Electrodeposition of Carboxyl Containing Copolymers - Advances in

Jun 1, 1973 - The lowestrecorded water level on the Rhine River, caused by a drought in Western Europe, has slowed... POLICY CONCENTRATES ...
0 downloads 0 Views 1MB Size
9 Electrodeposition of Carboxyl Containing Copolymers Basic Studies, Phase Growth, Counterion Fixation

Downloaded by UNIV OF LEEDS on June 18, 2016 | http://pubs.acs.org Publication Date: June 1, 1973 | doi: 10.1021/ba-1973-0119.ch009

A.

E.

RHEINECK

a

and A. M. U S M A N I

Polymers and Coatings Department, N o r t h Dakota State University, Fargo, N. D.

Two copolymers containing the potassium salts of acrylic or methacrylic acid were used in vehicles for electrodeposi­ tion at a constant voltage (125 volts). Zinc, steel, and tin were used as anodes. Up to 88.8% of the total charge trans­ ferred was used for anodic dissolution with the vehicle while 72.8%

acrylic

was used in anodic dissolution with

the methacrylic vehicle.

Electrodeposits contained only 0.48

to 0.77 wt % potassium; thus, counterion fixation was slight. NMR

results indicate that electrodeposition has only a minor

effect on tacticity and microstructure

of the

Infrared results confirm that decarboxylation

copolymers. occurs espe­

cially at the higher voltages, but molecular weight deter­ minations indicate that macroradical recombination

is not

extensive.

"Decently

the e l e c t r o d e p o s i t i o n

of o r g a n i c

coating

c o m p o s i t i o n s has

s h o w n g o o d p o t e n t i a l , a n d the c o m m e r c i a l e x p l o i t a t i o n as a m e t h o d of c o a t i n g a p p l i c a t i o n is n o w a r e a l i t y . It has a n d w i l l c o n t i n u e to m a k e a firm i m p a c t i n c o a t i n g a p p l i c a t i o n operations s u c h as the p r i m i n g of a u t o m o b i l e b o d i e s , t h e c o a t i n g of a l u m i n u m extrusions, a n d h o m e a p p l i ­ a n c e parts a n d r e l a t e d objects. H i s t o r i c a l l y , C r o s s e a n d B l a c k w e l l , L t d . (1,2), d e v e l o p e d a n d s h o w e d the possible p o t e n t i a l of t h e a p p l i c a t i o n s of "oleoresinous l a c q u e r s " b y a n e l e c t r i c current.

T o d a y , c o m m e r c i a l systems use v a r i o u s types of w a t e r

s o l u b l e or w a t e r d i s p e r s i b l e p o l y m e r i c c o m p o s i t i o n s . T h e s e are g e n e r a l l y a

Deceased, August 10, 1971. 130

Brewer; Electrodeposition of Coatings Advances in Chemistry; American Chemical Society: Washington, DC, 1973.

9.

RHEiNECK

AND

131

Carboxyl Containing Copolymers

usMANi

carboxyl bearing polymeric compositions inherently insoluble i n water b u t c a p a b l e of c o m b i n i n g w i t h o r g a n i c or i n o r g a n i c bases. T h e c h e m i c a l c o m p o s i t i o n s a n d properties of s u c h systems are d e s c r i b e d b y G i l c h r i s t ( 3 ) , H a g e n (4),

a n d S u l l i v a n ( 5 ) . W h e n a n e l e c t r i c a l p o t e n t i a l is i m ­

pressed across their aqueous systems, a d e p o s i t i o n o n t h e anode w i l l o c c u r . I n a d d i t i o n to a s o l u b i l i z e d o r d i s p e r s e d r e s i n system, a n electro­ d e p o s i t i o n b a t h m a y c o n t a i n d i s p e r s e d p i g m e n t s , i o n i z a b l e a n d other c o m p o u n d s as d e s c r i b e d b y G l o y e r et al. (6).

T h u s , ions a n d surface-

c h a r g e d particles i n t h e broadest sense are i n v o l v e d . tinuous electrodeposition

o p e r a t i o n requires

Downloaded by UNIV OF LEEDS on June 18, 2016 | http://pubs.acs.org Publication Date: June 1, 1973 | doi: 10.1021/ba-1973-0119.ch009

m a i n t a i n a m a t e r i a l balance. c o m p o s i t i o n tends critical.

that

A successful c o n ­

a l l the

components

H o w e v e r , d u r i n g electrodeposition the bath

to change

u n e v e n l y , a n d u n e v e n changes m a y b e

If the s h i e l d e d areas o n objects to b e electrocoated

p r o p e r l y coated, t h e coatings l a c k t h r o w i n g p o w e r .

are n o t

M e t h o d s to deter­

m i n e a n d o v e r c o m e these p r o b l e m s h a v e b e e n discussed b y B r e w e r a n d c o - w o r k e r s (7—10) i n their d e s c r i p t i o n s of t h e F o r d M o t o r C o . ' s electroc o a t i n g process.

I n a s i m i l a r v e i n , a n I t a l i a n process is d e s c r i b e d b y

Bono a n d Pagani ( I I ) . T h e a n o d i c electrode reactions h a v e b e e n s t u d i e d b y L e B r a s H a g e n et al. ( 1 3 ) , a n d M a y a n d S m i t h (14).

(12),

I n a previous report ( 1 5 ) ,

f r o m o u r l a b o r a t o r y , electrode reactions o c c u r r i n g d u r i n g electrodeposi­ t i o n i n t h e case of a m a l e i c a d d u c t of a p o l y m e r i c p o l y o l - o l e i c a c i d ester neutralized w i t h potassium hydroxide were described.

T h e important

r o l e o f m e t a l l i c cations generated f r o m t h e a n o d e w a s e l u c i d a t e d a n d the extent of cation—polyion i n t e r a c t i o n w a s discussed. F r e s h electrodeposited coatings are c u r e d b y b a k i n g o r m a y b e c u r e d b y i n d u c t i o n h e a t i n g . R e c e n t l y , t w o patents (16, 17) h a v e b e e n g r a n t e d to the F o r d M o t o r C o . T h e s e cover the c u r i n g b y r a d i o c h e m i c a l m e t h o d s a n d electrodeposited coating methods.

T h i s c u r i n g process merges elec­

t r o d e p o s i t i o n a n d h i g h energy c u r i n g . T h e r e is n o d o u b t that this merger of processes represents a t e c h n o l o g i c a l a d v a n c e . T h e objective of this p a p e r is to e l u c i d a t e t h e m e c h a n i s m of electro­ d e p o s i t i o n at constant v o l t a g e w h e n c a r b o x y l c o n t a i n i n g a c r y l i c c o p o l y ­ mers a r e u s e d as e l e c t r o d e p o s i t i o n resins. M e t h o d s i n c l u d e d e t e r m i n a t i o n of t h e mass of t h e electrodeposit as a f u n c t i o n of t i m e a n d charge trans­ f e r r e d , d e t e r m i n a t i o n of c u r r e n t v a r i a t i o n s w i t h t i m e , analysis of m e t a l content of electrodeposits, a n d i n v e s t i g a t i o n of film structure b y m o l e c u l a r w e i g h t d e t e r m i n a t i o n a n d i n f r a r e d a n d N M R spectroscopy.

T h e metals

a n a l y z e d i n c l u d e cations f o r m e d b y a n o d i c d i s s o l u t i o n a n d p o t a s s i u m ions w h i c h are present as counterions i n t h e e l e c t r o d e p o s i t i o n b a t h .

Since

the r e t e n t i o n o f counterions i n t h e electrodeposit m a y i n f l u e n c e

water

a n d salt spray resistance of t h e film, p o t a s s i u m content is of p a r t i c u l a r interest.

Brewer; Electrodeposition of Coatings Advances in Chemistry; American Chemical Society: Washington, DC, 1973.

132

ELECTRODEPOSITION

O F

COATINGS

Experimental Electrodeposition. T w o a c r y l i c c o p o l y m e r s w e r e u s e d f o r t h e s t u d y ; the c o m p o s i t i o n s are i n d i c a t e d i n T a b l e I. T h e c o p o l y m e r i z a t i o n w a s c o n d u c t e d at 125 =b 2 ° C w i t h 2 - b u t o x y e t h a n o l as t h e solvent. T h e cata­ lyst w a s a 4 % d i - i e r i - b u t y l p e r o x i d e s o l u t i o n b a s e d o n t o t a l m o n o m e r i n b o t h reactions. T h e final n o n - v o l a t i l e content o f b o t h r e s i n solutions w a s 7 0 . 0 % . T h e a c i d values b a s e d o n solids w e r e 76.0 f o r c o p o l y m e r A a n d 75.0 f o r c o p o l y m e r M (as m g K O H / g r a m s o l i d s ) .

Downloaded by UNIV OF LEEDS on June 18, 2016 | http://pubs.acs.org Publication Date: June 1, 1973 | doi: 10.1021/ba-1973-0119.ch009

Table I.

Monomer Mole Composition of Electrodeposition Resins

Monomers

Copolymer A, Moles

Copolymer M, Moles

M e t h y l methacrylate n - R u t y l acrylate A c r y l i c acid Methacrylic acid

1.5 4.0 1.0 —

1.5 4.0 — 1.0

B o t h resins w e r e n e u t r a l i z e d to t h e extent of 9 3 % w i t h p o t a s s i u m h y d r o x i d e a n d t h e i r solids adjusted to 7 . 0 % w i t h d e i o n i z e d w a t e r . T h e electrodeposition vehicle obtained f r o m copolymer A w i l l be henceforth r e f e r r e d to as E D V - A a n d that f r o m c o p o l y m e r M as E D V - M . T h e p H of b o t h solutions w a s 8.3. A l l depositions w e r e r u n b y the constant voltage t e c h n i q u e . T h e voltage w a s a p p l i e d p r i o r to i m m e r s i o n of the anode into t h e electro­ d e p o s i t i o n c e l l . T h e anodes s t u d i e d w e r e t i n , z i n c , a n d c o l d r o l l e d steel. A l l electrodes w e r e 7.5 c m w i d e a n d i m m e r s e d 7.5 l i n e a r c m . T h e total area of the i m m e r s e d surface was 112.5 c m p e r electrode. T h e d e p o s i t i o n v o l t a g e w a s m a i n t a i n e d at 125 volts, unless o t h e r w i s e i n d i c a t e d , a n d the electrode residence t i m e i n the cells w a s v a r i e d f r o m 15 to 90 seconds. It w a s felt that the y i e l d s of the deposit p e r electrode o n 112.5 c m w e r e too s m a l l f o r t h e a n a l y t i c a l w o r k . T h e r e f o r e i n e a c h r u n , a d u p l i c a t e w a s also p r e p a r e d , a n d the d e p o s i t e d films c o m b i n e d . I n other w o r d s , the t o t a l d e p o s i t i o n surface w a s 2 X 112.5 = 225 c m f o r t h e results to be described. A l l panels after e l e c t r o d e p o s i t i o n w e r e w a s h e d a n d d r i e d i n a v a c ­ u u m o v e n at 110 ± 2 ° C . T h e q u a n t i t y of e l e c t r i c i t y i n m i c r o f a r a d s , /xF, w a s d e t e r m i n e d f r o m t h e c o u l o m b i c curves. F o r t w o s i m i l a r runs, t h e y w e r e a d d e d to get the t o t a l μ¥. L i k e w i s e , the w e i g h t s of t w o s i m i l a r deposits w e r e d e t e r m i n e d a n d c o m b i n e d to get t h e t o t a l w e i g h t . Recovery and Analysis of Electrodeposits. T h e electrodes w i t h t h e d e p o s i t e d films after a v a c u u m d r y i n g w e r e exhaustively extracted w i t h m e t h y l e t h y l ketone i n a Soxhlet extractor. T h e extraction w a s c o n t i n u e d u n t i l n o o r g a n i c m a t e r i a l r e m a i n e d o n t h e electrodes. T h i s w a s c h e c k e d b y r e c o r d i n g a surface s p e c t r u m of the electrode i n the i n f r a r e d r e g i o n (18). M e t h y l e t h y l ketone w a s e v a p o r a t e d f r o m the s o l u b i l i z e d p o l y m e r films. T h e solids w e r e t h e n a s h e d at a b o u t 6 0 0 ° C i n a muffle f u r n a c e f o r six hours. A s m a l l p o r t i o n of p e r c h l o r i c a c i d was u s e d to assist the r e m o v a l of t h e o r g a n i c matter. A s controls, p o l y m e r s A a n d M per se, d i d n o t leave a n y r e s i d u e w h e n s i m i l a r l y ashed. T h e i n o r g a n i c r e s i d u e f r o m a s h e d e l e c t r o d e p o s i t e d films w a s d i s s o l v e d i n d i l u t e n i t r i c a c i d . 2

2

2

Brewer; Electrodeposition of Coatings Advances in Chemistry; American Chemical Society: Washington, DC, 1973.

Downloaded by UNIV OF LEEDS on June 18, 2016 | http://pubs.acs.org Publication Date: June 1, 1973 | doi: 10.1021/ba-1973-0119.ch009

9.

RHEiNECK AND

usMANi

Carboxyl Containing Copolymers

133

M e t a l contents of the ashed solutions, thus p r e p a r e d , w e r e deter­ m i n e d b y a t o m i c a b s o r p t i o n spectroscopy (19). F o r atomic absorption analysis, the l i q u i d s o l u t i o n s a m p l e w a s a t o m i z e d i n a flame. M e t a l l i c ions present w e r e r e d u c e d to n e u t r a l atoms. A n O s r a m l a m p w a s u s e d to o b t a i n p o t a s s i u m s p e c t r u m w h i l e h o l l o w cathode l a m p s of i r o n a n d z i n c w e r e u s e d to o b t a i n the spectra of i r o n a n d z i n c , r e s p e c t i v e l y (19). C a l i b r a t i o n curves w e r e p r e p a r e d for a l l the metals w i t h a n a l y t i c a l grade i n o r g a n i c salts. T h e w a v e l e n g t h s u s e d for p o t a s s i u m , z i n c , a n d i r o n w e r e 4665, 2139, a n d 2483 A , respectively. A P e r k i n - E l m e r m o d e l 421 spectrophotometer was u s e d to r e c o r d the i n f r a r e d spectra of electrodeposits. T h e s e spectra w e r e a n a l y z e d to f o l ­ l o w the change i n c a r b o n y l content w i t h d e p o s i t i o n voltage. T h e s t a n d a r d base l i n e t e c h n i q u e c o u p l e d w i t h r a t i o n i n g the peak-areas was used. T h e m e t h o d is d e s c r i b e d b y R h e i n e c k et al. (15, 18). T h e c a r b o n y l content Yco is expressed as f o l l o w s : _

Y c

o

A r e a of c a r b o n y l peak A r e a of h y d r o c a r b o n peak

N M R spectra w e r e o b t a i n e d o n a V a r i a n A 6 0 A h i g h r e s o l u t i o n spec­ trometer. T h e p o l y m e r c o n c e n t r a t i o n was 2 0 % i n d e u t e r a t e d c h l o r o f o r m . T e t r a m e t h y l s i l a n e w a s u s e d as a n i n t e r n a l s t a n d a r d , a n d spectra w e r e r e c o r d e d at a m b i e n t temperature. N u m b e r average m o l e c u l a r w e i g h t s , M , w e r e d e t e r m i n e d w i t h a M e c h r o l a b v a p o r phase osmometer. B e n z i l , r e c r y s t a l l i z e d three times f r o m m e t h a n o l w a s u s e d to o b t a i n the c a l i b r a t i o n c u r v e . n

Results and Discussion Mass of Electrodeposit. E l e c t r o d e p o s i t i o n i n v o l v e s phase ( i n c l u d i n g phase d i s s o l u t i o n ) . C o h n (20)

extension

s t u d i e d the t a r n i s h i n g of silver

m e t a l b y halogens a n d b y a p p l y i n g the d i s o r d e r t h e o r y o b t a i n e d t w o t i m e dependencies.

M a t h e m a t i c a l l y , this m a y b e represented as f o l l o w s : am + m

2

(1)

= p*t

w h e r e : a is constant T h e a b o v e c o n c e p t c a n be u s e d i n e l e c t r o d e p o s i t i o n w h i c h is essentially a phase g r o w t h process.

T w o l i m i t i n g cases are p o s s i b l e : m is mass of phase g r o w t h ρ is p r o p o r t i o n a l i t y constant t is t i m e of r e a c t i o n

C a s e 1: w h e n t is s m a l l ; m

2


am. 2

m =

(ρ·0

T h u s , E q u a t i o n 1 reduces t o : (2) T h e n , E q u a t i o n 1 becomes:

1 / 2

Brewer; Electrodeposition of Coatings Advances in Chemistry; American Chemical Society: Washington, DC, 1973.

(3)

134

ELECTRODEPOSITION

O F COATINGS

I n F i g u r e s 1 a n d 2, mass d e p o s i t e d vs. t i m e a n d square root of t i m e are plotted f o r zinc anode a n d E D V - A a n d È D V - M respectively.

Both the

a b o v e l i m i t i n g cases ( E q u a t i o n s 2 a n d 3 ) a r e satisfied. O l s o n (21) has suggested a n u n i m p e d e d p h a s e g r o w t h d u r i n g early stages of d e p o s i t i o n . D u r i n g a d v a n c e d d e p o s i t i o n stages d i f f u s i o n t h r o u g h t h e g r o w i n g phase becomes important.

It is also t o b e n o t e d f r o m these graphs that t h e

square root t i m e d e p e n d e n c y is v a l i d u p to 45 sec o f d e p o s i t i o n ; t h e i n t e r c e p t changes, a n d t h e n t h e r e l a t i o n s h i p h o l d s a g a i n . T h i s i n v a l i d a t e s the c o n c e p t u a l c o n s t a n c y o f p. H o w e v e r , o u r results suggest that ρ m i g h t h a v e t w o values, X a n d Y , w h i c h a r e t i m e a n d process d e p e n d e n t .

I n the

Downloaded by UNIV OF LEEDS on June 18, 2016 | http://pubs.acs.org Publication Date: June 1, 1973 | doi: 10.1021/ba-1973-0119.ch009

case of a c o l d r o l l e d steel a n o d e , t h e a b o v e d e s c r i b e d d e p e n d e n c i e s w e r e n o t o b e y e d f o r b o t h e l e c t r o d e p o s i t i o n vehicles. DEPOSITION 15

ι

Figure 1.

30

1

TIME, 45

1

Sec. 60

1

75

1

90

r

Deposit mass vs. time and square root of time for zinc anode and EDV-A

F i n n a n d H a n s i p (22) h a v e s h o w n m a t h e m a t i c a l l y that t h e r e c i p r o c a l of square of c u r r e n t s h o u l d g i v e a l i n e a r c u r v e w h e n p l o t t e d

against

d e p o s i t i o n t i m e . T h i s r e l a t i o n s h i p is o n l y v a l i d i f t h e specific resistance of t h e deposit r e m a i n s constant d u r i n g t h e entire d e p o s i t i o n p e r i o d . F i g ­ ures 3 a n d 4 are plots o f r e c i p r o c a l of t h e square o f c u r r e n t , 1/c vs. d e p o ­ 2

s i t i o n t i m e , t, at a d e p o s i t i o n voltage o f 125 volts f o r z i n c a n d c o l d r o l l e d steel electrodes r e s p e c t i v e l y .

T h e a b o v e r e l a t i o n s h i p is f o l l o w e d reason-

Brewer; Electrodeposition of Coatings Advances in Chemistry; American Chemical Society: Washington, DC, 1973.

9.

RHEiNECK

AND usMANi

DEPOSITION 15

135

Carboxyl Containing Copolymers

TIME,

30

sec.

60

45

B 0.6 a

'

K E Y

/

Downloaded by UNIV OF LEEDS on June 18, 2016 | http://pubs.acs.org Publication Date: June 1, 1973 | doi: 10.1021/ba-1973-0119.ch009


2 H 0 +

0

2

2

P r o t o n a t i o n results i n p r e c i p i t a t i o n , a n d t h e p r o t o n c a p t u r e p r o d u c t c o n ­ tributes s u b s t a n t i a l l y to the t o t a l deposit. ( 2 ) T h e i n t e r a c t i o n of p o l y a n i o n s w i t h m u l t i v a l e n t cations b y a n o d i c d i s s o l u t i o n is represented,

generated

f o r example, i n the case of z i n c

anode as f o l l o w s : - I 2+ OH 2

H 0 L 2

I

pry

H 0

+

ι

OH

Ο D

^0

OH

/

,

2

OH

ΛΟΗ

2

2

2

2

/ 0 H

2

OH,

Brewer; Electrodeposition of Coatings Advances in Chemistry; American Chemical Society: Washington, DC, 1973.

144

ELECTRODEPOSITION

(3)

OF

COATINGS

A n o d i c o x i d a t i o n of p o l y a n i o n s m a y y i e l d c a r b o x y l r a d i c a l s .

T h e s e m a y u n d e r g o d e c a r b o x y l a t i o n to m a c r o r a d i c a l s . T h e m a c r o r a d i c a l s m a y c o m b i n e or d i s p r o p o r t i o n a t e to g i v e the deposit.

Downloaded by UNIV OF LEEDS on June 18, 2016 | http://pubs.acs.org Publication Date: June 1, 1973 | doi: 10.1021/ba-1973-0119.ch009

-C0

2

\O H

OH

Radical Formation

\ OH

—Φ

HO

O^

Coupling Reaction

c

t S

O H

/

N

Φ O H

Ο

OH

(combination)