w e r d i a g r a m s h o u l d h a v e a p a r a l l e l o g r a m i c f e a t u r e , because t h e slope of t h e d i a g r a m differs, depending o n whether discharge is t a k i n g place or n o t . T h e power d i a g r a m obtained e x p e r i m e n t a l l y is o n t h e w h o l e a p a r a l l e l o g r a m w i t h fine fluctuations i n t h e d i s c h a r g e region (Figure 12). T h e v a l u e of dS/dE w a s c o n s i d e r e d . I f t h e a p p l i e d v o l t a g e changes b y E , t h e w h o l e d i s c h a r g e space m u s t r e a c h t h e s p a r k i n g p o t e n t i a l once. A c c o r d i n g l y , t h e d i s c h a r g e also occurs once. H e n c e , dS/dE = S/E is o b t a i n e d , w h e r e S is t h e t o t a l discharge area. B y these r e l a t i o n s , t h e a u t h o r s e v a l u a t e d t h e a v e r a g e d i s c h a r g e c u r r e n t , I w h e n t h e v o l t a g e E sm t is a p p l i e d . W h e n (C + C)R«1, t h e effect of t h e a

a

dMt

m

w

8

TOTAL AREA OF ELECTRIC DISCHARGE

Figure 11.

A r e a of discharge space Actual Assumed

OZONE CHEMISTRY AND TECHNOLOGY Downloaded from pubs.acs.org by UNIV OF CALIFORNIA SAN DIEGO on 12/27/16. For personal use only.

340

A D V A N C E S IN CHEMISTRY SERIES

Figure 12.

Experimental

power diagram p r e c e d i n g h a l f w a v e is n e g l i g i b l e , a n d f r o m E q u a t i o n s 2 t o 4, E q u a t i o n 5 is o b t a i n e d .

dE/dt = o>E cos ωί

(3)

m

dS/dE = S/E = 5/(1 + Ca/C )(V - V ) a

g

L(Cs+ where

ωί = s i n 0

- 1

s

(E —

Χ e

cos ,r

X ^ # 7 7 7

C)R~

(4)

d

1 + Ca/Ct

"

^

^

(5)

e*r

E )/E

b

m

m

T h i s e q u a t i o n m e a n s t h a t t h e w a v e t a i l of e a c h d i s c h a r g e c u r r e n t i s s u p e r p o s e d on each other a n d the average current, I ,

goes t h r o u g h t h e d i s c h a r g e t u b e .

dm

E v a l u a t i n g E q u a t i o n 5, t h e a u t h o r s o b t a i n e d hm =

° f X ° = cos [a>t Ca + C V l + C0 (C., + C) R

n

œ C

n

-

e

E m

2

2

a

~(C«+Ofl '"' (

W h e n ( C + C)7^ < < a n d E q u a t i o n 6 becomes

cos [ω/ -

o )

tan-* u>(C + C)R] s

2

t a n " ω X (C + C)/2]

(6)

1

0

s

1, t h e e t e r m is n e g l i g i b l e e x c e p t w h e r e t is close t o

s

Idm Φ

r

f*

C

0

(7)

0}CgE COS œt

r

t,

m

T h e c u r r e n t t h r o u g h t h e d i s c h a r g e t u b e is t h e s u m of t h e a v e r a g e d i s c h a r g e c u r ­ r e n t a n d t h e c h a r g i n g c u r r e n t , I , of t h e c a p a c i t y b e t w e e n t h e d i s c h a r g e t u b e a n d the lead wire, where c

œCE

=

m

c

o

g

[ ω ί

_

t a n

_

l w

(

c

( 8 )

V l + 2(Ο + cyR* ω

β

(9)

φ œCE COS m

T h e r e f o r e , t h e t o t a l c u r r e n t , / , is r e p r e s e n t e d b y I

c

φ wCE cos m

/ = I + Idm Φ o>(CVS + C )J& cos ωί c

0

to

in nondischarge region

(10)

in discharge region

(11)

I f t h e a v e r a g e v a l u e of t h e d i s c h a r g e c u r r e n t consists of t h e w a v e t a i l l e n g t h of each discharge current superposed o n each other, t h e f o r m of t h e k n o b a p p e a r i n g at t h e d i s c h a r g e p a r t of t h e c u r r e n t w a v e f o r m i n F i g u r e 3 is c a u s e d b y s u p e r p o s i t i o n of t h e w a v e t a i l s of i m p u l s e w a v e s . changes,

depending

B e c a u s e t h e w a v e t a i l l e n g t h of e a c h i m p u l s e w a v e

o n t h e v a l u e of i n s e r t e d r e s i s t a n c e , t h e f o r m

c h a n g e s a c c o r d i n g t o t h e v a l u e of t h e i n s e r t e d r e s i s t a n c e .

of t h e k n o b

also

I n fact, when the current

w a v e f o r m is o b s e r v e d w h i l e t h e v a l u e of t h e i n s e r t e d r e s i s t a n c e i s v a r i e d , t h e r e is a c h a n g e i n t h e f o r m of t h e p e a k as seen b y c o m p a r i n g F i g u r e 3, A, w i t h F i g u r e 3, B. T h e m e a n v a l u e , 7 , of t h e c u r r e n t t h r o u g h t h e d i s c h a r g e t u b e is o b t a i n e d as f o l l o w s : m

FUJI A N D TAKEMURA—ELECTRICAL

Ε = E /V2

= effective value of voltage

I

=

m

m

=~oCE

m

341

CHARACTERISTICS OF OZONIZER

(12)

\V2fCE

(13)

where/ = frequency of electric source, and 2E

< Eb.

m



OûCEm cos ù)t dt + ^

OZONE CHEMISTRY AND TECHNOLOGY Downloaded from pubs.acs.org by UNIV OF CALIFORNIA SAN DIEGO on 12/27/16. For personal use only.

L 2 /ι

2E

m

>

0

0

(14)



o(C£ + C )£ + - (C f

0

w

CS -

(Ifi)

C )E

0

0

b

X

= 4V2/(C„-S + C„)B where

œ(C S + C )#m cos id d i j

2 ω

2fC S{V, + g

V)

(16)

d

E. h

lOOOr

5 APPLIED Figure 13.

10

V O L T A G E , Κ v.

Effect of applied mean current

voltage

on

Experimental Calculated

F i g u r e 13 s h o w s t h e r e l a t i o n of t h e m e a n c u r r e n t vs. t h e a p p l i e d v o l t a g e , b o t h t h e one o b t a i n e d e x p e r i m e n t a l l y a n d t h e one c a l c u l a t e d b y t h e a b o v e e q u a t i o n . T h e r e is good agreement between the t w o . F o r t h e p o w e r , P , d i s s i p a t e d i n t h e d i s c h a r g e t u b e , e v a l u a t i o n of t h e p o w e r f o r t h e d i s c h a r g e c u r r e n t o n l y is sufficient. H e n c e , Ρ = 0 where

2E

m

(17)

< E

b

ω /*2ω o>Cg SEm sin Jto C H~ Cg 2

2

œt X

cos

ω ί dt

a

= fC S(V, + V )[2V2 Ε B

where

2E

m

> Eb

a

(1 + Ca/Cg)(V + V )] a

d

(18)

342

A D V A N C E S IN

CHEMISTRY SERIES

T h e p o w e r is m e a s u r e d b y t h e c a t h o d e - r a y w a t t m e t e r m e t h o d . L e t t h e deflecting s e n s i b i l i t y of e a c h p a i r of d e f l e c t i o n p l a t e s be D and D , respectively; is the c a p a c i t y of t h e c u r r e n t c a l c u l a t i n g condenser, w h i c h is i n s e r t e d i n p l a c e of t h e resistance, R, t o m e a s u r e t h e c u r r e n t . T h e n t h e a r e a of t h e d i a g r a m , A, is g i v e n b y ±

A=f

'DtEdfâ (Ί-dt) Jt=o \Ci Jo )

OZONE CHEMISTRY AND TECHNOLOGY Downloaded from pubs.acs.org by UNIV OF CALIFORNIA SAN DIEGO on 12/27/16. For personal use only.

= ^ -

2

2

= ^ Ci

2

[ EIdt Jt=o

(19)

f

P

(20)

a n d t h e e l e c t r i c p o w e r is g i v e n b y Ρ = CifA/DiD*

(21)

F i g u r e 14 shows t h e e l e c t r i c p o w e r , b o t h t h e e x p e r i m e n t a l a n d c a l c u l a t e d v a l u e s . T h e e l e c t r i c p o w e r increases i n p r o p o r t i o n t o t h e increase i n a p p l i e d v o l t a g e a f t e r

APPLIE0 Figure 14.

VOLTAOE,

KV.

Effect of applied voltage on elec­ tric power Experimental Calculated

t h e d i s c h a r g e begins, a n d t h e r e is g o o d a g r e e m e n t calculated values.

between

the

experimental and

Conclusion T h e c u r r e n t w a v e f o r m i n t h e s i l e n t d i s c h a r g e is e x p l a i n e d , a n d t h e v o l t a g e - c u r r e n t characteristics obtained show good agreement w i t h experimental results. F r o m these f a c t s , t h e v e r y h i g h f r e q u e n c y p u l s a t i o n is t h e basic p r o b l e m of t h e s i l e n t d i s c h a r g e . T h e a u t h o r s s u p p o s e t h a t t h e c h e m i c a l r e a c t i o n is affected b y t h e a v e r a g e v a l u e of t h e c u r r e n t . T o c l a r i f y f u r t h e r the relations between the silent discharge a n d chemical reac­ tions, the discharge starting voltage, V , i n the silent discharge a n d the extinguishing v o l t a g e , V , s h o u l d be m e a s u r e d . T h e w a v e f o r m a n d d e n s i t y of t h e c u r r e n t a l o n g t h e d i s c h a r g e p a t h also s h o u l d be e x a m i n e d . s

d

Literature

Cited

(1) Glockler, G., Lind, S. C., "Electrochemistry of Gases and Other Dielectrics," pp. 2955, Wiley, New York, 1939. (2) Klemenc, Α., Hintenberger, H., Höfer, Η., Z. Elektrochem. 4 3 , 708 (1937).

FUJI A N D TAKEMURA—ELECTRICAL

CHARACTERISTICS OF OZONIZER

343

(3) Suzuki, M., Department of Chemistry, Tokyo Metropolitan University, unpublished data. (4) Thompson, M. de Κ., "Theoretical and Applied Electrochemistry," pp. 481-6, Maximil­ ian, London, 1939. (5) Warburg, Ε., Z. tech. Physik 4, 450 (1923). (6) Warburg, E., Leithäuser, G., Ann. phys. 2 8 , 1 (1909).

OZONE CHEMISTRY AND TECHNOLOGY Downloaded from pubs.acs.org by UNIV OF CALIFORNIA SAN DIEGO on 12/27/16. For personal use only.

RECEIVED

for review M a y 27, 1958.

Accepted June 19, 1957.