7 Pigmentation of Electrocoatings DAVID S. YOUNG and ARTHUR T. GRONET MPM Division, Pfizer Inc., 640 North 13th St., Easton, P a . 18042
Downloaded by UNIV LAVAL on April 6, 2016 | http://pubs.acs.org Publication Date: June 1, 1973 | doi: 10.1021/ba-1973-0119.ch007
While it is generally agreed that the vehicle influences the performance of a pigmented electrocoat system more than the pigment, certain pigments do have a significant influence on many parameters of electrocoating.
Particle size of the
pigment, assuming good dispersion, has little effect on per formance.
A pigment with high specific resistance will usu
ally transfer more efficiently and give better bath stability. Increasing the pigment-to-binder (P/B) ratio will generally increase the specific resistance and throwing power of the bath but will have little effect on coulomb efficiency or rup ture voltage whereas the film becomes harder and the gloss decreases especially at P/B's above 1/1.
Pigments suitable
for electrocoat should have good alkali resistance, low solu bility in water, easy dispersibility,
minimum settling, con
trolled particle size, and a balance between their specific resistance and their specific conductivity in aqueous suspen sions that allows good mobility.
V l T T h i l e t h e o p e r a t i o n of e l e c t r o d e p o s i t i o n systems m a y b e r e l a t i v e l y s i m p l e , t h e m e c h a n i s m o f d e p o s i t i o n is c o m p l e x , i n v o l v i n g electroly sis, electrophoresis,
electroosmosis,
o x i d a t i o n o f m e t a l , coalescence of
c o l l o i d a l particles, a n d gas f o r m a t i o n . T h e b i n d e r of a n e l e c t r o d e p o s i t i o n c o a t i n g c a n b e a m o d i f i e d o i l , a l k y d , a c r y l i c , o r a n epoxyester resin. T h e p o l y m e r s u s e d f o r a n o d i c d e p o s i t i o n h a v e free a c i d o r a c i d a n h y d r i d e groups a t t a c h e d to t h e p o l y m e r c h a i n . A l t h o u g h these b i n d e r s m a y b e u s e d alone a n d clear films d e p o s i t e d , this p a p e r deals strictly w i t h p i g m e n t e d systems. A n e l e c t r o d e p o s i t i o n p r i m e r a n d / o r topcoat m a y b e v i s u a l i z e d as a suspension of p i g m e n t particles a n d p o l y m e r - c o a t e d p i g m e n t
particles
w i t h t h e i o n i z e d c a r b o x y l g r o u p s c o v e r i n g t h e surface so that t h e p a r t i c l e carries a negative e l e c t r i c a l charge.
S i n c e l i k e e l e c t r i c a l charges r e p e l
98
Brewer; Electrodeposition of Coatings Advances in Chemistry; American Chemical Society: Washington, DC, 1973.
7.
99
Pigmentation of Electrocoatings
YOUNG AND GRONET
e a c h other, these negative charges are r e s p o n s i b l e f o r k e e p i n g the p a r ticles d i s p e r s e d i n the w a t e r . T h e s e charges also enable the particles to m i g r a t e t o w a r d the p o s i t i v e l y c h a r g e d anode d u r i n g the e l e c t r o d e p o s i t i o n process w h e n a d i r e c t c u r r e n t of 5 0 - 4 0 0 volts is a p p l i e d . T h e
film
is
f o r m e d b y c o a g u l a t i o n at the a n o d e of these n e g a t i v e l y c h a r g e d m a c r o m o l e c u l e s of the b i n d e r . A t the same t i m e this film is m a d e p r a c t i c a l l y a n h y d r o u s b y electroosmosis. T h e advantages of the e l e c t r o c o a t i n g process over c o n v e n t i o n a l m e t h ods of p a i n t a p p l i c a t i o n are:
(1)
u n i f o r m p i n h o l e - f r e e coatings,
(2)
d e p o s i t i o n of greater film thickness o n h a r d - t o - r e a c h recessed areas a n d areas of b r o k e n c o n t o u r , thus i n c r e a s i n g c o r r o s i o n resistance, Downloaded by UNIV LAVAL on April 6, 2016 | http://pubs.acs.org Publication Date: June 1, 1973 | doi: 10.1021/ba-1973-0119.ch007
mated operation, (4) lems,
(5)
(3)
auto
e l i m i n a t i o n of fire h a z a r d s a n d a i r p o l l u t i o n p r o b
l o w o p e r a t i n g costs,
and
(6)
fast t h r o u g h p u t .
The
main
disadvantages of the e l e c t r o c o a t i n g process are: ( 1 ) h i g h cost of i n s t a l l a tion, (2)
c o m p l e x q u a l i t y c o n t r o l measures
necessary
to ensure
good
s t a b i l i t y of the o p e r a t i n g tank, a n d ( 3 ) the fact that the system is pres e n t l y l i m i t e d to one-coat a p p l i c a t i o n s a n d d a r k or pastel colors.
Scope T h e e l e c t r o d e p o s i t i o n of p r i m e r s a n d one-coat p a i n t systems as i n d u s t r i a l p r o d u c t i o n finishes has b e e n p r o v e d a p r a c t i c a l a n d b e n e f i c i a l c o m m e r c i a l m e t h o d of c o a t i n g p r o d u c t i o n l i n e p r o d u c t s . present interest are ( 1 ) a u t o m o t i v e p r i m e r s , ( 2 ) (3)
g e n e r a l p u r p o s e one-coat
M a j o r areas
of
appliance primers, and
systems.
A s of S e p t e m b e r 1969 m o r e t h a n 400 electrocoat installations w e r e o p e r a t i n g i n v a r i o u s i n d u s t r i a l plants a r o u n d t h e w o r l d ( I ) .
These i n
stallations w e r e c o a t i n g a b o u t 18 m i l l i o n square feet of m e t a l surface p e r d a y . T h e s e 400 p r o d u c t i o n tanks w e r e split u p o n the five continents as follows : Number of Installations (1) Africa America Asia Australia Europe
Output, sqft/day (Estimated)
5 80 35 3 282
36,000 2,900,000 1,450,000 36,000 14,400,000
405
18,822,000
(1)
I n f o r m a t i o n a v a i l a b l e o n the 282 E u r o p e a n tanks shows that f o l l o w i n g types of articles w e r e e l e c t r o c o a t e d :
Brewer; Electrodeposition of Coatings Advances in Chemistry; American Chemical Society: Washington, DC, 1973.
the
ELECTRODEPOSITION O F COATINGS
100
Number of Installations Automotive industry A u t o m o t i v e accessories Steel f u r n i t u r e Electro-industry Others
In.,
Output sq ft/day
%
In,
%
71
26
11,000,000
76.0
46
16
544,000
4.2
26
9
300,000
2.2
25
9
240,000
1.6
40
2,400,000
16.0
ÏÔÔ
14,484,000
100.0
114 282~
T h e n u m b e r o f electrocoat tanks i n s t a l l e d a n d t h e r e s u l t i n g p a i n t c a p a c i t y i n electrocoat operations i n N o r t h A m e r i c a i n c r e a s e d t r e m e n d o u s l y Downloaded by UNIV LAVAL on April 6, 2016 | http://pubs.acs.org Publication Date: June 1, 1973 | doi: 10.1021/ba-1973-0119.ch007
f r o m 1966 t o 1971.
T h e t o t a l c a p a c i t y o f electrocoat
tanks i n N o r t h
A m e r i c a w a s o n l y 81,000 gallons i n 1966 w h e r e a s i n 1971 i t w a s a p p r o x i m a t e l y 2 m i l l i o n gallons. A b r e a k d o w n of tanks, t a n k c a p a c i t y , a n d p a i n t usage i n 1971 f o r N o r t h A m e r i c a is s h o w n i n T a b l e I ( 2 ) . Table I.
Electrocoat Tanks and Usage in N o r t h America Capacity, Tanks
Autos and trucks A u t o parts Electrical Appliances A l u m i n u m extrusions Miscellaneous Total
Range
Average
32
8-76
16
1.5-24
6
35
0.2-18
38
1000 gal Total 1180
2
5.5
210
4 4
3-22
9
220
6
0.3-30
8
40
2.8-11
4.5
142
9
90
26 27
Painty million
250 1990
1 5 25
T h e latest figure f o r 1972 shows at least 1 6 0 tanks i n o p e r a t i o n i n N o r t h A m e r i c a , u s i n g a b o u t 2 . 2 m i l l i o n gallons w i t h a p a i n t v a l u e of a b o u t 2 8 m i l l i o n d o l l a r s ( 2 ) . I t is e s t i m a t e d that a p p r o x i m a t e l y 2 0 % of the passenger cars are p r i m e d b y electrocoat i n t h e U n i t e d States, 4 0 % i n E u r o p e , a n d o v e r 9 0 % i n J a p a n . T h e r e f o r e , at present, the a u t o m o t i v e i n d u s t r y c e r t a i n l y is the major user of e l e c t r o d e p o s i t e d paints.
Historical Background A great d e a l of i n f o r m a t i o n p e r t i n e n t to t h e p r o b l e m of e l e c t r o p h o r e t i c p a i n t d e p o s i t i o n c a n b e o b t a i n e d f r o m the studies r e p o r t e d a n d the literature o n the e l e c t r o d e p o s i t i o n of latex a n d v a r i o u s resins a n d r e l a t e d c o m p o s i t i o n s . O n e of t h e most significant o f the l i t e r a t u r e references ( 3 ) reports that t w o processes f o r d e p o s i t i n g r u b b e r e l e c t r i c a l l y f r o m a latex were developed i n the period 1925-1927. O n e was developed b y S h e p p a r d a n d E b e r l i n a n d t h e other b y P . K l e i n , a n d a n u m b e r o f patents
Brewer; Electrodeposition of Coatings Advances in Chemistry; American Chemical Society: Washington, DC, 1973.
7.
YOUNG AND GRONET
101
Pigmentation of Electrocoatings
w e r e issued. B o t h processes w e r e b a s e d o n t h e fact that t h e d i s p e r s e d particles o f r u b b e r i n t h e latex c a r r y a negative c h a r g e a n d i n a n electric field
migrate to a n d are deposited o n the anode where they
coagulate.
T h i s anaphoresis p r i n c i p l e w a s k n o w n to K n o x i n 1907 a n d C o c k e r i l l i n 1908,
a n d t h e y a t t e m p t e d t o coagulate r u b b e r f r o m t h e latex b y this
method. O n e o f the first i n d u s t r i a l a p p l i c a t i o n s o f electrophoreses w a s i n t h e dewatering of ceramic clay. This was developed b y C o u n t Schwerin i n G e r m a n y i n the e a r l y 1900's. W i t h a n electric i n p u t o f 8 0 k w h / t o n o f d r y c l a y is w a s p o s s i b l e t o d e w a t e r a s l u r r y f r o m 3 5 % solids suspension t o a p p r o x i m a t e l y 6 5 % solids p l a s t i c c l a y . T h e c e l l p o t e n t i a l w a s n o r m a l l y Downloaded by UNIV LAVAL on April 6, 2016 | http://pubs.acs.org Publication Date: June 1, 1973 | doi: 10.1021/ba-1973-0119.ch007
a b o u t 100 volts. A l t h o u g h a h i g h e r voltage gave a d r y e r p r o d u c t , m o r e energy w a s lost b y t h e electrolysis o f w a t e r a n d h e a t i n g o f t h e c e l l . B o t h electrophoretic m o v e m e n t o f t h e c l a y particles t o t h e a n o d e a n d t h e elect r o o s m o t i c m o v e m e n t o f t h e w a t e r t o t h e c a t h o d e take p l a c e i n t h e c e l l . T h e d e p o s i t i o n o f plastic, e l e c t r o p h o r e t i c a l l y , f r o m n o n a q u e o u s s o l u tions has b e e n s t u d i e d b y F e i n l i e b (4).
I n this s t u d y t h e r e s i n o r p l a s t i c
w a s t a k e n into s o l u t i o n i n a n a p p r o p r i a t e o r g a n i c solvent, a n d a n o n - s o l v e n t d i l u e n t w a s a d d e d to cause p r e c i p i t a t i o n as a disperse phase. U n d e r s u c h c o n d i t i o n s t h e d i s p e r s i o n w o u l d b e stable f o r a t least t h e t i m e r e q u i r e d to r u n t h e tests. F e i n l i e b s t u d i e d a v i n y l c h l o r i d e - v i n y l acetate copolymer w h i c h was electrophoretically deposited f r o m a solution of b u t y l acetate t o w h i c h 9 5 % e t h y l a l c o h o l w a s a d d e d as t h e p r e c i p i t a n t . A g o o d a d h e r e n t film w a s o b t a i n e d . I n a later a n d m o r e d e t a i l e d s t u d y , F i n k a n d F e i n l i e b investigated the electrodeposition of a number of syn thetic resin lattices ( a q u e o u s d i s p e r s i o n s ) o b t a i n e d as c o m m e r c i a l p r o d ucts f r o m t h e m a n u f a c t u r e r s .
T h e lattices tested i n c l u d e d :
(1) Copolymer of vinylidene chloride a n d acrylonitrile (2) A styrene-butadiene copolymer (3) A n unplasticized poly (vinyl chloride) (4) A plasticized poly (vinyl chloride) ( 5 ) P o l y ( v i n y l acetate) T h e " n e g a t i v e " lattices—i.e., a l l except t h e p o l y ( v i n y l
acetate)—gave
g o o d deposits o n t h e anode u n d e r satisfactory c o n d i t i o n s : voltages o n t h e o r d e r o f 1 v o l t a n d c u r r e n t densities o n t h e o r d e r o f 25 m a / s q i n c h . A c e l l w a s u s e d i n w h i c h the c a t h o d e w a s separated b y a d i a p h r a g m f r o m the b a t h to p r e v e n t h y d r o g e n gas b u b b l e s f r o m b e i n g c a r r i e d to t h e a n o d e a n d b e i n g d e p o s i t e d a l o n g w i t h the film. Deposits of cellulose were obtained b y M a n t e l l a n d C o z z a r e l l i f r o m 1 % s o l u t i o n o f cellulose i n t h e s o d i u m z i n c a t e .
T h e a n o d e deposit w a s
o b t a i n e d w i t h c e l l voltages f r o m 1.1 t o 1.28 volts a n d a c u r r e n t d e n s i t y of ca. 1 - 7 m a / s q i n c h .
Brewer; Electrodeposition of Coatings Advances in Chemistry; American Chemical Society: Washington, DC, 1973.
102
ELECTRODEPOSITION
O F COATINGS
D e p o s i t s of m e t a l p o w d e r s a n d i n o r g a n i c r e f r a c t o r y carbides a n d oxides h a v e b e e n o b t a i n e d e l e c t r o p h o r e t i c a l l y f r o m n o n a q u e o u s suspen s i o n m e d i u m s . I n ane s t u d y b y M o s l e y a n d W a l l a c e ( 5 ) the l i q u i d s u s e d were isopropyl alcohol a n d nitromethane.
T h e a d h e s i o n of t h e a n o d e
deposit was i m p r o v e d b y a d d i n g 0 . 1 5 M a m m o n i u m hydroxide (using i s o p r o p y l a l c o h o l to d i l u t e the c o n c e n t r a t e d aqueous a m m o n i a s o l u t i o n ) . I n a s o m e w h a t different s t u d y b y P e a r l s t e i n , W i c k , a n d G a l l a c c i o ( 6 ), a n a t t e m p t w a s m a d e to deposit e l e c t r o p h o r e t i c a l l y finely d i v i d e d m e t a l p o w d e r s of s u c h metals as a l u m i n u m , t i t a n i u m , z i r c o n i u m , a n d t u n g s t e n to o b t a i n m e t a l coatings i n those cases w h e r e o r d i n a r y e l e c t r o p l a t i n g methods cannot be used.
It w a s f o u n d that a l u m i n u m e l e c t r o p h o r e t i c
Downloaded by UNIV LAVAL on April 6, 2016 | http://pubs.acs.org Publication Date: June 1, 1973 | doi: 10.1021/ba-1973-0119.ch007
deposits c o u l d b e o b t a i n e d at voltages r a n g i n g f r o m 20 to 320 w h e n u s i n g as s u s p e n d i n g m e d i u m a l i p h a t i c alcohols h a v i n g m o r e t h a n three c a r b o n atoms.
E t h e r s , esters, a n d ketones w e r e unsatisfactory.
I n t h e case of
a l u m i n u m the suspending m e d i u m used determined whether metal was d e p o s i t e d o n t h e a n o d e o r cathode, a n d t h e a d d i t i o n of a s m a l l a m o u n t of b u t y l a m i n e greatly i m p r o v e d t h e a d h e s i o n of t h e deposit. T h e d e p o s i t i o n of fine m i c a flakes w a s s t u d i e d b y H i r a y a m a a n d ( 7 ) B e r g . A silicone b i n d e r w a s u s e d , a n d b o t h silicone a n d m i c a p l a t e d o u t together at a p H of 8 to 9.5. T h i s system is sensitive to p H .
Technical Aspects of Pigmented Electrocoat in g Vehicles T h e m o v e m e n t of b o t h p i g m e n t a n d v e h i c l e particles i n a n electro coat system is associated w i t h t h e " e l e c t r o k i n e t i c p h e n o m e n o n . " T h i s p h e n o m e n o n i n c l u d e s a l l processes i n w h i c h e l e c t r i c a l l y c h a r g e d particles are a c t e d u p o n b y a n external e l e c t r i c a l field w h i c h results i n the c h a r g e d p a r t i c l e s m o v i n g t h r o u g h , or relative to, a fluid m e d i u m . If t h e p a r t i c l e is n o t free to m o v e , the system becomes m e c h a n i c a l l y strained. T h e d e v e l o p m e n t of k n o w l e d g e i n this area closely parallels t h e s t u d y of c o l l o i d s a n d is s a i d to have b e e n d i s c o v e r e d b y R e u s e i n 1808. F r o m a b o u t 1910 to 1935, m a n y t h e o r e t i c a l studies w e r e m a d e i n this area, a n d a n u m b e r w e r e t h e f u n d a m e n t a l basis f o r m u c h of the m o d e r n w o r k i n electro phoresis. E m u l s i o n s , c o l l o i d s , a n d sols consist of e l e c t r i c a l l y c h a r g e d particles of a range of sizes d i s p e r s e d i n a m e d i u m w h o s e d i e l e c t r i c properties p r e v e n t t h e charges f r o m b e i n g d i s s i p a t e d . T h e properties of t h e m e d i u m i n w h i c h the c h a r g e d particles are d i s p e r s e d greatly influence the p r o p erties of t h e system. If the m e d i u m has a h i g h d i e l e c t r i c constant, as does w a t e r , t h e m o v e m e n t of v e r y s m a l l charges ( ions f o r e x a m p l e ) takes p l a c e easily at potentials of less t h a n a c o u p l e of volts. H o w e v e r , i f the m e d i u m is a n o n p o l a r h y d r o c a r b o n , field potentials of several h u n d r e d to a t h o u s a n d volts m a y b e necessary to s h o w p a r t i c l e m o v e m e n t .
If the viscosity
Brewer; Electrodeposition of Coatings Advances in Chemistry; American Chemical Society: Washington, DC, 1973.
7.
YOUNG AND GRONET
103
Pigmentation of Electrocoatings
is l o w , as i n w a t e r , t h e rates o f m o t i o n o f c h a r g e d particles w i l l b e m u c h greater t h a n i n a viscous m e d i u m ( for the same e l e c t r i c a l field ) . T h e movement of a charged particle suspended i n a m e d i u m w h i c h is i n d u c e d b y a n external electric field is a c t u a l l y m o v e m e n t r e l a t i v e t o the m e d i u m . I f the c h a r g e d p a r t i c l e is fixed, as i n p o r o u s m e m b r a n e s , the l i q u i d w i l l m o v e t h r o u g h t h e m e m b r a n e .
C o n v e r s e l y , i f l i q u i d is
c a u s e d t o flow t h r o u g h a porous m e m b r a n e o r c a p i l l a r i e s , t h e m e m b r a n e or c a p i l l a r i e s a c q u i r e e l e c t r i c a l charges.
E v e n particles s e t t l i n g o u t o f a
suspension w i l l a c q u i r e a n e l e c t r i c a l charge f r o m m o v e m e n t t h r o u g h t h e liquid medium.
Downloaded by UNIV LAVAL on April 6, 2016 | http://pubs.acs.org Publication Date: June 1, 1973 | doi: 10.1021/ba-1973-0119.ch007
T h e particles of a c o l l o i d r e m a i n i n suspension b y reason o f t h e e l e c t r i c a l charges o n each p a r t i c l e .
Some c o l l o i d s h a v e particles w h o s e
charges are either p o s i t i v e o r negative.
A s a result, t h e particles of one
c o l l o i d m a y m i g r a t e to the anode, a n d o f another c o l l o i d t o t h e cathode. T h e m i x i n g o f o p p o s i t e l y c h a r g e d c o l l o i d s u s u a l l y results i n p r e c i p i t a t i o n a l t h o u g h different systems v a r y greatly i n sensitivity. T h e a d d i t i o n of a n electrolyte to a c o l l o i d w i l l o f t e n cause the c o l l o i d to p r e c i p i t a t e b y i n creasing the conductivity of t h e m e d i u m a n d permitting the colloid charges to b e n e u t r a l i z e d o r d i s s i p a t e d . M a n y o f t h e properties o f t h e c h a r g e d particles i n dispersions a r e r e l a t e d to t h e e l e c t r i c a l " d o u b l e l a y e r . " E a c h n e g a t i v e l y c h a r g e d p a r t i c l e , f o r e x a m p l e , w i l l b e s u r r o u n d e d b y a sheath o f p o s i t i v e charges, r e s u l t i n g f r o m t h e r e p u l s i o n o f electrons f r o m its n e i g h b o r h o o d i n t h e e n c l o s i n g m e d i u m . S u c h particles b e h a v e as a c h a r g e d c a p a c i t o r , a n d this aspect o f porous d i a p h r a g m s , electrodes, etc., has b e e n s t u d i e d extensively. T h e w e i g h t o f matter t r a n s p o r t e d f o r each c o u l o m b o f e l e c t r i c i t y passed t h r o u g h a c o l l o i d system f o l l o w s F a r a d a y ' s L a w a l t h o u g h i t is n o t as s i m p l e to d e t e r m i n e i n this case as i t is i n the case of ions i n electrolysis. W h e n i t is c o n s i d e r e d that i n a c o l l o i d t h e p a r t i c l e s are present i n a range o f sizes, w i t h t h e smallest m a n y times t h e size o f ions, a n d that e a c h p a r t i c l e m a y h a v e a range of e l e c t r i c a l charges o n t h e order o f h u n d r e d s of thousands of electrons, i t is to b e e x p e c t e d that average values of w e i g h t a n d c h a r g e w o u l d n e e d t o b e d e t e r m i n e d .
T h i s is d i f f i c u l t
since these factors w o u l d v a r y w i t h age, m e t h o d of p r e p a r a t i o n , a n d other factors. I n electrolysis, each i o n of the species c a n b e c o n s i d e r e d as h a v i n g a w e i g h t a n d a c h a r g e i d e n t i c a l to a l l t h e other ions o f that species, b u t w i t h t h e c o l l o i d s , statistical values m u s t b e u s e d . T h e basic
mathematical
r e l a t i o n f o r electrokinetic
p h e n o m e n a is
credited to H e l m h o l t z :
Brewer; Electrodeposition of Coatings Advances in Chemistry; American Chemical Society: Washington, DC, 1973.
104
ELECTRODEPOSITION OF COATINGS u «
migration velocity of charged particle ( p i g m e n t or vehicle)
Ζ «= electrokinetic or zeta potential Ε — a p p l i e d voltage d i e l e c t r i c constant o f the l i q u i d phase η =
viscosity of the m e d i u m
4π — a f a c t o r r e l a t e d t o shape a n d size.
Downloaded by UNIV LAVAL on April 6, 2016 | http://pubs.acs.org Publication Date: June 1, 1973 | doi: 10.1021/ba-1973-0119.ch007
F o r ions o r v e r y s m a l l s p h e r i c a l p a r t i c l e s , t h e v a l u e a p p r o x i mates 6. F o r p a r t i c l e s o f l a r g e r size, t h e s m a l l e r f a c t o r is s a i d to b e c a u s e d b y the d i s t o r t i n g effect o f a n i n s u l a t i n g p a r t i c l e i n t h e electric field. T h e e q u a t i o n shows that t h e rate of p i g m e n t or v e h i c l e p a r t i c l e m o v e ment (electrophoresis)
o r flow o f l i q u i d phase (electroosmosis)
is p r o
p o r t i o n a l t o t h e a p p l i e d v o l t a g e , E. T h e zeta p o t e n t i a l m a y b e d e f i n e d as the v o l t a g e difference b e t w e e n the p a r t i c l e a n d t h e diffuse p o t e n t i a l value of the double layer surrounding it.
Influence of Pigment on Deposition Characteristics Particle Size.
Studies o f synthetic a n d n a t u r a l i r o n oxides a n d
extender p i g m e n t s s u c h as talc, barytes, a n d c a l c i u m carbonate
have
s h o w n that the p a r t i c l e size o f these p i g m e n t s ( w h i c h r a n g e d f r o m 0.5 to 8 m i c r o n s i n d i a m e t e r ) h a d l i t t l e o r n o effect o n t h e i r transfer p r o p e r t i e s i n electrocoat p r i m e r systems. H o w e v e r , p i g m e n t s w h i c h h a v e a t e n d e n c y to
flocculate
o r a g g l o m e r a t e w i l l h a v e l o w e r m o b i l i t y rates.
Generally,
the h i g h e r the resistance properties o f the electrocoat v e h i c l e , t h e better w i l l b e the transfer rates o f the p i g m e n t . Effect of p H . S i n c e a l l o f the electrocoat systems i n g e n e r a l p r o d u c t i o n use operate i n a p H r a n g e o f 7.5 t o 9.5, a s t u d y o f synthetic a n d n a t u r a l i r o n oxides i n w a t e r slurries a t p H levels o f 7.0 t o 10.0 s h o w e d that as p H increases, the p i g m e n t m o b i l i t y decreases s l i g h t l y , a n d at p H levels o v e r 10, some oxides a p p e a r to b e c o m e n e u t r a l i n charge o r e v e n reverse charge.
G e n e r a l l y , electrocoat p r i m e r s increase i n c o n d u c t i v i t y ,
h a v e l o w e r t h r o w i n g p o w e r a n d film thickness, i n c r e a s e d gassing, a n d d r a w greater c u r r e n t as the p H o f t h e b a t h is i n c r e a s e d . Settling Characteristics.
B e c a u s e o f t h e l o w viscosities a t w h i c h
electrocoat tanks o r baths are o p e r a t e d , settling o u t o f the p i g m e n t a n d / o r v e h i c l e is a serious p r o b l e m . A l l large c o m m e r c i a l tanks use either a g i tators o r elaborate p u m p i n g e q u i p m e n t t o m a i n t a i n a u n i f o r m tank. A s i n c o n v e n t i o n a l p a i n t systems, p i g m e n t s w h i c h h a v e a h i g h specific g r a v i t y a n d w h i c h are difficult t o g r i n d w i l l cause the most settling p r o b l e m s i n electrocoat tanks. H o w e v e r t h e m a n n e r i n w h i c h t h e d i s p e r s e d p i g m e n t e d
Brewer; Electrodeposition of Coatings Advances in Chemistry; American Chemical Society: Washington, DC, 1973.
7.
YOUNG AND GRONET
Pigmentation of Electrocoatings
105
paste g r i n d is l e t b a c k a n d t h e r e s u l t i n g s t a b i l i t y o f t h e r e d u c e d electro coat p a i n t system i n r e g a r d t o p r e v e n t i n g p a r t i n t h e s e t t l i n g characteristics
flocculation
o f a n electrocoat
play a n important system.
Generally
a b o u t 1 % o f a b e n e f i c i a t e d n a t u r a l hectorite, b e n t o n i t e , o r s y n t h e t i c c l a y m a y b e a d d e d t o a n electrocoat
p r i m e r system t o h e l p t h e s u s p e n s i o n
properties. Effect of Pigment/Binder Ratio on Electrical Resistance. U s u a l l y t h e specific resistance o f a n electrocoat p r i m e r system w i l l increase w h e n the p i g m e n t - t o - b i n d e r r a t i o is i n c r e a s e d . r e l a t e d t o t h e specific resistance
T h i s increase w i l l u s u a l l y b e
a n d conductivity of the prime and/or
extender p i g m e n t s u s e d t o increase t h e p i g m e n t l e v e l .
Downloaded by UNIV LAVAL on April 6, 2016 | http://pubs.acs.org Publication Date: June 1, 1973 | doi: 10.1021/ba-1973-0119.ch007
COULOMB EFFICIENCY. I n c r e a s i n g t h e P V C content o f a n i r o n o x i d e electrocoat p r i m e r w i l l g e n e r a l l y decrease t h e c o n d u c t i v i t y s l i g h t l y a n d m a y e i t h e r decrease o r increase s l i g h t l y t h e c o u l o m b efficiency o r m a y h a v e n o significant effect o n the c o u l o m b efficiency ( e s p e c i a l l y at p i g m e n t t o - b i n d e r ratios o f 0 . 1 / 1 t o 0 . 5 / 1 ) . THROWING POWER. T h e t h r o w i n g p o w e r o f a n electrocoat p r i m e r i s n o r m a l l y i n c r e a s e d as t h e P V C content increases. at P V C levels f r o m 1 t o 4 5 % .
T h i s is u s u a l l y t h e case
P i g m e n t s w i t h h i g h film resistance g i v e t h e
highest t h r o w i n g power. RUPTURE VOLTAGE. I n c r e a s i n g t h e P V C l e v e l f r o m 1 % t o 1 5 % i n a n electrocoat
p r i m e r system u s u a l l y h a s l i t t l e effect o n r u p t u r e v o l t a g e .
R u p t u r e v o l t a g e i s i n c r e a s e d m a r k e d l y w i t h i n c r e a s i n g solids a n d also b y v e h i c l e s w h i c h d e p o s i t a firm film o f h i g h viscosity. GLOSS OF FILM. S m o o t h films w i t h 6 0 ° gloss r e a d i n g s o f 7 0 ° t o 8 0 ° c a n b e o b t a i n e d at p i g m e n t - t o - b i n d e r ratios u p t o 0 . 5 / 1 .
Generally at
P / B o f 1 / 1 o r 1 . 5 / 1 r o u g h t e x t u r e d films result. T a s k e r a n d T a y l o r ( S ) s h o w e d i n i r o n o x i d e extender p r i m e r s t h a t t h e w e i g h t o f r e s i n d e p o s i t e d w a s constant, i r r e s p e c t i v e o f t h e P / B l e v e l a n d that t h e w e i g h t o f film d e p o s i t e d i n c r e a s e d w i t h i n c r e a s i n g P / B r a t i o ; therefore, m o r e p i g m e n t w a s present w i t h r e s u l t i n g l o w e r gloss. Effect of Bath Solids Level. S y n t h e t i c i r o n o x i d e m a l e i n i z e d o i l elec t r o d e p o s i t i o n p r i m e r s h a v e b e e n s u c c e s s f u l l y d e p o s i t e d at b a t h solids levels o f 7.5 t o 1 5 % .
N o significant differences c o u l d b e n o t e d i n d r y film
thickness o r film hardness.
N o n v o l a t i l e levels o f 7.5 t o 1 0 % a p p e a r t o b e
m o r e satisfactory f o r general a p p e a r a n c e o f t h e film b u t s l i g h t l y p o o r e r t h a n 12.5 t o 1 5 % levels f o r c o r r o s i o n resistance p r o p e r t i e s .
T h e normal
p r o d u c t i o n l e v e l is a b o u t 1 0 % solids i n t h e b a t h . Effect of Specific Resistance of Iron Oxide Pigments. T h e effect o f the s o l u b l e salt content a n d o f t h e specific resistance
of synthetic a n d
n a t u r a l i r o n oxides w a s e v a l u a t e d i n electrocoat p r i m e r systems.
A high
specific resistance a n d a l o w w a t e r - s o l u b l e salt content i s significant t o the efficiency o f the electrocoat process o n l y as i t is r e l a t e d t o a p a r t i c u l a r
Brewer; Electrodeposition of Coatings Advances in Chemistry; American Chemical Society: Washington, DC, 1973.
106
ELECTRODEPOSITION
O F COATINGS
p i g m e n t . W a s h i n g t h e f o r e i g n electrolytes o u t of a p i g m e n t a n d increas i n g its specific resistance d o n o t necessarily m a k e this p i g m e n t p e r f o r m m o r e efficiently i n a n electrocoat system. T h e r e f o r e , i t is n o t t h e f o r e i g n electrolytes
b u t those
electrolytes
w h i c h c o r r e s p o n d to t h e s o l u b i l i t y
p r o d u c t s of t h e p i g m e n t , its c h e m i c a l c o m p o s i t i o n , a n d its specific c o n d u c t i v i t y i n aqueous suspensions that d e t e r m i n e t h e efficiency of a p a r t i c u l a r p i g m e n t i n a n electrocoat
system.
A l t h o u g h w a t e r - s o l u b l e salt content m a y n o t affect c o a t i n g efficiency a n d d e p o s i t e d film i n t e g r i t y , a l o w soluble-salt content is d e s i r a b l e since an
excessive a c c u m u l a t i o n of salts w i t h r e p e a t e d turnovers w i l l
cause
p o o r t a n k s t a b i l i t y a n d p r o d u c e gases, r e s u l t i n g i n films w i t h p o o r i n t e g r i t y . Downloaded by UNIV LAVAL on April 6, 2016 | http://pubs.acs.org Publication Date: June 1, 1973 | doi: 10.1021/ba-1973-0119.ch007
Effect on Resistance Characteristics of Deposited Film. T h e a d d i t i o n of p i g m e n t ( s y n t h e t i c r e d i r o n o x i d e ) at P V C l e v e l of 1 % to 1 5 % , to a n electrocoat p r i m e r system ( m a l e i n i z e d o i l t y p e ) , g e n e r a l l y w i l l p r o d u c e firmer,
t h i c k e r films w h i c h results i n i m p r o v e d c o r r o s i o n resistance of the
d e p o s i t e d electrocoat p r i m e r film. T h e a d d i t i o n of 2 % of the t o t a l p i g m e n t a t i o n as s t r o n t i u m c h r o m a t e a n d / o r 5 to 1 0 % of t h e p i g m e n t a t i o n as a basic l e a d p i g m e n t w i l l s i g n i f i c a n t l y i m p r o v e t h e salt f o g resistance of a n i r o n o x i d e electrocoat p r i m e r .
Selection of Pigments V a r i o u s selected
grades of synthetic r e d a n d y e l l o w i r o n oxides,
c h r o m i u m oxides, c a r b o n a n d l a m p b l a c k , t i t a n i u m d i o x i d e , p h t h a l o c y a n i n e b l u e a n d green, a n d some o r g a n i c y e l l o w s a n d reds h a v e b e e n successfully u s e d i n electrocoat
p a i n t systems, a l o n g w i t h t h e f o l l o w i n g
(see also
Table I I ) : ( 1 ) A n t i - c o r r o s i v e p i g m e n t s : v a r i o u s grades of l e a d p i g m e n t s ( basic w h i t e l e a d or s i l i c o c h r o m a t e ) , chromâtes w i t h l o w w a t e r s o l u b i l i t y ( s t r o n t i u m c h r o m a t e ) , z i n c sulfide a n d z i n c o x i d e . ( 2 ) E x t e n d e r p i g m e n t s : some grades of barytes, talc, c a l c i u m car bonate, k a o l i n , silicas, m i c a , a n d asbestos. ( 3 ) S u s p e n d i n g p i g m e n t s : b e n e f i c i a t e d b e n t o n i t e o r hectorite c l a y s , synthetic clays, a n d c o l l o i d a l silicas. A l t h o u g h r a w m a t e r i a l cost is s t i l l i m p o r t a n t i n electrocoat f o r m u l a tions, t h e p i g m e n t s selected m u s t h a v e g o o d transfer a n d s t a b i l i t y p r o p erties
with
the given vehicle
system
that
is u s e d .
Many
pigment
m a n u f a c t u r e r s h a v e d o n e extensive w o r k w i t h their l i n e of c o n v e n t i o n a l p i g m e n t s i n v a r i o u s types of electrocoat v e h i c l e systems; i n m a n y instances t h e y h a v e m a d e t a i l o r e d p r o d u c t s to meet t h e electrocoat
requirements.
T h e s e p i g m e n t s w i l l n e e d properties s u c h as excellent s t a b i l i t y i n a n a l k a l i n e m e d i a , l o w s o l u b i l i t y i n water, easy d i s p e r s i b i l i t y , m i n i m u m settling, c o n t r o l l e d p a r t i c l e size a n d shape ( m a x i m u m of 6 m i c r o n s ), a n d a b a l a n c e b e t w e e n specific resistance a n d specific c o n d u c t i v i t y i n aqueous suspensions that a l l o w s g o o d m o b i l i t y or transfer p r o p e r t i e s .
Brewer; Electrodeposition of Coatings Advances in Chemistry; American Chemical Society: Washington, DC, 1973.
7.
YOUNG AND GRONET Table II.
T y p i c a l Formulation of Electrocoat Paints Ca. 100 gal Formula Parts by Weight
R e d Oxide Automotive Primer
Downloaded by UNIV LAVAL on April 6, 2016 | http://pubs.acs.org Publication Date: June 1, 1973 | doi: 10.1021/ba-1973-0119.ch007
107
Pigmentation of Electrocoatings
S y n t h e t i c i r o n oxide B a s i c w h i t e lead B e n t o n i t e or hectorite clays A m i n e s o l u b i l i z e d m a l e i n i z e d o i l vehicle Triethylamine B u t y l Cellosolve Deionized water
20 2 0.2 13 1 3 17
Disperse i n p o r c e l a i n or sand m i l l Reduction A m i n e s o l u b i l i z e d m a l e i n i z e d o i l vehicle Diethanolamine 6 % Manganese drier Guaiacol D e i o n i z e d water
90 3 0.2 0.3 730 880.0 l b s
Pigment volume concentration N o n - v o l a t i l e content pH W e i g h t per g a l Specific resistance, 1300 ohms
5.0% 10.0% 7.8—8.0 8.8
R e d or B l a c k O n e - C o a t S y s t e m C a r b o n b l a c k or s y n t h e t i c I r o n O x i d e W a t e r reducible e p o x y - e s t e r vehicle B u t y l Cellosolve Triethylamine Deionized water D i s p e r s e i n p o r c e l a i n m i l l or sand m i l l Reduction W a t e r reducible e p o x y - e s t e r vehicle B u t y l Cellosolve Triethylamine Deionized water
3.5 13 0.4 0.4 17
87 2 3 720 846.3 l b s
Pigment volume concentration N o n - v o l a t i l e content pH W e i g h t per g a l Specific resistance, 1300 o h m s
1.0% 10.0% 8.5 8.5
Anti-Corrosion Pigments. M a n y o f t h e r e g u l a r a n t i - c o r r o s i o n p i g ments u s e d i n c o n v e n t i o n a l p a i n t systems are t o o s o l u b l e t o b e u s e d i n electrocoat systems.
T h i s is e s p e c i a l l y true o f most o f t h e c h r o m a t e
Brewer; Electrodeposition of Coatings Advances in Chemistry; American Chemical Society: Washington, DC, 1973.
108
ELECTRODEPOSITION
OF
COATINGS
p i g m e n t s . T h e i r r e l a t i v e l y h i g h s o l u b i l i t y i n a n aqueous electrocoat t a n k w h e r e electrolysis is t a k i n g p l a c e m a y cause p r e c i p i t a t i o n of the m e t a l cations a n d release of f r e e c h r o m a t e ions into the b a t h ; these ions c a n react w i t h the electrocoat v e h i c l e a n d cause
flocculation
problems.
solubility lead and zinc pigments along w i t h strontium chromate to w o r k best i n most electrocoat v e h i c l e systems.
Low
appear
H o w e v e r each vehicle
system w i l l h a v e different properties, a n d each i n d i v i d u a l a n t i - c o r r o s i o n p i g m e n t m u s t be e v a l u a t e d f o r s t a b i l i t y i n each specific v e h i c l e system that is u s e d . Pigment Formulation Variables.
D e c r e a s i n g the p i g m e n t v o l u m e
c o n c e n t r a t i o n of a n electrocoat p a i n t or p r i m e r system w i l l u s u a l l y g i v e Downloaded by UNIV LAVAL on April 6, 2016 | http://pubs.acs.org Publication Date: June 1, 1973 | doi: 10.1021/ba-1973-0119.ch007
a softer film w i t h greater film smoothness b u t less h i d i n g p o w e r . Increas i n g the p i g m e n t v o l u m e c o n c e n t r a t i o n w i l l give h a r d e r films w h i c h are r o u g h e r i n appearance.
T h i s increase i n P V C w i l l u s u a l l y increase
t h r o w i n g p o w e r a n d also m a k e the d e p o s i t e d film m o r e susceptible
the to
pinholing. P r i m e , extender, a n d a n t i - c o r r o s i o n p i g m e n t s h a v e a definite effect o n the s t a b i l i t y of the electrocoat p a i n t system. P i g m e n t s w h i c h h a v e the d e s i r e d s t a b i l i t y i n a l k a l i n e médias, p r o p e r size, c h e m i c a l c o m p o s i t i o n , a n d l o w s o l u b i l i t y w i t h a c c o m p a n i e d h i g h specific resistance h a v e b e e n u s e d successfully at P V C levels of 1 to 2 0 % .
U s u a l l y the t y p e of v e h i c l e
has m o r e effect o n the s t a b i l i t y of the electrocoat system t h a n does the p i g m e n t , b u t it is s t i l l i m p o r t a n t that e a c h p i g m e n t or c o m b i n a t i o n of p i g m e n t s b e t h o r o u g h l y e v a l u a t e d ( at the d e s i r e d P V C l e v e l ) i n the l a b oratory b e f o r e large scale p r o d u c t i o n t a n k trials are m a d e .
Certainly
the i n c r e a s e d use of a p i g m e n t w h o s e electrolyte content is of the t y p e that contributes to the pigment's h i g h s o l u b i l i t y i n w a t e r w i l l u n d o u b t e d l y cause
flocculation
and tank stability problems.
Testing Methods for Performance E l e c t r o c o a t paints a n d / o r tanks are g e n e r a l l y tested f o r the f o l l o w i n g properties: ( 1 ) Throwing power: m e a s u r i n g the p e r c e n t of p a i n t d e p o s i t e d i n side a % - i n c h s t a n d a r d gas c o n d u i t ( w i t h or w i t h o u t a steel p a n e l i n s i d e ) or t h e percent p a i n t d e p o s i t e d o n the i n s i d e of either t w o or three phosp h a t e d steel panels that are separated b y % - i n c h shims. ( 2 ) pH and alkalinity: 50 m l of the p a i n t are u s u a l l y c h e c k e d w i t h a p H meter. T h e a l k a l i n i t y is u s u a l l y d e t e r m i n e d i n m i l l i e q u i v a l e n t s of a m i n e p e r 100 grams of p a i n t solids. ( 3 ) Conductivity: m a y b e m e a s u r e d w i t h a c i r c u l a t i o n c e l l c o n n e c t e d to a m e a s u r i n g b r i d g e of the W h e a t s t o n e t y p e , the p a i n t b e i n g the u n k n o w n resistance. (4)
Non-volatile content.
Brewer; Electrodeposition of Coatings Advances in Chemistry; American Chemical Society: Washington, DC, 1973.
7.
YOUNG AND GRONET
109
Pigmentation of Electrocoatings
( 5 ) Thickness of the cured film: m a y b e m e a s u r e d i n m i l s b y elec t r o n i c thickness tester o r i n m i c r o n s b y a P e r m a s c o p e . ( 6 ) Ash-binder ratio: 10 t o 15 m i l h e a t e d a t 2 2 0 ° F t o d e t e r m i n e n o n - v o l a t i l e content. T h e n o n - v o l a t i l e is t h e n ashed at 1 4 0 0 ° F f o r o n e h a l f h o u r . T h i s r a t i o is v e r y i m p o r t a n t because o n e c a n d e t e r m i n e t h e a s h - t o - b i n d e r r a t i o o f t h e t a n k a n d also that o f t h e d e p o s i t e d film. N o r m a l l y t h e p i g m e n t w i l l deposit m o r e efficiently t h a n t h e b i n d e r , a n d t h e p i g m e n t - t o - b i n d e r ratio w i l l decrease i n t h e tank as i t is w o r k e d . A d j u s t ments m u s t b e m a d e to k e e p this r a t i o i n b a l a n c e . ( 7 ) Coulombic yield: u s u a l l y expressed as t h e w e i g h t i n m i l l i g r a m s d e p o s i t e d o n t h e a n o d e f o r e a c h c o u l o m b c o n s u m e d a n d is c a l c u l a t e d f r o m a r e c o r d i n g amperemeter.
Downloaded by UNIV LAVAL on April 6, 2016 | http://pubs.acs.org Publication Date: June 1, 1973 | doi: 10.1021/ba-1973-0119.ch007
O t h e r l a b o r a t o r y tests m a y b e p e r f o r m e d s u c h as p u m p i n g s t a b i l i t y and
c o n t i n u o u s process testing o f t h e l i f e s p a n o f a n electrocoat b a t h .
A c o i l stock c o a t i n g d e v i c e w i t h v a r i a b l e speed d r i v e , heat a n d p a i n t f e e d e q u i p m e n t is u s e d .
exchangers,
F e e d , temperature, a n d throughput
are r u n t h e same as i n a p r o d u c t i o n tank.
T h e tank is r u n c o n t i n u o u s l y
u n t i l t h e d e p o s i t e d films d o n o t meet t h e specifications o r u s u a l l y u n t i l 20 times t h e w e i g h t o f solids u s e d as o r i g i n a l fill has b e e n c o n v e r t e d i n t o c o a t i n g . A 5 - g a l l o n l a b o r a t o r y tank w i l l c o m p l e t e l y t u r n over i n o n e d a y whereas i t takes a b o u t 2 0 d a y s f o r a p r o d u c t i o n tank t o t u r n over.
With
t h e present k n o w l e d g e o f electrocoat systems a n d b y u s i n g u l t r a f i l t r a t i o n the b a t h l i f e o f a n electrocoat a u t o m o t i v e p r i m e r t a n k c a n b e c o n t r o l l e d for i n d e t e r m i n a t e p e r i o d s o f t i m e .
Literature Cited 1. " T h e Influence of the Construction of Electrocoat Installation on Coating Results," D r . H. Frangen, Conference on Electro-Painting, L o n d o n 28 and 29, October, 1969, organized b y Business Conferences & Exhibitors, Ltd. 2. Levinson, S. B . , "Electrocoat, Powdercoat, Radiate," J. Paint Technol. (June 1972) 44, 569; Pt. I p. 49. 3. Hauser, Ernest Α., "Latex," translated b y W. J. Kelly, p p . 136-137, Chemical Catalog C o . , N e w York, 1930. 4. Feinlieb, M., "Electrodeposition of V i n y l Plastics," Trans. Electrochem. Soc. (1945) 88, 11. 5. Mosley, J. R., Wallace, T . C., "Electrophoretic Deposition, A Versatile Coat ing M e t h o d , " J. Electrochem. Soc. (1962) 109, 923. 6. Pearlstein, F . , W i c k , R., Gallaccio, Α., "Electrophoretic Deposition of Metals," J. Electrochem. Soc. (1963) 110, 843. 7. Berg, D., Hirayama, C., "Studies on the Electrophoretic Deposition of Mica," Electrochem. Technol. (1963) 1, 224. 8. Tasker, L., Taylor, J . R., J. Oil Colour Chemist's Assoc. (1965) 48, 121. RECEIVED M a y 28, 1971.
Brewer; Electrodeposition of Coatings Advances in Chemistry; American Chemical Society: Washington, DC, 1973.